VECTOR INTEGRALS

$$
\mathbf{T Y P E}_{C} \varphi \boldsymbol{d r}
$$

Question 1

$$
V(x, y, z)=60 x y z^{2} .
$$

Evaluate the following integral along C, from $(3,1,1)$ to $(4,3,2)$,

$$
\int_{C} V \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

where C is the curve with parametric equations

$$
x=t+2, \quad y=2 t-1, \quad z=t
$$

Created by T. Madas

Question 2

$$
\varphi(x, y, z) \equiv 3 x+2 y+z
$$

Evaluate the following integral along C, from $(1,0,0)$ to $(2,2,1)$,

$$
\int_{C} \varphi \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

where C is the curve with parametric equations

$$
x=t+1, \quad y=2 t, \quad z=t^{2}
$$

$$
\frac{41}{6} \mathbf{i}+\frac{41}{3} \mathbf{j}+\frac{49}{6} \mathbf{k}
$$

Question 3

$$
0
$$

$$
F(x, y, z)=x y z
$$

Evaluate the following integral along C, from $(1,0,0)$ to $(0,1,4)$,

$$
\int_{C} F \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

where C is the curve with parametric equations

$$
x=\cos t, \quad y=\sin t, \quad z=\frac{8 t}{\pi} .
$$

$$
\frac{16-12 \pi}{9 \pi} \mathbf{i}+\frac{16}{9 \pi} \mathbf{j}+\frac{8}{\pi} \mathbf{k}
$$

| $\int_{(1,90)}^{(0,1,4)} x y z d s=\int_{(0,0,0)}^{(9,1,4)} 2 y z z(d x y d y, d z)$ | $\left\{\begin{array}{l} a=\cos t \Rightarrow d x=\sin t d t \\ y=s \sin t \rightarrow d y=\cos +d t\} \\ z=\frac{\theta t}{T} \Rightarrow d z=\frac{8}{\pi} d t \end{array}\right\}$ |
| :---: | :---: | Treatulierze

$\left.\int_{0}^{2}(\cos t) \sin t\right) \frac{8 t}{\pi}\left(-\sin t d t \cos t+\frac{8}{\pi} d t\right)$ $\int_{0}^{\frac{\pi}{2}}\left(\frac{8}{\pi} t \cos ^{2} \sin ^{2} t, \frac{8}{\pi} t \cos ^{2} t \sin t, \frac{64}{\pi^{2}} t u \cos n t\right) d t$

$$
\mathbf{T Y P E} \int_{V} \mathbf{F} d V
$$

Created by T. Madas

Question 1

$$
\mathbf{F}(x, y, z) \equiv x y \mathbf{i}+z \mathbf{j}-x^{2} \mathbf{k} .
$$

Evaluate the vector integral

where V is the finite region in the first octant bounded by the planes with equations

$$
x=2, y=3 \text { and } z=4 .
$$

$36 \mathbf{i}+48 \mathbf{j}-32 \mathbf{k}$

Question 2

$$
\mathbf{F}(x, y, z) \equiv z \mathbf{i}+\mathbf{j}+y \mathbf{k} .
$$

Evaluate the vector integral

$$
\int_{V} \mathbf{F} d V
$$

where V is the finite region in the first octant bounded by the plane with equation

Created by T. Madas

Question 3

$$
\mathbf{F}(x, y, z) \equiv \mathbf{i}+2 z \mathbf{j}+y \mathbf{k} .
$$

Evaluate the vector integral

$$
\int_{V} \mathbf{F} d V
$$

where V is the finite region enclosed by the cylinder with equation

$$
x^{2}+y^{2}=9,0 \leq z \leq 2
$$

Created by T. Madas

Question 4

$$
\mathbf{F}(x, y, z) \equiv \frac{1}{6 \pi} \mathbf{i}+\frac{z}{18 \pi} \mathbf{j}+\frac{y}{9 \pi} \mathbf{k} .
$$

Evaluate the vector integral

$$
\int_{V} \mathbf{F} d V
$$

where V is the finite region enclosed by the cylinder with equation

Created by T. Madas

Question 5

$$
\mathbf{F}(x, y, z) \equiv 3 \mathbf{i}+-y \mathbf{j}+6 x \mathbf{k} .
$$

Evaluate the vector integral

$$
\int_{V} \mathbf{F} d V,
$$

where V is the finite region enclosed by the hemisphere with equation

Question 6
The finite region V in the first octant, is bounded by the surfaces with equations

$$
y=4-x^{2} \quad \text { and } \quad y=4-z^{2} .
$$

Given that $\mathbf{F}=\frac{1}{8} \mathbf{i}+3 y^{2} \mathbf{j}-\frac{1}{4} \mathbf{k}$ determine

$$
\mathbf{i}+64 \mathbf{j}-2 \mathbf{k}
$$

\square

$$
\mathbf{T Y P E} \int_{S} F \mathbf{d S}
$$

Created by T. Madas

Question 1

$$
F(x, y, z) \equiv x+y+z
$$

Evaluate the integral

where S is the plane surface with equation

$$
2 x+y+2 z=6, x \geq 0, y \geq 0, z \geq 0
$$

\square

Question 2

$$
\varphi(x, y, z) \equiv \frac{3}{4} x y z
$$

Evaluate the integral

$$
\int_{S} \varphi \mathbf{d S}
$$

where S is the curved surface of the cylinder with equation

$$
x^{2}+y^{2}=4, x \geq 0, y \geq 0,0 \leq z \leq 2 .
$$

$$
4 \mathbf{i}+4 \mathbf{j}
$$

Created by T. Madas

Question 3

$$
\varphi(x, y, z) \equiv \frac{1}{2} x y z^{2}
$$

Evaluate the integral

$$
\int_{S} \varphi \mathbf{d} \mathbf{S}
$$

where S is the curved surface of the cylinder with equation

$$
x^{2}+y^{2}=9, x \geq 0, y \geq 0,0 \leq z \leq 2 .
$$

Question 4

$$
\varphi(x, y, z) \equiv 2 x+2 y
$$

Evaluate the integral

$$
\int_{S} \varphi \mathbf{d S}
$$

where S is the curved surface of the sphere with equation

$$
x^{2}+y^{2}+z^{2}=1, x \geq 0, y \geq 0, z \geq 0 .
$$

\square $\frac{1}{3}[(\pi+2) \mathbf{i}+(\pi+2) \mathbf{j}+4 \mathbf{k}]$

$$
\begin{aligned}
& =1\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\frac{\pi}{2}} \times\left[\phi+\frac{1}{2} \sin \gamma \phi-\frac{1}{2} \operatorname{coc} \alpha\right]_{0}^{\frac{\pi}{2}} \\
& =1\left[(0+0)-\left(-1+\frac{1}{3}\right)\right] \times\left[\left(\frac{\pi}{2}+0+\frac{1}{2}\right)-\left(0+0-\frac{1}{2}\right)\right] \\
& \text { - i }\left(\frac{2}{3}\right)-\left(\frac{\pi}{2}+1\right] \\
& =\frac{1}{3}(T+2) i \\
& \int_{0}^{\pi} 2 \sin ^{2} \theta d \theta-2 \int \sin ^{2 x} \theta \cos ^{2} \theta \cos ^{2} \theta-1 d \theta=B(2, t)=\frac{\Gamma(2) \Gamma(t)}{\Gamma\left(\frac{t}{2}\right)}
\end{aligned}
$$

Nat rite α Gompanem in shferate manes
$=\lambda \int_{k=0}^{\frac{\pi}{2}} \int_{\theta=0}^{1 / 2} 2 \cos \cos ^{2} \theta \sin \phi \cos \phi+2 \sin \theta \cos ^{2} \phi^{2} \phi d \theta d \phi$
$=1-\int_{d x=0}^{\pi / 2} \int_{\tan }^{\pi / 2} 2 \cos ^{3} \theta\left(\sin \phi \cos \phi+3 x^{2} \phi\right) d \theta d \phi$
$=\frac{1}{-1} \int_{j=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} 2 \sin \theta\left(\frac{1}{2} \sin 2 \phi+\frac{1}{2}-\frac{1}{2} \cos 2 \alpha\right) d \theta d \phi$
$=1 \int_{1 / 2}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \sin ^{3} \theta(\sin 2 \phi+1-\cos 2 \phi) d \theta d \phi$
$=1 \int_{0=0}^{\pi / 2} \sin ^{2} \theta d \theta \int_{\phi=0}^{\pi / 2} 1+\sin 2 \phi-\cos \phi \phi d p$
$=1 \times \times \frac{3}{3} \times\left[\$-\frac{1}{2} \cos 4-\frac{1}{2}=204\right]_{0}^{3 / 2}$

$$
\mathbf{T Y P E} \int_{S} \mathbf{F} d S
$$

Question 1
The Cartesian equation of a surface S is

$$
z=x^{2}+y^{2}, \quad z \leq 1
$$

Evaluate the surface integral

$$
\int_{S} \hat{\mathbf{n}}_{\wedge} \nabla \varphi d S
$$

Question 2
The Cartesian equation of a surface S is

$$
z=1-x^{2}-y^{2}, \quad z \geq 0
$$

Evaluate the surface integral

$$
\int_{S} \hat{\mathbf{n}}_{\wedge} \wedge \varphi d S
$$

$$
\mathbf{T Y P E} \int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

Created by T. Madas

Question 1
Evaluate the surface integral

where S is the surface with equation

Created by T. Madas

Question 2

$$
\mathbf{F}(x, y, z) \equiv x^{2} \mathbf{i}-2 y \mathbf{j}-2 z \mathbf{k} .
$$

Evaluate the surface integral

where S is the plane surface with equation

$$
2 x+2 y+z=2, x \geq 0, y \geq 0, z \geq 0
$$

Created by T. Madas

Question 3

$$
\mathbf{F}(x, y, z) \equiv 4 y \mathbf{i}+\mathbf{j}+2 \mathbf{k} .
$$

Evaluate the surface integral

where S is the surface with equation

Created by T. Madas

Created by T. Madas

Question 4
Evaluate the surface integral

where S is the surface with equation
and $\mathbf{F}=-y \mathbf{i}+z \mathbf{j}-x \mathbf{k}$.

Created by T. Madas

Question 5

$$
\mathbf{F}(x, y, z) \equiv \mathbf{i}+\frac{1}{2} y \mathbf{j}+z^{2} \mathbf{k} .
$$

Evaluate the surface integral

where S is the curved cylindrical surface with equation

$$
x^{2}+y^{2}=4, x \geq 0,0 \leq z \leq 3
$$

Question 6

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}
$$

Calculate the flux of \mathbf{F} through the open surface with equation
in the direction of z decreasing.

$$
z=\sqrt{x^{2}+y^{2}}, z \leq 1
$$

\square

Question 7
The surface S has Cartesian equation

$$
z=1-x^{2}-y^{2}, x \geq 0, y \geq 0, z \geq 0
$$

Evaluate the surface integral

Created by T. Madas

Question 8

$$
\mathbf{F}(x, y, z) \equiv-y \mathbf{i}+x \mathbf{j}+3 z \mathbf{k} .
$$

Evaluate the surface integral

where S is the surface of the hemisphere with equation

$$
x^{2}+y^{2}+z^{2}=9, z \geq 0
$$

contained inside the cylinder with equation

$$
x^{2}+y^{2}=4, z \geq 0,
$$

Created by T. Madas

Question 9

Space is filled uniformly by the constant vector field $3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$.

A square lamina whose vertices are at $(0,0,0),(1,0,0),(1,1,0)$ and $(0,1,0)$ is rotated by $\frac{1}{4} \pi$, anticlockwise, about the y axis.
determine the magnitude of the flux of the field through the rotated lamina.

Question 10
The surface S has Cartesian equation

$$
z=2-x^{2}-y^{2}, x^{2}+y^{2} \leq 1
$$

a) Sketch the graph of S.
b) Given that $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$, evaluate the integral

Created by T. Madas

Question 11
The surface S has Cartesian equation

$$
(z-1)^{2}=x^{2}+y^{2}, 1 \leq z \leq 3
$$

a) Sketch the graph of S.
b) Given that $\mathbf{F}=z^{2} \mathbf{i}+x^{2} \mathbf{j}+y^{2} \mathbf{k}$, evaluate the integral

Question 12

$$
\mathbf{F}(x, y, z) \equiv 3 x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k} .
$$

Evaluate the surface integral

where S is the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Question 13

$$
\mathbf{F}(x, y, z) \equiv(x+y) \mathbf{i}+(x-y) \mathbf{j}+(x+z) \mathbf{k} .
$$

Evaluate the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d} \mathbf{S}
$$

where S is the surface with Cartesian equation

Question 14

$$
\mathbf{F}(x, y, z) \equiv(x+z+x y) \mathbf{i}+\left(z^{2}-2 x z-y\right) \mathbf{j}+\mathbf{k}
$$

Evaluate the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=4, z \geq 0
$$

Created by T. Madas

Question 15

$$
\mathbf{F}(x, y, z) \equiv-x y \mathbf{i}+(y z-x y) \mathbf{k}
$$

Show that there is zero net flux of \mathbf{F} through the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=25, z \geq 3 .
$$

 (t $f(a, y)=x^{2} y^{2} y^{2} t^{2}-25$ $x *=(2 x, z y, z z)$
$n=(x, y, z)$

Thes fux in the diefilan of z Nalunik $\int_{s} \underline{F} \cdot \hat{n} d s=\int_{q}(-x y, 0, y z-x y) \cdot \frac{n}{|\underline{\mid}|} d f=\ldots$ Proster cand the ry punt ando Tite RfGid) $x^{2}+y^{2} \leq 16$ $d s=\frac{d x d y}{\underline{a} \cdot \underline{k}}$
$=\int_{R}(-x y, 0, y z-x y) \cdot \frac{h}{|h|} \frac{d x d y}{\frac{h}{h} \cdot \underline{k}}$
$=\int_{R}(-x y, 0, y z-x y) \cdot \frac{n}{n} \frac{\ln [d x d y}{n \cdot \underline{k}}$
$=\int_{R}(-x, x, y z-x y) \cdot(x, y, z) \frac{d x d y}{(x, y, z) \cdot(0,0,1)}$
$=\int_{R}-2 y+y z^{2}-x y z\left(\frac{d x d y}{z}\right)$
$=\int_{l} \frac{-x^{2} y}{z}+y z-x y d x d y$

Question 16

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

a) Given that S is the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=1, z \geq 0
$$

show that

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}=4 \int_{R}\left[\frac{x^{2}}{\sqrt{1-x^{2}-y^{2}}}+1-x^{2}-y^{2}\right] d x d y
$$

where R is the region in the first quadrant with Cartesian equation

$$
x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0
$$

b) Evaluate the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

\square $\frac{7}{6} \pi$
\square
\square

Question 17

$$
\mathbf{F}=x^{2} y^{3} \mathbf{i}+z \mathbf{j}+x \mathbf{k} .
$$

Show by direct evaluation that

$$
\int_{S} \nabla_{\wedge} \mathbf{F} \cdot \hat{\mathbf{n}} d S=0
$$

$$
x^{2}+y^{2}+z^{2}=1
$$

where S is the sphere with equation
and $\hat{\mathbf{n}}$ is an outward unit normal to S.

Question 18

$$
\mathbf{F}(x, y, z) \equiv(x+y z) \mathbf{i}+\left(y^{3} z+x\right) \mathbf{j}+(z+x y z) \mathbf{k}
$$

Calculate the magnitude of the flux of \mathbf{F} through the open cylindrical surface with equation

$$
x^{2}+y^{2}=1,0 \leq z \leq 4
$$

$\int_{v=0}^{2 \pi} 4 \cos ^{2} v d v+\int_{v=0}^{2 \pi} 8 \sin ^{4} v d v$

Created by T. Madas

Question 19

$$
\mathbf{F}(x, y, z) \equiv y \mathbf{i}+x^{2} \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the flux through the surface with parametric equations

$$
\mathbf{r}(u, v)=u \mathbf{i}+v \mathbf{j}+(u+v) \mathbf{k}, \quad 0 \leq u \leq 1, \quad 1 \leq v \leq 4
$$

All integrations must be carried out in parametric.

Question 20
Evaluate the surface integral

$$
\int_{S} z \mathbf{k} \cdot \mathbf{d} \mathbf{S}
$$

where S is the surface represented parametrically by

$$
\mathbf{r}(\theta, \varphi)=\left[\begin{array}{c}
\sin \theta \cos \varphi \\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}\right], 0 \leq \theta \leq \frac{1}{2} \pi, 0 \leq \varphi \leq \frac{1}{2} \pi
$$

\square

Question 21
Evaluate the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d} \mathbf{S}
$$

where S is the surface represented parametrically by

$$
\mathbf{r}(u, v)=\left[\begin{array}{c}
u+v \\
u-v \\
u
\end{array}\right], \quad 0 \leq u \leq 2, \quad 0 \leq v \leq 3,
$$

and \mathbf{F} is the vector field

$$
x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

All integrations must be carried out in parametric.
\square , 36

Question 22

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+2 z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(u \cos v) \mathbf{i}+(u \sin v) \mathbf{j}+u \mathbf{k}
$$

such that $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

\square
\square

Question 23

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(1+\sin u \cos v) \mathbf{i}+(\sin u \sin v) \mathbf{j}+(\cos u) \mathbf{k},
$$

such that $0 \leq u \leq \pi, 0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 24

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(u \cos v) \mathbf{i}+(1+u \sin v) \mathbf{j}+(u-1) \mathbf{k}
$$

such that $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 25

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+2 z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(\theta, \varphi)=[(4+\cos \theta) \cos \varphi] \mathbf{i}+[(4+\cos \theta) \sin \varphi] \mathbf{j}+(\sin \theta) \mathbf{k},
$$

such that $0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 26
It is given that the vector field \mathbf{F} satisfies

$$
\mathbf{F}=2 y \mathbf{i}-2 x \mathbf{j}+\mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S},
$$

where S is the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

cut off by the cylinder with cartesian equation

$$
x^{2}+y^{2}=x
$$

You must find a suitable parameterization for S, and carry out the integration in parametric, without using any integral theorems.

Created by T. Madas

Created by T. Madas

Question 1

$$
\mathbf{F}(x, y, z) \equiv x y \mathbf{i}+y \mathbf{j}+4 \mathbf{k} .
$$

Evaluate the integral

$$
\oiint_{S} F \cdot d S
$$

where S is the closed surface enclosing the finite region V, defined by

$$
x^{2}+y^{2} \leq 9, \quad x \geq 0, \quad y \geq 0, \quad 0 \leq z \leq 4
$$

Question 2

$$
\mathbf{F}(x, y, z) \equiv\left(x+y^{2}\right) \mathbf{i}+(2 y+x z) \mathbf{j}+(3 z+x y z) \mathbf{k}
$$

Evaluate the integral

$$
\mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with Cartesian equation

$$
4 x^{2}+4 y^{2}+4 z^{2}=1
$$

You may not use the Divergence Theorem in this question.

Question 3
It is given that

$$
\mathbf{F}(x, y, z) \equiv \mathbf{k} \wedge \mathbf{r}, \quad \text { where } \quad \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

Show by direct integration that

$$
\oiint_{S} \nabla \wedge \mathbf{F} \cdot \mathbf{d S}=0
$$

where S is the closed surface enclosing the finite region V, defined by

$$
x^{2}+y^{2}+z^{2} \leq 1, \quad z \geq 0, \quad \text { and } \quad x^{2}+y^{2} \leq 1 .
$$

You may not use any Integral Theorems in this question.

Question 4

$$
\mathbf{F}(x, y, z) \equiv(4 y z) \mathbf{i}+\left(2 y^{2}\right) \mathbf{j}+\left(5 x y z+6 z^{2}+3 z\right) \mathbf{k} .
$$

Evaluate the integral

$$
\mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with Cartesian equation

$$
x^{2}+y^{2}+4 z^{2}=1
$$

You may not use the Divergence Theorem in this question.
\qquad
\qquad
Top thuF, Plosecinc-onno the xy Pemes

 $I_{1}=\iint_{R}\left(4 y z, 2 y_{1}^{2}, 5 y z+6 z^{2}+3 z\right) \cdot \frac{n}{\sqrt{2 n+1}} \frac{d x d y}{\frac{n}{12 y} \cdot \hat{E}}$ $I_{i}=\iint_{R}\left(4 g z_{1}, 2 y_{1}^{2} 5 x y z+6 z^{2}+3 z\right) \cdot(3,4,4 z) \frac{d x}{\left(x_{1}, 4,4 z\right) \cdot(0,91)}$ $I_{1}=\iint_{2} \frac{4 y y z+2 y^{3}+20 x y y^{2}+24 z^{3}+2 z z^{2}}{4 z} d x d y$
$=\iint_{R} \frac{2 y^{3}}{\left(1-x^{2}-y^{2}\right)^{2}}+5 x y\left(x-x^{2}-y^{2}\right)^{\frac{1}{2}}+3\left(1-x^{2}-y^{2}\right)^{\frac{1}{2}} d x d y$

Question 5
The surface Ω is the sphere with Cartesian equation

$$
(x-1)^{2}+(y-1)^{2}+(z-1)^{2}=1
$$

Evaluate the surface integral

$$
\oiint_{\Omega}\left[(x+y) \mathbf{i}+\left(x^{2}+x y\right) \mathbf{j}+z^{2} \mathbf{k}\right] \cdot \mathbf{d} \mathbf{S},
$$

where $\mathbf{d S}$ is a unit surface element on Ω.

You may not use the Divergence Theorem in this question.

