SPECIAL FUNCTIONS RASINGUISCOM I. Y.C.B. MARASINANSCOM I.Y.C.B. MARASIN

CHEBYSH POLYNOMIA.

Question 1

Chebyshev's differential equation is given below.

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0, \quad n = 0, 1, 2, 3, 4, \dots$$

a) Use the substitution $x = \cos t$, to show that a general solution for Chebyshev's differential equation is

$$y = A T_n(x) + B U_n(x), |x| < 1,$$

with $T_n(x) = \cos[n \arccos(x)]$, $U_n(x) = \sin[n \arccos(x)]$, and A and B are arbitrary constants.

b) Show further that $T_n(x)$ can be written as

$$\Gamma_n(x) = \frac{1}{2} \left[\left(x + i\sqrt{1 - x^2} \right) + \left(x - i\sqrt{1 - x^2} \right) \right].$$

proof

	→ \$\$\$ - \$\$\$ wit + \$\$\$ ort + ify =0
	Contructe the state of a conditional of the and
	= g(t) = Accent + Bern nt
	$\Rightarrow g(x) = A\cos(n \arccos x) + Bsin(n \arccos x) x $
	\implies $\mathcal{G}(\mathbf{x}) = \mathcal{A} \mathcal{T}_{\mathbf{y}}(\mathbf{x}) + \mathcal{B} \mathcal{U}_{\mathbf{y}}(\mathbf{x})$
Ь)	ENOUGH 24 NUT & (E) IT TRAUGHAM IN GOON
	$\begin{split} \overline{T_{ij}}(t) + \tilde{i} \overline{U}_{ij}(t) &= \cos nt + i \operatorname{smnt} \\ \overline{T_{ij}}(t) - \tilde{i} \overline{U}_{ij}(t) &= \operatorname{cosint} - \tilde{i} \operatorname{smnt} \\ \end{split} $
	$\begin{split} \overline{\mathbb{V}}_{q}(\mathbf{x}) &+ \mathrm{i} \mathbb{V}_{q}(\mathbf{x}) = (\mathrm{est} + \mathrm{i} \mathrm{sevt})^{\aleph} = (\mathrm{zr} + \mathrm{i} \sqrt{\mathrm{i} - \mathrm{zr}^{2}})^{\aleph} \\ \overline{\mathbb{V}}_{q}(\mathbf{x}) &- \mathrm{i} \overline{\mathbb{V}}_{q}(\mathrm{z}) = (\mathrm{cost} - \mathrm{i} \mathrm{sevt})^{\aleph} = (\mathrm{zr} - \mathrm{i} \sqrt{\mathrm{i} - \mathrm{zr}^{2}})^{\aleph} \end{split}$
	ADDING YIGAS
	$2T_{\eta}(\mathfrak{A}) = \left(\mathfrak{X}_{+1}^{i} \sqrt{(-\mathfrak{A}^{2})}^{\eta} + \left(\mathfrak{X}_{-1}^{i} \sqrt{(-\mathfrak{A}^{2})}\right)^{\eta}\right)$
	$T_{ij}(\underline{x}) = \frac{1}{2} \left[\left(\underline{\alpha} + i \sqrt{1 - \chi^2} \right)^{ij} + \left(\chi - i \sqrt{1 - \chi^2} \right)^{ij} \right]$

Question 2

Chebyshev's polynomials of the first kind $T_n(x)$ are defined as

 $T_n(x) = \cos[n \arccos(x)], n = 0, 1, 2, 3, 4, ...$

By writing $\theta = \arccos(x)$ and considering the compound angle trigonometric identities for $\cos[(n \pm 1)\theta]$, obtain the recurrence relation

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), |x| < 1.$

 $(1-3^2)\frac{d3}{dx} - 3\frac{dg}{dx} + y_{3}^2 = 0$ $y_{2} = 0, y_{2} = 0, y_{3} =$

 $\begin{array}{l} \underline{\mathcal{A}} = \mathcal{A}(\mathrm{los}(\mathrm{var.cos.}) + \mathrm{Bsin}(\mathrm{var.cos.}) \\ \underline{\mathcal{A}} = \mathcal{A}(\mathrm{os}(\mathrm{vb}) + \mathrm{Bsin}(\mathrm{vb}) \\ \underline{\mathcal{A}} = \mathcal{A}(\mathrm{var}) + \mathrm{B}(\mathrm{var}) \\ \underline{\mathcal{A}} = \mathcal{A}(\mathrm{var}) + \mathrm{B}(\mathrm{var}) \end{array}$

• Hence $T_{\mu}(x) \equiv \cos(h \operatorname{arccos} x) \equiv \cosh(\theta)$

Question 3

Smarns.com i v.C.B

I.F.G.B.

6

Investigate the stationary points of the Chebyshev polynomials of the first kind $T_n(x)$.

× ×	$n+1$ stationary points, two them at $x = \pm 1$
× / x.	A.L. YA
I. V.	$\left\{ T_{\zeta}(\mathbf{z}) = \log\left(n \operatorname{cross}_{\mathcal{Z}}\right) - 1 \leq \mathbf{z} \leq 1 \right\}$
"La 'Ch	$\frac{dT}{dx} = -Sln(katcocc) \times \frac{-n}{\sqrt{1-2x^2}} = \frac{h Sln(katcocc)}{\sqrt{1-2x^2}}$
- C.S. 5.8	SOUMA FOR RENO DIE OBMINI
	SM(noncod) = o . $Nancod a = k T k \in \mathbb{Z}$
, "h ($\frac{\alpha_{\text{reconst}}}{x} = \frac{k_{\text{rec}}}{m_{\text{reconst}}} + \frac{k_{\text{rec}}}{m_{\text{reconst}}} + \frac{k_{\text{rec}}}{m_{\text{reconst}}} + \frac{k_{\text{rec}}}{m_{\text{reconst}}} + \frac{k_{\text{rec}}}{m_{\text{rec}}} + \frac{k_{\text{rec}}}{m_{$
	Frence A Trace for m + k Ofer The counce is monoid • Mail k=0 k=1
	2.1650 = 1 2.1627 = 4 • 19=2 k=0 2=1 k=2
×17. ×20.	2 to La transfer 2 to the transfer a to the transfer and the transfer a to the trans
All On	• $N=4$ •
18 311	bry articles - 1
"Co "00	- TOO HAS (ALL) STATEWARE FORDER OF EVENT TWO OF FRAM AGE WOODED AT 2- 41
~Up. ~0,1	
	On VI
The SP	
S.V. S.O.	
·/. 40	SOL GA
	60 0
	m s h
	an in Us
a da	· (2, · (2, · · (
1) A CO.	
Var Var	421. Sh
The Var	The Dar.
V. V.	NS Th
· (). · · ·	0 °CD. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	$\mathcal{O}_{\mathbf{A}}$ $\mathcal{O}_{\mathbf{A}}$ $\mathcal{O}_{\mathbf{A}}$
7 4 2	
	I. h. S. Ma
	N YA YA
1. S. S.	

1.G.D.

6

2

Madasman

I.V.C.B. Madasn

Question 4

The Chebyshev polynomials of the first kind $T_n(x)$ are defined as

I.G.B.

 $T_n(x) = \cos(n \arccos x), \ -1 \le x \le 1, \ n \in \mathbb{N}.$

I.G.B.

I.V.G.B.

Show that $\frac{d}{dx} \left[\left(1 - x^2 \right)^{\frac{1}{2}} \frac{d}{dx} \left[T_n(x) \right] \right] = \frac{-n^2 T_n(x)}{\sqrt{1 - x^2}}.$

3

START BY SIMPLIFYING THE DIFFERENTIATIONS	
$\frac{d}{dx}\left[\left(j,x\right)^{\frac{1}{2}}\frac{d}{dx}\left[\left(j,x\right)^{\frac{1}{2}}\frac{d}{dx}\right]\left[\left(j,x\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}=\frac{1}{2}\left(j,x\right)^{\frac{1}{2}}\left(j,x\right)^{\frac{1}{2}}\left(j,x\right)^{\frac{1}{2}}\frac{d}{dx}+\frac{1}{2}\left(j,x\right)^{\frac{1}{2}}\left(j,$	
NOW OFT THE DIFFER ZAN ZAN RAPPING STA THE WORL	
$T_{y}(x) = \cos(n \arccos x)$	
$\frac{dT}{dx} = -\sin(n \arccos_{\lambda}) \times \frac{-n}{(1-x^2)^{\frac{1}{2}}} = \frac{n \sin(n \operatorname{sub}(x \operatorname{sub}(x)))}{(1-x^2)^{\frac{1}{2}}}$	
$\frac{d^{2T}}{dt^{2}} = \frac{(1-2^{2})^{\frac{1}{2}} \times N \cos(Narasa) \times \frac{-N}{(1-2^{2})^{\frac{1}{2}}} - N \sin(Narasa) \times \left(-\alpha(1-2^{2})^{\frac{1}{2}} \times \frac{-N}{(1-2^{2})^{\frac{1}{2}}}\right)}{(1-2^{2})^{\frac{1}{2}}}$	r
$\frac{d^2 \Gamma}{d \chi^2} = \frac{-\eta^2 \cos((\tan \cos \chi) + \tan((-\chi^2))^{\frac{1}{2}} \sin((\tan \cos \chi))}{((-\chi^2)}$	
$\frac{d^2 T}{d u^2} = \frac{-h^2 \frac{2}{k} \frac{2}{(u-x^2)}}{(-x^2)^2} + \frac{h x \operatorname{Sim}(horizon(x))}{(1-x^2)!2}$	
PUTTING THE DESUUS TOOPTHER & SMARLEY	
$\lim_{t \in \mathcal{X}_{i}(x_{i})} x = \int_{-\infty}^{\infty} \frac{1}{2} \left(\sum_{j=1}^{\infty} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - 1$	0
$= (1-x^{2})^{\frac{1}{2}} \left[-h^{2} T_{\mu}(x) + \frac{h_{2} \operatorname{SM}(h_{2} \operatorname{Match} x)}{(1-x^{2})^{\frac{1}{2}}} - \frac{h_{2} \operatorname{SM}(h_{2} \operatorname{Match} x)}{(1-x^{2})^{\frac{1}{2}}} \right]$]
- 1/2	

I.C.B.

Question 5

The Chebyshev polynomials of the first kind $T_n(x)$ are defined as

 $T_n(x) = \cos(n \arccos x), \ -1 \le x \le 1, \ n \in \mathbb{N}.$

3

2

Show that

Question 6

Chebyshev's differential equation is given below.

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0$$
, $n = 0, 1, 2, 3, 4, ...$

a) By using the substitution $x = \cosh t$, show that a general solution for Chebyshev's differential equation is

$$y = A T_n(x) + B U_n(x), |x| > 1,$$

with $T_n(x) = \cosh[n \operatorname{arcosh}(x)]$, $U_n(x) = \sinh[n \operatorname{arcosh}(x)]$, and *A* and *B* are arbitrary constants.

By using the substitution $x = \cos t$, Chebyshev's differential equation has general solution

$$y = A T_n(x) + B U_n(x), |x| < 1,$$

with $T_n(x) = \cos[n \arccos(x)]$, $U_n(x) = \sin[n \arccos(x)]$, and as above A and B are arbitrary constants.

b) Show that $T_n(x)$, for both the general solutions obtained via the substitutions $x = \cos t$ and $x = \cosh t$, can be written as

$$T_n(x) = \frac{1}{2} \left[\left(x + i\sqrt{1 - x^2} \right) + \left(x - i\sqrt{1 - x^2} \right) \right].$$

a)
$$(1-x^2)\frac{dy}{dx} - x\frac{dy}{dx} + y^2_{y} = 0, \quad y = 0, 1, 2, 3, 4, \dots$$

SART WITH THE SUBSTITUTED I I COULD IN THE WALT I COULD IN THE I COULD I I COULD IN THE I COULD I I CO

$$= \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{4} + \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{$$

⇒ y(t) = Accodint + Bamhint

- Now fix |x| < i a sense x = south $\int_{-\pi}^{\pi} (x)^{n} \cos(n \operatorname{arces} x) = \cos nt$ $\int_{-\pi}^{\pi} (y)^{n} \cos(n \operatorname{arces} x) = x \text{ whit}$
 - $\begin{aligned} & +mmz^{i}+ \pm mzzz &= (x)_{\mu}U_{i}^{i}+ (x)_{\mu}^{T} \\ & + (mz_{i}^{i}+\pm zz) &= \\ & e^{i(\frac{1}{2}(x-1)_{\mu}(x+1-x)_{\mu}^{i})} \end{aligned}$
 - $$\begin{split} & \mathcal{T}_{i}(\boldsymbol{x}) i (\mathcal{V}_{i}(\boldsymbol{x}) = \boldsymbol{x} \cos \boldsymbol{x} i \operatorname{str} \boldsymbol{y}) \\ & = (\operatorname{str} \operatorname{str} \cos \boldsymbol{y}) \\ & \boldsymbol{y}^{H} \\ & (\operatorname{str} i \boldsymbol{y}) = \mathbf{x} \\ & \mathcal{T}_{i}(\boldsymbol{x} i \boldsymbol{y}) (\operatorname{str} i \boldsymbol{x} i \boldsymbol{y}) \\ & \mathcal{T}_{i}(\boldsymbol{x} i \boldsymbol{y}) (\operatorname{str} i \boldsymbol{y}) \\ & \mathcal{T}_{i}(\boldsymbol{x} i \boldsymbol{y}) \\$$

Created by T. Madas

proof

Now if fat >1 a ville as welt

$$\begin{split} & \overset{\cdot\cdot}{\partial s} = \frac{1}{2} \sum_{k=1}^{N} \frac{1}{2}$$

$$\begin{split} & \overline{U}_{f}(\Omega) + \overline{U}_{f}(\Omega) = -e^{i\eta \frac{L}{L}} = \left(e^{-\frac{L}{2}}\right)^{\eta} = \left(e^{-\alpha n c c c d \eta t}\right)^{\eta} \\ & \overline{U}_{f}(\Omega) - \overline{U}_{f}(\Omega) = -e^{i\eta \frac{L}{L}} = \left(e^{-\frac{L}{2}}\right)^{\eta} = \left(e^{-\alpha n c c c d \eta t}\right)^{\eta} \end{split}$$

 $\overline{h}_{\eta}(\boldsymbol{\lambda}) + \overline{h}_{\eta}(\boldsymbol{\lambda}) = \left(\mathcal{X} + \sqrt{\boldsymbol{\lambda}^{2} - 1}\right)^{\eta}$ $\overline{h}_{\eta}(\boldsymbol{\lambda}) + \overline{h}_{\eta}(\boldsymbol{\lambda}) = \left(\mathcal{X} - \sqrt{\boldsymbol{\lambda}^{2} - 1}\right)^{\eta}$

$$\begin{split} &\widetilde{d} \, T_{ij}^{i}(\underline{\beta}) \; = \; \left(\begin{array}{c} (\underline{\lambda}_{i} + \sqrt{\underline{\lambda}_{i}^{2} - 1})^{\lambda_{j}} + (\underline{\lambda}_{i} - \sqrt{\underline{\lambda}_{i}^{2} - 1})^{\lambda_{j}} \\ & \overline{f}_{ij}^{i}(\underline{\beta}) \; = \; \underline{\frac{1}{2}} \left[\left(\underline{\chi}_{i} \sqrt{\underline{\lambda}_{i}^{2} - 1}^{\lambda_{j}} \right)^{\lambda_{j}} + (\underline{\lambda}_{i} - \sqrt{\underline{\lambda}_{i}^{2} - 1})^{\lambda_{j}} \right] \\ & \underline{3} (\overline{t} \; \; |\overline{t}| | \underline{\lambda}_{i} \leq 1 \; j \; \; T_{ij} (\underline{\lambda}_{i} \sqrt{\underline{\lambda}_{i}^{2} - 1} \; i \; \; \overline{t} \; \sqrt{1 - \underline{\lambda}_{i}^{2}} \end{split}$$

 $\therefore T_{ij}(\lambda) = \frac{1}{2} \left[\left(\chi + \left[\sqrt{1-\chi^2} \right]^{ij} + \left(\chi - \left[\sqrt{1-\chi^2} \right]^{ij} \right] \right]$

Question 7

Chebyshev's equation is shown below

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0, n = 0, 1, 2, 3, ...$$

Find a series solution for Chebyshev's equation, by using the Leibniz method

$(1-\chi^2)\frac{d\hat{y}}{d\chi^2}$ - $\chi \frac{dy}{d\chi^2}$ + $N^2 g = 0$, $N = Q_1 _{Z_1 \hat{Z}_1,}$
MELLE IN COMPACE PORT MHEEF ON = 9/2) DO = 2
$(1-x^2)\mathcal{Y}_{2} - x\mathcal{Y}_{1} - \eta^2\mathcal{Y}_{2} = 0$
(JUS STARLED VALL M J. J. J. J. J. M. J. L. O. HIT STATE 2014
$\left[\left[\mathcal{G}_{here}(1-2^2) + Im \mathcal{G}_{here}(-2x) + \frac{Im(here)}{2!} \mathcal{G}_{here}(2) \right] - \left[\left[\mathcal{G}_{here}(x+Im \mathcal{G}_{here}(x)) \right] - \eta^2 \mathcal{G}_{here}(x) \right] = \eta^2 \mathcal{G}_{here}(x)$
SET 2=0 & SMANAP
$\mathcal{Y}_{i_{M+2}} - \mathcal{W}(u_{n-1})\mathcal{G}_{i_{M}} - \mathcal{W}\mathcal{G}_{i_{M}} + y^{2}\mathcal{G}_{i_{M}} = 0$
$\bigcup_{W+2} + \left[-M^2 + M - M + N^2 \right] \bigcup_{W} = 0$
$\underbrace{\mathcal{Q}}_{WH2} \ \ + \ \ \left(-w_1^2 + \eta^{\lambda}\right) \underbrace{\mathcal{Q}}_{w_1} = 0$
$\bigcup_{WV2} = (W^2 - v^2) \bigcup_{W}$

ay' + y' 12

Y.C.

$$\begin{split} & \left[p_{1} - \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(1-v_{1}^{2})_{1}^{2} - \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2})} \frac{1}{2} + \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})} \frac{1}{2} + \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})} \frac{1}{2} + \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})} \frac{1}{2} + \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})(1-v_{1}^{2})} \frac{1}{2} + \frac{1}{(1-v_{1}^{2})(1-v_{1}^{2$$

Question 8

Chebyshev's equation is shown below

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0, n = 0, 1, 2, 3, ...$$

Find a series solution for Chebyshev's equation, by using the Frobenius method.

差 GQUATE ROWER	A GATRO OF JE YAR, ZHOTTAMMUR HIT AT 2.
RECURPTION R	
	$ \begin{array}{c} (Ft_2)(Ct_1) & \vdash & d_{\Gamma_1}(\hat{Y}_1^2 - \hat{Y}_2^2) = 0 \\ = & \underbrace{F_2 - M_2^2}_{(\Gamma_1 \times 2)(\Gamma_2)} & d_{\Gamma_1} \\ \end{array} $
🥶 GGWEATH A	FON THEMS
r=0	$\label{eq:Q_lambda} Q_{\underline{\lambda}} = -\frac{\eta_{\underline{\lambda}}}{2\times 1} \ Q_0 \qquad = \qquad -\frac{\eta_{\underline{\lambda}}}{2!} \alpha_0$
$\Gamma = 1$	$a_3 = \frac{1-\eta^2}{3\times 2} a_1 = \frac{1-\eta^2}{3!} a_1$
1=2	$\alpha_{4} = -\frac{4-h^2}{4\times 3} \alpha_{2} = -\frac{h^2(4-h^2)}{4!} \alpha_{6}$
Γ= 3	$\mathcal{O}_{\mathcal{S}} = \frac{q_{-N^2}}{s \times 4} q_3 = - \underbrace{(j_{-N^2})(q_{-N^2})}_{S^* 1} q_1$
T=+	$\mathfrak{A}_{\underline{b}} = \frac{1\underline{b} - \underline{h}^{2}}{6\times \underline{b}} \mathfrak{A}_{\underline{b}} = -\frac{\underline{h}^{2}(\underline{d} - \underline{h}^{2})(\underline{b} - \underline{h}^{2})}{1.61} \mathfrak{a}_{\underline{b}}$
Γ= <i>≤</i>	$a_7 = \frac{25 - u^2}{7 \times 6} a_5 = \frac{(1 - u^2)(g_1 - u^2)(25 - u^2)}{7!} a_1$
T= C	$\mathcal{O}_{g} = \frac{36-H^{2}}{8\times7} \mathfrak{a}_{4} = -\frac{H^{2}(4-H^{2})(16-H^{2})(36-H^{2})}{9!} \mathfrak{a}_{6}$
	en.
📑 FORMINIG 4 SEC	HE SOUTION GR THE O.D.E
y = 5	a _t x ^r

$$\begin{split} & \bigcup_{i=1}^{n} \quad \mathbb{Q}_{\varphi} \left[-\frac{|I_{i}|^{2}}{2!} \mathbf{x}^{2} - \frac{Y_{i}^{2} (\mathbf{x}, \mathbf{x})}{4!} \mathbf{x}^{4} - \frac{Y_{i}^{2} (\mathbf{x}, \mathbf{x})}{6!} \mathbf{x}^{4} - \frac{Y_{i}^{2} (\mathbf{x}, \mathbf{x})}{6!} \mathbf{x}^{4} - \cdots \right] \right] \\ & + \quad \mathbb{Q}_{i} \left[\mathcal{Q}_{i} - \frac{|I_{i}|^{2}}{2!} \mathbf{x}^{2} - \frac{(-|I_{i}|^{2})(\mathbf{x}, \mathbf{x})}{5!} \mathbf{x}^{4} - \frac{(|I_{i}|^{2})(\mathbf{x}, \mathbf{x})}{7!} \mathbf{x}^{4} - \frac{(|I_{i}|^{2})(\mathbf{x}, \mathbf{x})}{7!} \mathbf{x}^{7} \right] \right]$$

LAMBERT NCTIONS LAMBER. FUNCTIONS

Question 1

The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$W(xe^x) \equiv x$$
,

and hence if $xe^x = y$ then x = W(y).

For example

$$-xe^{-x} = 2 \implies -x = W(2), \quad (x+\pi)e^{x+\pi} = \frac{1}{2} \implies x+\pi = W\left(\frac{1}{2}\right) \text{ and so on.}$$

Use this result to show that the limit of

 $\ln\left(e+\ln\left(e+\ln\left(e+\ln\left(e+...\right)\right)\right)\right)$

is given by

 $-e-W\left[-e^{-e}\right].$

- \Rightarrow -(e+L) = W(-e^{-e}) \Rightarrow e+L = -W(-e^{-e})
- $\implies e+L = -W(-e^{-e})$
 - -th TLEWERD

Question 2

The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$W(xe^x) \equiv x, x \in \left[-e^{-1},\infty\right)$$

and hence if $xe^x = y$ then x = W(y).

For example

$$-xe^{-x} = 2 \implies -x = W(2), \quad (x+\pi)e^{x+\pi} = \frac{1}{2} \implies x+\pi = W\left(\frac{1}{2}\right) \text{ and so on.}$$

Use this result to find the exact solution of

 $x^2 e^x = 2.$

Give the answer in the form $x = \lambda W(\mu)$, where λ and μ are constants.

MANIFOLATE THE GIVEN GOVETTICAL 455 FOLLOWS					
$ \Rightarrow \widehat{\alpha}^{2} \widehat{c}^{2} = 2 $ $ \Rightarrow (\underline{a}^{2} \underline{c}^{2})^{2} = \pm 4 \widehat{c}^{2} $ $ \Rightarrow \underline{a}_{2} \underline{a}^{2} \underline{a}^{2} = \pm \frac{1}{2} \widehat{c}^{2} $ $ \Rightarrow \underline{a}_{2} \underline{a}^{2} = \pm \frac{1}{2} \widehat{c}^{2} $ $ \Rightarrow \underline{a}_{2} \underline{a}^{2} = \pm \frac{1}{2} \widehat{c}^{2} $					
$\implies \mathcal{H}(\frac{1}{2}\lambda e_{\chi}) = \mathcal{H}(\frac{1}{2}\lambda)$					
$\Rightarrow \frac{1}{2}x_{-} = W(\frac{1}{2}C)$					
$\Rightarrow \alpha = 2\pi (\frac{1}{2}\pi 2)$					

Question 3

The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$W(xe^x) \equiv x, x \in \left[-e^{-1},\infty\right)$$

and hence if $xe^x = y$ then x = W(y).

For example

$$-xe^{-x} = 2 \implies -x = W(2), \quad (x+\pi)e^{x+\pi} = \frac{1}{2} \implies x+\pi = W\left(\frac{1}{2}\right) \text{ and so on.}$$

Use this result to find the exact solution of

$x + e^x = 2$.

Give the answer in the form $x = k - W(e^k)$, where k is a constant.

