SPECIAL FUNCTIONS

CHEBYSHEV

POLYNOMIALS

Question 1
Chebyshev's differential equation is given below.

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0, \quad n=0,1,2,3,4, \ldots
$$

a) Use the substitution $x=\cos t$, to show that a general solution for Chebyshev's differential equation is

$$
y=A \mathrm{~T}_{n}(x)+B \mathrm{U}_{n}(x),|x|<1,
$$

with $\mathrm{T}_{n}(x)=\cos [n \operatorname{arcos}(x)], \mathrm{U}_{n}(x)=\sin [n \operatorname{arcos}(x)]$, and A and B are arbitrary constants.
b) Show further that $\mathrm{T}_{n}(x)$ can be written as

$$
\mathrm{T}_{n}(x)=\frac{1}{2}\left[\left(x+\mathrm{i} \sqrt{1-x^{2}}\right)+\left(x-\mathrm{i} \sqrt{1-x^{2}}\right)\right]
$$

Question 2
Chebyshev's polynomials of the first kind $\mathrm{T}_{n}(x)$ are defined as

$$
\mathrm{T}_{n}(x)=\cos [n \operatorname{arcos}(x)], n=0,1,2,3,4, \ldots
$$

By writing $\theta=\operatorname{arcos}(x)$ and considering the compound angle trigonometric identities for $\cos [(n \pm 1) \theta]$, obtain the recurrence relation

Question 3
Investigate the stationary points of the Chebyshev polynomials of the first kind $T_{n}(x)$.

Question 4
The Chebyshev polynomials of the first kind $T_{n}(x)$ are defined as

$$
T_{n}(x)=\cos (n \arccos x),-1 \leq x \leq 1, n \in \mathbb{N}
$$

Show that

Question 5
The Chebyshev polynomials of the first kind $T_{n}(x)$ are defined as

$$
T_{n}(x)=\cos (n \arccos x),-1 \leq x \leq 1, n \in \mathbb{N}
$$

Show that

Created by T. Madas

Question 6

Chebyshev's differential equation is given below.

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0, \quad n=0,1,2,3,4, \ldots
$$

a) By using the substitution $x=\cosh t$, show that a general solution for Chebyshev's differential equation is

$$
y=A \mathrm{~T}_{n}(x)+B \mathrm{U}_{n}(x),|x|>1
$$

with $\mathrm{T}_{n}(x)=\cosh [n \operatorname{arcosh}(x)], \mathrm{U}_{n}(x)=\sinh [n \operatorname{arcosh}(x)]$, and A and B are arbitrary constants.

By using the substitution $x=\cos t$, Chebyshev's differential equation has general solution

$$
y=A \mathrm{~T}_{n}(x)+B \mathrm{U}_{n}(x),|x|<1
$$

with $\mathrm{T}_{n}(x)=\cos [n \operatorname{arcos}(x)], \mathrm{U}_{n}(x)=\sin [n \operatorname{arcos}(x)]$, and as above A and B are arbitrary constants.
b) Show that $\mathrm{T}_{n}(x)$, for both the general solutions obtained via the substitutions $x=\cos t$ and $x=\cosh t$, can be written as

$$
\mathrm{T}_{n}(x)=\frac{1}{2}\left[\left(x+\mathrm{i} \sqrt{1-x^{2}}\right)+\left(x-\mathrm{i} \sqrt{1-x^{2}}\right)\right]
$$

Question 7
Chebyshev's equation is shown below

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0, n=0,1,2,3, \ldots
$$

Find a series solution for Chebyshev's equation, by using the Leibniz method

$$
\begin{aligned}
& y= \\
& A\left[x-\frac{\left(1-n^{2}\right)}{3!} x^{3}-\frac{\left(1-n^{2}\right)\left(9-n^{2}\right)}{5!} x^{5}-\frac{\left(1-n^{2}\right)\left(9-n^{2}\right)\left(25-n^{2}\right)}{7!} x^{7}-\ldots\right] \\
& B\left[1-\frac{n^{2}}{2!} x^{2}-\frac{n^{2}\left(4-n^{2}\right)}{4!} x^{4}-\frac{n^{2}\left(4-n^{2}\right)\left(16-n^{2}\right)}{6!} x^{6}-\frac{n^{2}\left(4-n^{2}\right)\left(16-n^{2}\right)\left(36-n^{2}\right)}{8!} x^{8}-\ldots\right]
\end{aligned}
$$

Question 8
Chebyshev's equation is shown below

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0, n=0,1,2,3, \ldots
$$

Find a series solution for Chebyshev's equation, by using the Frobenius method.

$$
\begin{aligned}
& A= \\
& A\left[x-\frac{\left(1-n^{2}\right)}{3!} x^{3}-\frac{\left(1-n^{2}\right)\left(9-n^{2}\right)}{5!} x^{5}-\frac{\left(1-n^{2}\right)\left(9-n^{2}\right)\left(25-n^{2}\right)}{7!} x^{7}-\ldots\right] \\
& B\left[1-\frac{n^{2}}{2!} x^{2}-\frac{n^{2}\left(4-n^{2}\right)}{4!} x^{4}-\frac{n^{2}\left(4-n^{2}\right)\left(16-n^{2}\right)}{6!} x^{6}-\frac{n^{2}\left(4-n^{2}\right)\left(16-n^{2}\right)\left(36-n^{2}\right)}{8!} x^{8}-\ldots\right]
\end{aligned}
$$

\square
\qquad $L \in T y=\sum_{r=0}^{\infty} a_{r} x^{+}, y^{\prime}=\sum_{r=1}^{\infty} a_{r} r x^{r-t} \quad y^{\prime \prime}=\sum_{r=2}^{\infty} a_{r} r(r-1) x^{r-2}$ $=$ Substuat IMNO Tit O.DE $\rightarrow\left(1-a^{2}\right) \sum_{r=2}^{\infty} a_{r} r(r-i) x^{r-2}-a \sum_{r=1}^{\infty} a_{r} r z^{r-1}+n^{2} \sum_{i=0}^{\infty} a_{r} x^{r}=0$
\qquad
\qquad $\rightarrow 2 a_{2} x^{\circ}+6 a_{3} x^{1}-a_{1} x^{1}+y^{2}\left[a_{6} x^{0}+a_{1} x^{1}\right]$
\qquad
\qquad
 - maturt equ trian feref 2 Alvis the summations so they All smer from $r=2$ $\rightarrow \sum_{r=2}^{\infty} a_{r+2}(r+2)(s+1) a^{r}+\sum_{r=2}^{\infty} a_{r} x^{r}\left(r^{2}-r^{2}\right)=0$

LAMBERT

FUNCTIONS

Question 1
The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$
W\left(x \mathrm{e}^{x}\right) \equiv x
$$

and hence if $x \mathrm{e}^{x}=y$ then $x=W(y)$.

For example
$-x \mathrm{e}^{-x}=2 \Rightarrow-x=W(2),(x+\pi) \mathrm{e}^{x+\pi}=\frac{1}{2} \Rightarrow x+\pi=W\left(\frac{1}{2}\right)$ and so on.

Use this result to show that the limit of
is given by

Question 2
The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$
W\left(x \mathrm{e}^{x}\right) \equiv x, \quad x \in\left[-\mathrm{e}^{-1}, \infty\right)
$$

and hence if $x \mathrm{e}^{x}=y$ then $x=W(y)$.

For example
$-x \mathrm{e}^{-x}=2 \Rightarrow-x=W(2),(x+\pi) \mathrm{e}^{x+\pi}=\frac{1}{2} \Rightarrow x+\pi=W\left(\frac{1}{2}\right)$ and so on.

Use this result to find the exact solution of

$$
x^{2} \mathrm{e}^{x}=2
$$

Give the answer in the form $x=\lambda W(\mu)$, where λ and μ are constants.

Question 3
The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$
W\left(x \mathrm{e}^{x}\right) \equiv x, \quad x \in\left[-\mathrm{e}^{-1}, \infty\right)
$$

and hence if $x \mathrm{e}^{x}=y$ then $x=W(y)$.

For example
$-x \mathrm{e}^{-x}=2 \Rightarrow-x=W(2),(x+\pi) \mathrm{e}^{x+\pi}=\frac{1}{2} \Rightarrow x+\pi=W\left(\frac{1}{2}\right)$ and so on.

Use this result to find the exact solution of

$$
x+\mathrm{e}^{x}=2
$$

Give the answer in the form $x=k-W\left(\mathrm{e}^{k}\right)$, where k is a constant.
\square
$x=2-W\left(\mathrm{e}^{2}\right)$

