SURFACE INTEGRALS ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

the COL

Question 1

Find the area of the plane with equation

 $2x + 3y + 6z = 60, \ 0 \le x \le 4, \ 0 \le y \le 6.$

Question 2

0

A surface has Cartesian equation

 $x + \frac{y}{4} + \frac{z}{5} = 1$.

Madasmati

Determine the area of the surface which lies in the first octant.

Madasmaths.com

I.V.C.B. Madasmaths.Com

Smarns.com

I.F.G.B.

2ths.com

 $\frac{21}{2}$

naths.co.

1.4.6.15

N.G.

1.

11.212ST12

Question 3

F.G.B.

Ka

The plane with equation

2x + 2y + z = 18,

intersects the cylinder with equation

 $x^2 + y^2 = 81.$

Determine the area of the cross-sectional cut.

2a+2g+2=18	2 Z= 18-22-24
$\frac{M}{M} = (2_1 2_1)$ $M = \sqrt{4 + 0 + 1} = 3$	$\frac{\partial p_{1}}{\partial a} = -2$
$\underline{\hat{h}} = \frac{1}{3}(2_1 2_{11})$ (<u> </u>
$\hat{\mathbb{D}} \cdot \hat{\mathbb{E}} = \frac{1}{2} (2z_i) \cdot (0,0,1) = \frac{1}{2}$	$\left\langle ab_{S} = \sqrt{\frac{\partial E^{2}}{\partial x^{2}} + \frac{\partial E^{2}}{\partial y^{2}} + 1} dx dy \right\rangle$
in dd = dzdy	(d\$= \(G2)^2 + G2)^2 +1 de dy)
$d_{y} = 3 dx dy$	dy = 3 dz dy
18	Hora - L I IV
a a a	$ARA = \int_{S} 1 dx dy$ = $\int_{S} 1 - 3 dx dy$
2 0 NOT	$= 3 \int dx dy$
THE PUNK IN THE FIRST	= 3×ARAOFR
Interest is it project	$= 3 \times (\pi \times 9^2)$
	= 243 m
(1,0)	

F.C.B.

nadasn.

 243π

Question 4

A tube in the shape of a right circular cylinder of radius 4 m and height 0.5 m, emits heat from its curved surface only.

The heat emission rate, in Wm^{-2} , is given by

 $\frac{1}{2}\mathrm{e}^{-2z}\sin^2\theta\,,$

where θ and z are standard cylindrical polar coordinates, whose origin is at the centre of one of the flat faces of the cylinder.

Given that the cylinder is contained in the part of space for which $z \ge 0$, determine the total heat emission rate from the tube.

 $\pi (1-e)$

Question 5

A surface has Cartesian equation

 $z = \sqrt{x^2 + y^2} \; .$

The projection in the x-y plane of the region S on this surface, is the region R with Cartesian equation

 $x^2 + y^2 = 1.$

Find the area of S.

12

1.2.

<u> </u>	911
$\begin{array}{c} \text{MAT}_{A} = \left(\begin{array}{c} \text{Crear} + \text{RecOVAL} \right) \\ \text{Crear}_{A} = \left(\begin{array}{c} \text{Crear}_{A} + C$	$\begin{array}{c} \label{eq:constraint} \underbrace{UH}_{C} B & \underbrace{Cynamics}_{A} A_A_eff C_A_eff C_A_A_A_A_A_A_A_A$

 $\pi\sqrt{2}$

HE SUBACE 7- f(24.5) ABOLT ITS PENDERAI ON $\left(\frac{\partial a}{\partial a}\right)^2 + \left(\frac{\partial a}{\partial y}\right)^2 + 1$ dudy (22+192)2

42) = + (22+43) = +1 = N2 II (W2 dady)

R.

Question 6

V.C.B. Madasn

I.C.B.

 $I = \int z \, dS \, .$

Find the exact value of I, if S is the surface of the hemisphere with equation

 $x^2 + y^2 + z^2 = 4, \ z \ge 0.$

You may only use Cartesian coordinates in this question.

 8π

°om

madası

I.F.G.B.

.G.D.

1+

.

Question 7

A hemispherical surface, of radius a m, is electrically charged.

The electric charge density $\rho(\theta, \varphi)$, in Cm⁻², is given by

$$\rho(\theta, \varphi) = k \cos^2(\theta) \sin(\frac{1}{2}\varphi)$$

where k is a positive constant, and θ and φ are standard spherical polar coordinates, whose origin is at the centre of the flat open face of the hemisphere.

Given that the hemisphere is contained in the part of space for which $z \ge 0$, determine the total charge on its surface.

 ka^2

Question 8

0

Evaluate the integral

1202

N.G.B. Madas

200

I.V.G.B

 $(x+y+z)\,dS\,,$

where S is the plane with Cartesian equation

6x+3y+2z=6, $x \ge 0$, $y \ge 0$, $z \ge 0$.

200

COM

7

Com

nadasn.

I.C.B.

.G.5.

4

.

Y.G.B.

Created by T. Madas

2017

Question 9

A hemispherical surface, of radius a m, has small indentations due to particle bombardment.

The indentation density $\rho(z)$, in m⁻², is given by

 $\rho(z) = k z \, ,$

where k is a positive constant, and z is a standard cartesian coordinate, whose origin is at the centre of the flat open face of the hemisphere.

Given that the hemisphere is contained in the part of space for which $z \ge 0$, determine the total number of indentations on its surface.

 πka^3

Question 10

COM

I.F.G.B.

Evaluate the integral

 $\frac{x^2 - 3y^2 + 1}{\sqrt{4x^2 + 4y^2 + 1}} \, dS \, ,$

 $z = 1 - x^2 - y^2, \quad z \ge 0.$

where S is the surface with Cartesian equation

I.C.P.

 $\frac{x^2 - 3y^2 + 1}{\sqrt{4y^2 + 4y^2 + 1}} d\xi$ $\sqrt{\left(\frac{\partial \underline{a}}{\partial q}\right)^2} + \left(\frac{\partial \underline{a}}{\partial \theta}\right)^2 + |$ $dS = \sqrt{4x^2 + 4y^2 + 1} \quad dx \, dy$ $\frac{\alpha^2 - 3q^2 + 1}{\sqrt{42^2 + 4q^2 + 1}} \sqrt{44^2 + 4q^2 + 1} dxdy = \int \alpha^2 - 3q^2 + 1 dxdy$ $\left[r\partial_{\alpha}\partial_{\theta} - 3r\partial_{\alpha}r\partial_{\theta} + 1\right]\left[r\partial_{\alpha}d\theta\right] = \int_{0}^{0} \left(r\partial_{\alpha}\partial_{\theta} - 3r\partial_{\alpha}r\partial_{\theta} + r\right) drd\theta$ $b^{1} \left[\sum_{m=1}^{2\gamma} \left(\hat{\theta}_{m} (z_{1} - \delta_{m})^{2} + \left(\hat{\theta}_{m} (z_{2} - \delta_{m})^{2} + \int_{\theta=0}^{2\gamma} \left(\sum_{m=1}^{2\gamma} \left(\hat{\theta}_{m} (z_{1} - \delta_{m})^{2} + \int_{\theta=0}^{2\gamma} \left(\hat{\theta}_{m} (z_{1} - \delta_{m})^{2} + \int_{\theta=0}^{2\gamma$ $\frac{1}{2}\left(\log \theta - \log \theta\right) + \frac{1}{2} \quad d\theta = \int_{\theta=0}^{2\pi} \frac{1}{2}\left[\frac{1}{2} + \frac{1}{2}(\log \theta - 3\left(\frac{1}{2} - \frac{1}{2}(\log \theta)\right) + \frac{1}{2} \right] d\theta$ $\frac{1}{4}\left[-1+\frac{1}{4}\cos^{2\theta}\right]+\frac{1}{2}d\theta = \int_{-1}^{2\pi}\frac{1}{4}d\theta$

F.G.B.

COM

 $\frac{\pi}{2}$

nn

17.202ST

I.F.G.B.

Y.G.S.

6

.

Created by T. Madas

2017

N.C.

Question 11

Evaluate the integral

 $\int_{S} (xy+z) \, dS \, ,$

where S is the plane with Cartesian equation

2x - y + z = 3,

whose projection onto the plane with equation z = 0 is the rectilinear triangle with vertices at (0,0), (1,0) and (1,1).

 $\frac{9\sqrt{6}}{8}$

Question 12

d

Smaths.com

ns.

madasmaths,

Smaths.com

I.V.G.B.

1.1.65

 $I = \begin{bmatrix} x^2 + y^2 \ dS \end{bmatrix}.$

Find the exact value of I, if S is the surface of the cone with equation

 $z^2 = 4\left(x^2 + y^2\right), \ 0 \le z \le 4 \ .$

HANGE de = NS dady THUS $I = \iint_{g} \left(\chi^{2} + \psi^{2} \right) ds = \iint_{R} \chi^{2} + \psi^{2} \left(\sqrt{c} dx dy \right)$ 22+y2=4 (crea r² (vs rdrdo) us - the du of the + (===) + (===) 2] 2 drdy + $\frac{4a^2}{a^2+y^2} + \frac{4y^2}{a^2+y^2} \int_{-\infty}^{+\infty} dx dy$ $\left(\frac{x^2+y^2+4y^2+4y^2}{2x^4+y^3}\right)^{\frac{1}{2}} dx d$

COM

Smarns.col

I.V.C.S

1.4

2

11303S1131

madasmaths.com

naths.com

 $8\pi\sqrt{5}$

Created by T. Madas

(D)]]

Question 13

Show clearly, by a **Cartesian projection** onto the *x-y* plane, that the surface area of a sphere of radius *a*, is $4\pi a^2$.

Question 14

F.G.B.

I.C.p

Find in exact form the **total** surface area of the cylinder with equation

$$x^2 + y^2 = 16, \ z \ge 1,$$

z = 12 - 12

x .

CURNED SURFACE

 $\eta r^2 = \eta x q^2 = 0$

(mina x =- q) 2 MIN = 8 (MHE 2=4)

> $(\eta \times \eta) \times (\eta \times \eta)$ 22× 41

> > 200

cut of by the plane the plane with equation

 $8\pi(13+2\sqrt{2})$

 $d_{s}^{l} = \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dz dz$ ds = VEI)2+0+1 ds' = Vz dzdu

YELLOW AREA

2-=-1

 $\int_{S} |d\xi = \int_{D} |\sqrt{2} dx dy$

No Ji dady = V2 × (ALFA OF x2+7)

F.G.B.

2012.Sm2

madasn,

= (12 × 16T) 10411+161211 = 8m (13+2x2

Question 15

I.C.P.

I.V.G.p

Find the area of finite region on the paraboloid with equation

cut off by the cone with equation

 $\frac{\hat{\underline{\gamma}}}{\hat{\underline{\gamma}}} \cdot \underline{\underline{\hat{\mu}}} = \frac{(2x_i 2y_i - 1)}{\sqrt{4x_i^2 + 4y_i^2 + 1}} \cdot (o_i v_i) = \frac{-1}{\sqrt{4x_i^2 + 4y_i^2 + 1}}$ GNORE THE MINUS - THE 2- FUILD CARTER HUM CLOOPE HW ARIA: $\iint_{\mathcal{B}} | d\beta = \iint_{\mathcal{R}} | \frac{dydy}{\underline{B} \cdot \underline{C}} = \iint_{\mathcal{R}} (\underline{\psi}_{1}^{1} + \underline{\psi}_{1}^{1} + 1)^{\pm} dydy$ I I THE RECONJOILE THISE OF IN PARL OF 152, OF BEST $\cdots = \int_{\underline{\theta}_{n-1}}^{2q} \int_{-\infty}^{2} \left(\mu^2 + i \right)^{\frac{1}{2}} \left(r dr d\theta \right) = \int_{\underline{\theta}_{n-1}}^{2q} \int_{-\theta_{n-1}}^{2q} r \left(4r^2 + i \right)^{\frac{1}{2}} dr d\theta$ $= \int_{0}^{2\pi} \left(\frac{1}{2} \left[\eta \right]_{2}^{2} \right)_{\text{free}}^{2} d\theta = \int_{0}^{2\pi} \left(\frac{1}{2} \left[\eta \right]_{1}^{2} \left[\eta \right]_{2}^{2} \right]_{0}^{2} d\theta$ $= \int_{0}^{2\pi} \frac{1}{2} \left(17\sqrt{q^2} - 1 \right) d\theta = \frac{1}{2} \left(17\sqrt{q^2} - 1 \right)$

I.C.B.

 $\frac{1}{6}\pi \Big[17\sqrt{17} - 1 \Big]$

1:0

Mana,

Question 16

Find a simplified expression for the surface area cut out of the sphere with equation

 $x^{2} + y^{2} + z^{2} = a^{2}, a > 0,$

when it is intersected by the cylinder with equation

 $x^2 + y^2 = ax$, a > 0.

 $ds^{2} = \sqrt{\frac{a}{a^{2} - x^{2} - y^{2}}} dxdy$

I.F.G.p.

THE REPUBLIC SORPHICE IS. IL TIMUS THE "PROJECTION" ONTO THE REPORT R., SHOWN IN YELLOW, BY SKIMMETRY $\Rightarrow -484A = 4 \int_{S} | ds = 4 \int_{R} | (\sqrt{\frac{\alpha}{\sqrt{\alpha^2 - 2^2 - 2^2}}}) dx dy$ => heta= 4afp 1/12-y2-12 dady SLOITOHING THE INITIAL INTO PU $\frac{1}{\sqrt{a^{2}-r^{2}}}\left(r\,\mathrm{drd}\mathfrak{g}\right)$ r(a²-r²)^z dr dq

 $= \frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac$

 $A = 2a^2 \left[\pi - 2 \right]$

I.G.B.

3

1

Mana.

Aeta = $4q^2 \left(\frac{\pi}{2} - 1 \right)$ $e_{14} = \partial a^2(\pi - 2)$

Question 17

F.G.B.

I.F.G.p.

Electric charge q is thinly distributed on the surface of a spherical shell with equation

$$x^2 + y^2 + z^2 = a^2$$
, $a > 0$.

Given that $q(x, y) = 2x^2 + y^2$, determine the total charge on the shell.

Created by T. Madas

F.C.P.

Question 18

A inverted right circular cone, whose vertex is at the origin of a Cartesian axes, lies in the region for which $z \ge 0$. The z axis is the axis of symmetry of the cone. Both the radius and the height of the cone is 6 units.

Electric charge Q is thinly distributed on the **curved** surface of the cone.

The charge at a given point on the curved surface of the cone satisfies

 $Q(r)=r\,,$

where r is the shortest of the point from the z axis.

Determine the total charge on the cone.

 $Q = 144\pi\sqrt{2}$

WHE THE REED R: 2+4254

 $\int \sqrt{2} r \cdot (r \, dr d\theta)$ f t2 dr dg

Question 19

ĈŖ.

L.C.P.

A surface S has Cartesian equation

 $x^2 - y^2 + z^2 = 0.$

- **a**) Sketch the graph of S.
- **b**) Find a parameterization for the equation of S, in terms of the parameters u and v.

c) Use the parameterization of part (b) to find the area of S, for $0 \le y \le 1$.

Created by T. Madas

F.C.P.

Question 20

I.C.B.

aths,

I.C.B.

The surface S is the sphere with Cartesian equation

 $x^2 + y^2 + z^2 = 1.$

By using Spherical Polar coordinates (r, θ, φ) , or otherwise, evaluate

 $\bigoplus_{S} \left(x^2 + y + z \right) dS \, .$

USING SPHERICH POLARS AS SUBB	EGLAD
2 lang de	(φαοθηα21 = £ 1="5+"β+"\$ \$ φηαεθηα21 = £ φαο2θα21 = £ φαο2 = 5
p i de a lisne lisne de	dd= = ================================
Placed with the indifferences $ \begin{pmatrix} a^{+}a^{+}a^{-1} \\ a^{+}a^{+}a^{-1} \end{pmatrix} = \begin{pmatrix} a^{+}a^{-1} \\ a^{+}a^{-1} \end{pmatrix} $	Bridish remberinto + razed][sintid dedeb]]
00000 ×	Hode Gradient for the
	и ф и в представать и по в вод тик изначать по тик изначать и на сполодить и сполодить и
SPUT THE INCHERALS, 45 THE QUILTS HER	ND647D631
$\dots = \left[\int_{0}^{2\pi} \cos^{2} \phi d\phi\right] \left[\int_{0}^{\pi} \sin^{2} \phi d\phi\right]$	
$= \left[\int_{0}^{a_{1}} \frac{1}{1 + \frac{1}{2} \cosh \frac{1}{2}} + \frac{1}{2} \cosh \frac{1}{2} \right] \left[\int_{0}^{a_{1}} \frac{1}{2} \sin \frac{1}{2}$	[(do (620) -1) dr
$= \left[\int_{0}^{2\pi} \frac{1}{2} d\varphi \right] \left[\int_{0}^{\pi} \sin \theta - \frac{1}{2} \sin \theta \right]$	snowers do T
Lym C. MA. Long	_ ⊤

π [(1 - ±)-(-1+±)]

SURFICE OF THE WAIT SP	HERE
2²+g+z dé =	$\int_{\beta} (x_{t^{1}t^{1}}) \cdot (x_{t^{\frac{3}{2}}t^{\frac{3}{2}}}) d\beta'$
NOTE THAT	
	$= f(x_iy_iz) = x^2 + y^2 + z^2 - 1$
	$ \forall \ \ \exists f = \underline{n} \in (2x_1 2y_1 2e) \sim (a_1 y_1 e) $
	$\theta = \underline{n} \in (3, y_1 + 2)$ $\theta = (\underline{n} + (2, y_1 + 2^2) = 1$
	$\underline{\hat{\mathbf{h}}} = \frac{\mathbf{u}}{ \mathbf{x} } = (\mathbf{x}_i \mathbf{u}_i \mathbf{a})$
. WE CAN WOOD ALSE THE J	XWRAEXE THEOROM
= ∫ _s (x _{11,1})• <u>h</u> d\$	= Js. F. B ds {F = Gring
∫ ∑ F dn =	$\int_{V} \left(\frac{2}{3} \left(\frac{2}{3}, \frac{2}{3} \right) \cdot \left(a_{i}, j_{1} \right) \right) dv$
∫ 1+0+0 dv	= t du =
VaQut of TH€ UNIT	snylet
\$-×π×13	
2.0001	

ths.com

 $\frac{4}{3}\pi$

ne,

nadasn.

I.F.G.B.

3

2

Question 21

A bead is modelled as a sphere with a cylinder, whose axis is a diameter of the sphere, removed from the sphere.

If the respective equations of the sphere and the cylinder are

 $x^{2} + y^{2} + z^{2} = a^{2}$ and $x^{2} + y^{2} = b^{2}$, 0 < b < a.

 $4\pi(a+b)\sqrt{a^2-b^2}.$

Show that the total surface area of the bead is

 $\begin{array}{l} \underline{\text{USK}} & \underline{\text{Usk}} & \underline{\text{Fill}} & \underline{\text{Kikh}} & \underline{\text{f}} & \underline{\text{cost}} & \underline{\text{cf}} & \underline{\text{Kikh}} & \underline{\text{K$

 $\begin{aligned} & = \int dS = \frac{1}{\sqrt{a^{*} - x^{*} - y^{*}}} \\ & = \int \frac{dS}{dx^{*} - x^{*} - y^{*}} \\ & = \int \frac{dS}{dx^{*} - x^{*} - y^{*}} \\ & = \int \frac{dS}{dx^{*} - x^{*} - y^{*}} \\ & = \int \frac{dS}{dx^{*} - x^{*}} \\ & = \int \frac{dS}{dx^{*} - x^$

 $ds = \sqrt{\frac{x^2+y^2+a^2-x^2-y^2}{a^2-x^2-y^2}}$

A

proof

Question 22

F.C.B.

I.G.B.

A surface S has Cartesian equation

$$x^2 + y^2 + z^2 = 2x \,.$$

- a) Describe fully the graph of S, and hence find a parameterization for its equation in terms of the parameters u and v.
- **b**) Use the parameterization of part (a) to find the area for the part of \overline{S} , for which $\frac{3}{5} \le z \le \frac{4}{5}$.

, $\mathbf{r}(u,v) = \langle 1 + \sin u \cos v, \sin u \sin v, \cos u \rangle$, $0 \le u \le \pi$, $0 \le v \le 2\pi$

TIDY BY CONFLETING THE $a^{2}+y^{2}+a^{2}=2x$ $a^{2}-2x+y^{2}+a^{2}=0$ $(x-1)^{2}+y^{3}+a^{2}=1$ E A SPHERE OF RADIUS 1, CNITEF 45 (1,10,0) dzaou9mi21 = 1-xc dym219mi21 = y 19201 = 5 H(x) = (v, x) = 1 + 1b) thous use upple $\frac{u_{K}}{\lambda^{2} + y^{2} + 2^{2} + 2^{2}} \neq 22, \qquad \frac{3}{5} \ll 2$ $\implies 0 \tan_{3} \frac{3}{5} \ll 2$ OC = (COSLOSY, C MASINV, SINULOUSV, O) = 15 16 ·

 $0+\sin^2u\omega_v + \sin^2u_v - 0$, $\sin u \cos u \cos^2v + \sin u \cos u \sin^2v$ | Suita casa, Suitasma, Simalasaa = Sima (Simalasaa, Salasama), casaa) รทน รถัน เอริ่ง + รถวัน รถวัง + เอริ่น Smu V Smu (cost smv) + costa = snu V sult + costa : de = 3th and de du $\begin{aligned} & AEA = \int_{1}^{\infty} \int_{0}^{1} \frac{e \cdot \operatorname{max}_{2}}{\operatorname{max}_{2}} \int_{0}^{1} dx &= \int_{1}^{\infty} \int_{0}^{1} \frac{\operatorname{hetra}_{2}}{\operatorname{hetra}_{2}} \\ &= \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{-\cos(1)} \frac{\operatorname{max}_{2}}{\operatorname{max}_{2}} dx &= \int_{1}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \frac{\operatorname{max}_{2}}{\operatorname{max}_{2}} \int_{0}^{1} \frac{\operatorname{max}_{2}}{\operatorname{max}_{2}} dx \\ &= \int_{0}^{\infty} \left(\frac{1}{3} + \frac{1}{3}\right) dy = \int_{0}^{1} \int_{0}^{1} \frac{1}{3} \frac{dy}{dy} = \frac{1}{3} \frac{1}{3} x^{2} z^{2} \end{aligned}$

area = $\frac{2}{5}\pi$

F.G.B.

12

1

2

Question 23

I.F.G.B.

13/1/s.COM

I.V.G.B

Evaluate the integral

 $\int_S x(x+z+xy)+y(z^2-2xz-y)+z \ dS,$

where S is the surface with Cartesian equation

 $x^2 + y^2 + z^2 = a^2$, a > 0, $z \ge 0$.

$$\begin{split} & ds = \frac{2}{2} ds dy \\ & = \sqrt{\left[\frac{2}{2}\frac{ds}{ds}^2 + \frac{ds}{ds}\frac{ds}{ds}^2 + 1\right]} ds dy = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{ds}^2 + \frac{ds}{ds}\frac{ds}{ds}^2 + \frac{ds}{ds}\frac{ds}{ds}} \\ & = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}^2 + \frac{ds}{ds}\frac{ds}{ds}^2 + \frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}} \\ & = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}} \\ & = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}} \\ & = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}\frac{ds}{ds}} \\ & = \sqrt{\frac{2}{2}\frac{ds}{ds}\frac{ds}{$$

 $= \alpha \left[\frac{\left[\frac{2}{3} + \chi_{2}^{2} + \frac{2}{3} +$

NEW THE INFERTION BETTON R , IS 4 SHIMMETER. DOWN IN I AND IN Y, IS that I and IN Y , IS that in that no constrained

 $= a \int_{-\infty}^{\infty} \frac{2^2}{2} - \frac{y^2}{2} + i \quad dxdy \qquad (make <math>g = \sqrt{a^2 - c^2 - y^2} i$)

 $= a \int_{D} \frac{x^2 - y^2}{z^2} + 1 dx dy \qquad (\text{where } z = \sqrt{a^2 - (x^2 + y^2)^2})$

I.C.

ths.com

 πa^3

Com

Mana

I.F.C.B.

4.65

2

Question 24

F.G.B.

I.C.B.

A surface S has Cartesian equation

 $x^{2} + y^{2} - z^{2} = 2y + 2z$, $-1 \le z \le 0$.

Com

area = $\pi\sqrt{2}$

I.C.B.

- a) Sketch the graph of S.
- **b**) Find a parameterization for the equation of S, in terms of the parameters uand v.

c) Use the parameterization of part (b) to find the area of S.

 $\mathbf{r}(u,v) = \langle u\cos v, 1+u\sin v, u-1 \rangle, \quad 0 \le u \le 1, \quad 0 \le v \le 2\pi \rangle,$ Ry +22 1 vmz $(vzo) = \frac{26}{vc}$ $\frac{\partial f}{\partial v} = \left(-u \operatorname{sum}_{i} u \operatorname{sum}_{i} \circ\right)$ $x^{2} + q^{2} - 2q = z^{2} + 2z$ $\alpha^{2} + (9-1)^{2} - 1 = (2+1)^{2} - 1$ $\left|\frac{\partial c}{\partial L} \wedge \frac{\partial c}{\partial L}\right| = \left|\frac{\partial c}{\partial L} \wedge \frac{\partial c}{\partial L}\right|$ $= \left[\left(\alpha \cos \left[\alpha \sin \left[$ $= \sqrt{u_{ca}^2 v + u_{sm}^2 v + u^2} = u \sqrt{u_{ca}^2 v + v_{r}^2 v + 1}$ $\frac{1}{2} \int_{|x|=0}^{2\pi} \int_{|x|=0}^{2\pi} \int_{|x|=0}^{1} \int_{|x|=0}^{1} \int_{|x|=0}^{2\pi} \int_{|x|=0}^{1} \int_{$ NEG THE GUES X2+CU-1)= 1 7=1+5 TH 02 $= \int_{V=0}^{2\pi} \int_{k=0}^{1} \omega_{k} \frac{1}{2} du dv = \int_{V=0}^{2\pi} \left[\frac{\sqrt{2}}{2} u \right]_{k=0}^{1} du$ S = 1 + 1 = 0S = 1 - 1- N U a V $\underline{\Gamma}(u_{|V|}) = \begin{bmatrix} u_{1} \cos u_{|} & 1 + u_{2} \sin u_{|} & u - 1 \end{bmatrix} \quad 0 \le u \le 1$

Question 25

0

A thin uniform spherical shell has mass m and radius a.

Use surface integral projection techniques in x-y plane, to show that the moment of inertial of this spherical shell about one of its diameters is $\frac{2}{3}ma^2$.

proof PHE MARSS PER UN LASS OF INFITERMAN ADEA $\frac{m}{4\pi q} \times \frac{\chi^2 + q^2}{\sqrt{q^2 - \chi^2 - q^2}} dady$ 84 = p 85 = I = ₩ [$P = \frac{2\kappa_1}{4\pi q^2}$ 2¹+q¹+q²-) OUSTO THE QUY PLANE Here this equation $\int \frac{1}{\sqrt{\alpha^2 - \chi^2 - \chi^2}} = (\alpha^2 - \chi^2 - \chi^2)^2$ =9 I = 124 Jo a2-42 du
$$\label{eq:Smaller} \begin{split} & \tilde{S}_{\text{M}} \; = \; \rho \left(\frac{\alpha}{\sqrt{d^2 - \chi^2 - g^2}} \; \overline{\delta}_{\mathcal{B}_{-}} \overline{\delta}_{\mathcal{B}_{-}} \right) \end{split}$$
 $\frac{2m}{2n}\left[\left(\tilde{a}^{2}u-\frac{1}{2}u^{3}\right)_{0}^{\alpha}$ $(\tau_{0}, \eta_{AUF}) = (a^2 - x^2 y^2)^{\frac{1}{2}} = 2$ $\int_{r_{h_{1}}}^{a} \frac{w}{4\pi a} \times \frac{r^{2}}{(a^{2} - r^{2})^{\frac{1}{2}}} (\Gamma d\tau d\theta)$ $\frac{1}{2a}\left[\left(\alpha^{3}-\frac{1}{3}\alpha^{3}\right)-o\right]$ NG FACTOR. ROM dis 56 m3 = IB $\begin{array}{l} q_{i}^{k} = \sqrt{\left[-x\left(a_{i}^{k}-x_{j}^{k}-\hat{h}_{i}\right)_{2}^{k}\right]_{x}^{k}\left(-\hat{h}\left(a_{i}^{k}-a_{i}^{k}-\hat{h}_{j}\right)_{2}^{k} + \left(-i\right)_{x}} \, q^{k} \\ q_{i}^{k} = \sqrt{\left[\frac{\partial F_{i}}{\partial F_{i}}\right]_{x}\left(\frac{\partial F_{i}}{\partial F_{i}}\right]_{x}^{k}} \, q^{i} q^{i} q^{k} \\ q^{i} q^{k} \end{array}$ $\frac{1}{4\pi a} \times \frac{r^{3}}{(a^{2}-r^{2})} \pm dr d\Theta$ 29 1 392 $= \frac{q_{\mu}}{\sqrt{q^2 \chi^2 g^2}} \times (\sqrt{\chi^2 + q^2})^2$ $\delta \overline{1} = -\frac{\alpha \rho \times -\frac{\chi^2 + q^2}{\sqrt{\alpha^2 - \chi^2 - q^2}}}{\sqrt{\alpha^2 - \chi^2 - q^2}}$ =]= ∫_∞ 1/1 1/1 1/1 1/2 do d $d_{p}^{1} = \sqrt{\frac{2^{2}}{(a^{2}-x^{2}-y^{2})} + \frac{a^{2}}{a^{2}-x^{2}-y^{2}} + 1} dxdy$ $\widehat{OI} = a \times \frac{u_A}{4 \pi a^2} \times \frac{\pi^2 + y^2}{\sqrt{a^2 - \chi^2 - y^2}}$ $\int_{r=0}^{a} \frac{2w_{T}}{4\pi a} \frac{r^{3}}{(a^{2}-r^{4})^{\frac{1}{2}}} dr$ HADMON RULH $= \frac{M}{4 \pi a} > \frac{\chi^{k} + y^{2}}{\sqrt{a^{k} + \chi^{k} - y^{2}}}$ $dS = \sqrt{\frac{x^{*} + y^{2} + a^{2} - x^{2} - y^{2}}{a^{2} - x^{2} - y^{2}}} \cdot dx dy$ $\Rightarrow I = \frac{m}{2\pi} \int_{0}^{\pi} \frac{r^{5}}{(q^{2}-r^{2})^{\frac{1}{2}}} dr$ I - a maz $dS = \sqrt{\frac{a^2}{a^2 - x^2 - g^2}} da dy$ NG AP & TAUNO THE REDION 22 FOR BUTH HEMISPHERES (BY SUBSTITION) 4/2 a2-r2 24.44 = -2rdr $x_{y} = x_{y} + \hat{a}_{x} = 0$ $ds^d = \frac{a}{\sqrt{a^2 - x^2 \ y^2}} \ dx dy$ r u o a dr = - 4 de F.G.B. 21/2.sm ŀ.G.p. I.G.p. madasn Created by T. Madas

1

Question 26

I.C.B.

Find the area of the surface S which consists of the part of the surface with Cartesian equation

 $z=1-2x^2-3y^2,$

contained within the elliptic cylinder with Cartesian equation

 $4x^2 + 9y^2 = 1$.

 $\frac{\pi}{36} \left[5\sqrt{5} - 1 \right]$

C.H

2

Question 27

R,

The surface S is the hemisphere with Cartesian equation

 $x^2 + y^2 + z^2 = 16, \ z \ge 0$

The projection of S onto the x-y plane is the area within the curve with polar equation

 $r = 2\theta, \ 0 \le \theta \le \frac{\pi}{2}.$

Find, in exact form, the area of S.

S.10 = VK-12 605 (01251 1) = 14 -12 2

Question 28

The surface S is the sphere with Cartesian equation

 $x^2 + y^2 + z^2 = 4$

a) By using Spherical Polar coordinates, (r, θ, φ) , evaluate by direct integration the following surface integral

 $I = \bigoplus_{x} \left(x^4 + xy^2 + z \right) dS \, .$

b) Verify the answer of part (a) by using the Divergence Theorem.

1		1	
9	a) $\int_{\beta} \Delta^{\frac{1}{2}} t \cdot \underline{u}_{j}^{\frac{1}{2}} + \varepsilon d\beta = \dots$ something software tends		$\frac{\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_$
	$\begin{array}{c c} & & & & & & \\ & & & & & & & \\ & & & & $		$= \frac{\circ}{\Theta + \mathcal{B}\left(\frac{3}{2}, \frac{1}{2}\right) \times 2 \mathcal{B}\left(\frac{5}{2}, \frac{1}{2}\right)}$ $= \mathcal{O}\left(\frac{2(-\mathcal{O}(\frac{1}{2}))^{-}}{\frac{3}{2} \times \frac{1}{2} \times \frac{1}$
200	$= \int_{0}^{0} \int_{0}^{1} \left[\frac{1}{2} \left[\frac{1}{2$		b) $\int \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} 1$
	$ \begin{array}{c} & = \operatorname{cell} \left[\begin{bmatrix} 1 \\ \mu_{0} & \mathrm{cluarb} & \mathrm{del} \end{bmatrix} * \left[\begin{bmatrix} 1 \\ \mu_{0} & \mathrm{carb} & \mathrm{del} \end{bmatrix} * \left[\begin{bmatrix} 1 \\ \mu_{0} & \mathrm{carb} & \mathrm{del} \end{bmatrix} * \left[\frac{1}{4} \end{bmatrix} \right] \right] \\ & = \operatorname{cell} & \operatorname{sec} & \operatorname{sec} & \operatorname{sec} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \operatorname{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & \mathrm{sec} & \mathrm{sec} & \mathrm{sec} \\ & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = \operatorname{cell} & = \operatorname{cell} \\ & = \operatorname{cell} & = $		$= \int_{V} \underbrace{\mathbf{F}} \cdot \underbrace{\mathbf{\hat{h}}}_{\mathbf{\hat{h}}} d\mathbf{\hat{h}}_{\mathbf{\hat{h}}}$ sortel into A VOISAN O $= \int_{V} \underbrace{\nabla} \cdot \underbrace{\mathbf{F}}_{\mathbf{\hat{h}}} d\mathbf{\hat{h}}$ $= \int_{V} \underbrace{\nabla} \cdot \underbrace{\mathbf{F}}_{\mathbf{\hat{h}}} d\mathbf{\hat{h}}$ $= \int_{V} (\mathbf{a}_{\mathbf{\hat{h}}}^{2} + \lambda_{\mathbf{\hat{h}}}) d\mathbf{\hat{h}}$
	4.2.4.		

 $\frac{256\pi}{5}$

2

 $= \frac{1}{2} \int_{0}^{\frac{1}{2}} \left[2 \int_{0}^{\frac{1}{2}} 2 \left(\cos^{2} \right) \left(\cos^{2} \right) \left(\sin^{2} \right) \right] \\ = \frac{1}{2} \int_{0}^{\frac{1}{2}} \left[2 \int_{0}^{\frac{1}{2}} 2 \left(\cos^{2} \right) \left(\cos^{2} \right) \left(\sin^{2} \right) \right] \\ = \frac{1}{2} \int_{0}^{\frac{1}{2}} \left[\frac{1}{2} \left(\cos^{2} \right) \right] \\ = \frac{1}{2} \int_{0}^{\frac{1}{2}} \left[\frac{1}{2} \left(\cos^{2} \right) \left(\cos^{2}$

(a) 2, 2) (2, 24) 2 (a) 2, 2) (2, 24) 2 (a) 2+ 2x+D

du= r3m0 drolodo

2,9,2) 0,5

(Gr. Sulf0 asste + 2rsmblaset) rismblandede

 $\frac{\left[\frac{1}{2}r^{5}su^{2}\theta\omega_{s}^{2}\psi\right]^{2}}{\frac{1}{2}su^{2}\theta}\left(\frac{1}{2}+\frac{1}{2}\omega_{s}^{2}su^{2}\theta\right)^{2}d\theta d\phi$

r3sytoweb drabde

Question 29

In standard notation used for tori, r is the radius of the tube and R is the distance of the centre of the tube from the centre of the torus.

The surface of a torus has parametric equations

$$x(\theta, \varphi) = (R + r\cos\theta)\cos\varphi, \quad y(\theta, \varphi) = (R + r\cos\theta)\sin\varphi, \quad z(\theta, \varphi) = r\sin\theta,$$

where $0 \le \theta \le 2\pi$ and $0 \le \varphi \le 2\pi$.

a) Find a general Cartesian equation for the surface of a torus.

A torus T has Cartesian equation

 $\left(4 - \sqrt{x^2 + y^2}\right)^2 = 1 - z^2.$

 $z^{2} + (R - \sqrt{x^{2} + y^{2}})^{2} = r^{2}$, area = $(2\pi r)(2\pi R) = 16\pi^{2}$

(I elş =

pp op 1 to 1 to 1 to 1 to 1 to 1

Rolemant is (2117) (217 R) what

b) Use a suitable parameterization of T to find its surface area.

L E.A. /	
6 6	C -
a) $\begin{array}{c} \mathfrak{L}(b_{1}\phi) = \left(\mathbb{R} + t_{Codd}\right)_{Codp} \\ \mathfrak{L}(b_{1}\phi) = \left(\mathbb{R} + t_{Codd}\right)_{Solp} \\ \mathfrak{L}(b_{1}\phi) = \left(\mathbb{R} + t_{Codd}\right)_{Solp} \\ \mathfrak{L}(b_{1}\phi) = \left(\mathbb{R} + t_{Codd}\right)_{Solp} \\ \mathfrak{L}(b_{2}\phi) = \mathfrak{L}(b_{1}\phi) \\ \mathfrak{L}(b_{2}\phi) = \mathfrak{L}(b_{2}\phi) \\ \mathfrak{L}(b_{2}\phi) \\ \mathfrak{L}(b_{2}\phi) = \mathfrak{L}(b_{2}\phi) \\ \mathfrak{L}(b_{2}\phi) \\ \mathfrak{L}(b_{2}\phi) = \mathfrak{L}(b_{2}\phi) \\ \mathfrak{L}(b_{2}\phi) \\$	$ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac$
• $x^2 + g^2 = (\underline{p} + \tau \alpha s_0)^2 (\alpha \overline{z}^2 + (\underline{n} + \tau \alpha s_0) s \overline{n}^2 + \alpha \overline{z}^2 + \alpha $	$\begin{bmatrix} 0 & (\frac{1}{2}\cos + \frac{1}{2}\cos + \frac{1}{2}\sin + $
$= \frac{(R + r_{cos} \theta)^2}{\sqrt{a_1^2 t_2^{3/2}}} = \frac{R}{R} + r_{cos} \theta$	$ \begin{array}{c c} \underline{k} & \underline{k} \\ \hline \\ \underline{k} \\ $
$f^{2}\omega \hat{x}^{2}\theta = (R - \sqrt{x^{2}ty^{2}})^{2}$	= (0 + Gendrad + laBent, Garfued + laBent-0, , Gadrack + Snotastrak + Gardrack + Snotastrak + Gardrack + calender
$ \begin{array}{rcl} & \Gamma^2\cos^2\theta+i^2\Omega^2_{10}\Theta=& \pi^2+\left(R-\sqrt{\mathcal{R}^2q_1^2}\right)^2\\ & \Gamma^2\left(\cos^2\theta+Sm^2_{10}\right)=& \pi^2+\left(R-\sqrt{\mathcal{R}^2q_1^2}\right)^2\\ & \pi^2\left(-\sqrt{\mathcal{R}^2q_1^2}\right)^3=\Gamma^2 \end{array} \right. \end{array} $	= [dicabuszt + website functions + adjoints, , 45at/cast + website + website + website + website + website
(b) NOW $(4 - \sqrt{x^2 + y^2})^k = 1 - 2^k$ $z^2 + (4 - \sqrt{x^2 + y^2})^k = 1 \iff 1 = 0$	$= \left \frac{d\omega d\omega_{\rm scal}}{(\omega \omega d\omega_{\rm scal})} + \frac{d\omega d\omega_{\rm scal}}{(\omega \omega d\omega_{\rm scal})} + \frac{d\omega d\omega_{\rm scal}}{(\omega \omega d\omega_{\rm scal})} \right _{\pm} = \frac{d\omega d\omega_{\rm scal}}{(\omega \omega d\omega_{\rm scal})} = \frac{d\omega d\omega_{\rm scal}}{(\omega d\omega_{\rm sca$
• Here I premuting experiential out the three would be $x = (1 + \cos)(\sin \theta)$ $x = (1 + \cos)(\sin \theta)$ $x = (1 + \cos)(\sin \theta)$ $x = (1 + \cos)(\sin \theta)$	$\left[\partial_{\mu\nu} + \frac{1}{2} \partial_{\mu\nu} \partial$
$\begin{array}{c} \varphi = \varphi = \varphi \\ \varphi = \varphi $	$\int \overline{\Theta}_{FMZ} + \left(\overline{\Theta}_{FMZ} + \overline{\Theta}_{FZ}\right) \Theta_{FZ} \int_{\mathcal{A}} \left(\Theta_{ZZ} + \frac{1}{2}\right) = 0$

Question 30

A spiral ramp is modelled by the surface S defined by the vector function

 $\mathbf{r}(u,v) = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = (u\cos v)\mathbf{i} + (u\sin v)\mathbf{j} + v\mathbf{k},$

where $0 \le u \le 1$, $0 \le v \le 3\pi$.

Determine the value of

. R.B.

1.2.

 $\int \sqrt{x^2 + y^2} \, dS$

$\left[(u_{i}, v_{i}) = (v_{i}, v_{M12}, v_{22}, v_{22}) \right] = (v_{i}, v_{i})$

 $\begin{aligned} & \left[\frac{1}{2} \sum_{m=1}^{N} \left(\frac{1}{2} \sum_{m=1}^{N} \sum_{m=1}^{N} \left(\frac{1}{2} \sum_{m=1}^{N} \sum_{m=1}^{N} \left(\frac{1}{2} \sum_{m=1}^{N} \sum_{m=1}^{N}$

$\begin{vmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{x}} & \Lambda \frac{\partial \mathbf{r}}{\partial \mathbf{v}} \end{vmatrix} = \left[\Im m_{1} - \log_{1} u \right] = \sqrt{SW^{2} + \log^{2} + u^{2}} = \sqrt{1}$ $\Rightarrow \quad d_{2} = \left[\frac{\partial \mathbf{r}}{\partial u} & \Lambda \frac{\partial \mathbf{r}}{\partial v} \right] du dv$

$= \int_{V=0}^{3\pi} \int_{u=0}^{1} u(1+u^2)^{\frac{1}{2}} du du$ $= \left[\int_{V=0}^{3\pi} \left[d_V \right] \left[\int_{u}^{1} u(1+u^2)^{\frac{1}{2}} du \right] \right]$

 $= 3 \overline{\Lambda} \times \left[\frac{1}{2} (u^2 H)^{\frac{1}{2}} \right]_{0}^{1}$ $= \overline{\Lambda} \left[2^{\frac{1}{2}} - 1 \right]$

·C.J.

= T[2/2-1]

i Loura I

Question 31

The surface S is defined by the vector equation

$$\mathbf{F}(u,v) = \left[u\cos v, u\sin v, \frac{1}{u} \right]^{T}, \ u \neq 0$$

Find the area of S lying above the region in the uv plane bounded by the curves

 $v = u^4, \ v = 2u^4,$

and the straight lines with equations $u = 3^{\frac{1}{4}}$ and $u = 8^{\frac{1}{4}}$.

-00-
$\underline{f}(a_v) = \begin{bmatrix} u\cos v_1 & u\sin v_2 & \frac{1}{4} \end{bmatrix} \begin{array}{c} u^4 \leq v \leq zu^4 \\ s^4 \leq u \leq \delta^4 \end{bmatrix}$
$\begin{array}{c} \underbrace{\operatorname{flag}} & \operatorname{flag}} & \underbrace{\operatorname{flag}} & \underbrace{\operatorname{flag}} & \operatorname{flag}} & \underbrace{\operatorname{flag}} & \operatorname{flag}} & \underbrace{\operatorname{flag}} & \operatorname{flag}} & fla$
$ \begin{vmatrix} \dot{\bot} & J_{-} & k \\ G_{DV} & SITW & -\frac{1}{4\kappa} \\ -4cgev & local c \\ -cgev & local$
$\left \frac{\partial E}{\partial u} \times \frac{\partial f}{\partial v}\right = \left \frac{1}{u}\cos v, \frac{1}{u}\sin v, u\right = \sqrt{\frac{1}{u^2}\cos v + \frac{1}{u^2}\sin^2 v + u^2}$
$= \sqrt{\frac{1}{4^2} + 4^2} = \sqrt{\frac{1+4^9}{4^2}} = \frac{1}{4}\sqrt{1+4^9}$
$d \varsigma' = \frac{1}{\omega} \sqrt{1+\omega^2} \wedge \frac{\partial f}{\partial \omega} \int_{0}^{1} d\omega dv$
$ \begin{array}{c} s_{1}^{\text{u}} = \int_{u=3}^{u=2u^{4}} 1 & ds_{2}^{\text{u}} = \int_{u=3}^{u^{4}} \int_{v=u^{4}}^{v=2u^{4}} 1 & ds_{2}^{\text{u}} = \int_{u=3}^{u^{4}} \int_{v=u^{4}}^{v=2u^{4}} \int_{u=3}^{u^{4}} \int_{v=u^{4}}^{u=2u^{4}} \int_{u=3}^{u^{4}} \int_{v=u^{4}}^{u=2u^{4}} \int_{u=3}^{u^{4}} \int_{u=2u^{4}}^{u=2u^{4}} \int_{u=2u^{4}}^{u^{4}} \int_{u$
$= \int_{\substack{u=3k}}^{u=9k} \int_{\substack{u=0k}}^{u=0k} \frac{\forall u(u^{0})^{\frac{1}{2}}}{(u^{0})^{\frac{1}{2}}} \int_{\substack{u=0k}}^{u=3k} du = \int_{\substack{u=3k}}^{u=9k} \frac{u^{0}(u^{0})^{\frac{1}{2}}}{2u^{0}(u^{0})^{\frac{1}{2}}} u^{\frac{1}{2}}(u^{0})^{\frac{1}{2}} du$
$= \int_{u=3^{\frac{1}{2}}}^{u=3^{\frac{1}{2}}} (1+u^{\frac{1}{2}})^{\frac{1}{2}} du = \left[\frac{1}{4}(\underline{i}+u^{\frac{1}{2}})^{\frac{3}{2}}\right]_{3^{\frac{1}{2}}}^{6^{\frac{1}{2}}} = \frac{1}{8^{\frac{1}{2}}} \left[27-8\right]$

<u>19</u> 6

Question 32

 \hat{R}_{j}

.K.C.

The surface S is defined by the parametric equations

$$x = t \cosh \theta$$
, $y = t \sinh \theta$, $z = \frac{1}{2} (1 - t^2)$

xy dS.

where t and θ are real parameters such that $0 \le t \le 1$ and $0 \le \theta \le 1$.

Find, in exact form, the value of

 $\int_{30}^{5} \frac{1}{30} \left[\frac{(\cosh 2 + 1)^{\frac{5}{2}} - 1}{\cosh 2} + 1 - 4\sqrt{2} \right] \approx 0.274397..$

 $= \int_{t_{ro}}^{t} \left[\frac{1}{6} t \left(t_{los2\theta+1}^{s} \right)^{\frac{3}{2}} \right]_{\theta=0}^{t} dt$

= $\int_{t=0}^{1} \frac{1}{6t} (t_{10}^{2} h_{2}^{2} + 1)^{\frac{3}{2}} - \frac{1}{6t} (t_{1+1}^{3})^{\frac{3}{2}} dt$

= $\left[\frac{1}{30 \cosh 2} \left(t^2 \cosh 2 + 1\right)^{\frac{5}{2}} - \frac{1}{30} \left(t^2 + 1\right)^{\frac{5}{2}}\right]_0^1$

 $= \left[\frac{1}{3000h2}\left((nd_2+1)^{\frac{5}{2}} - \frac{1}{30} \times 2^{\frac{5}{2}}\right] - \left[\frac{1}{3000h2} - \frac{1}{30}\right]$

 $= \frac{1}{30} \left[\frac{1}{1+2} \left(1+2\eta \log \frac{1}{2} \right) + \frac{1}{2} \right] = \frac{1}{2} \left[1+2\eta \log \frac{1}{2} + \frac{1}{2} \right]$

E.P.

 $= \frac{1}{30} \left[\frac{(losh2+1)^{\frac{5}{2}} - 1}{losh2} + 1 - 4\sqrt{2}^{\frac{1}{2}} \right]$

