SERIES

EXAM QUESTIONS

Created by T. Madas

Question 1 (**)
Investigate the convergence or divergence of the following series justifying every step in the workings.

Created by T. Madas

Question 3 (**)

By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{r=3}^{\infty} \frac{\sqrt{r}}{r-2}$.
b) $\sum_{k=1}^{\infty} \frac{1}{\left(k^{4}+2\right) \sqrt{k}}$.

Question 4 (**)
Determine whether the following series converges or diverges.

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}+4 r}
$$

Show a full method, justifying every step in the workings.

Created by T. Madas

Question 5 (**)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.
a)

$\sum_{r=1}^{\infty} \frac{3 r^{2}}{r^{4}+2}$ \qquad
b)
b) $\sum_{k=1}^{\infty}\left[\frac{\cos ^{6}\left(\frac{\pi}{k}\right)}{6^{k}}\right]$.

Question 6 (**)
Determine whether the following series converges or diverges.

Show a full method, justifying every step in the workings.

Created by T. Madas

Created by T. Madas

Question 7 (**)
Determine whether the following series converges or diverges.

Show a full method, justifying every step in the workings,
convergent

Question 8 (**)
Determine whether the following series converges or diverges.

Show a full method, justifying every step in the workings.
divergent

Created by T. Madas

Created by T. Madas

Question 9 (**)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{2}}$.

Created by T. Madas

Question 10 (**)
Investigate the convergence or divergence of each of the following series justifying every step in the workings.

Created by T. Madas

Question 11 (**)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

Question 13 (**+)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{n=1}^{\infty}\left[\frac{\sin ^{2} n}{n(n+1)}\right]$.
b) $\sum_{n=1}^{\infty}\left[\frac{2 n}{3 n^{2}-4}\right]$.

Created by T. Madas

Question 15 (***)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

$$
\text { a) } \sum_{n=1}^{\infty} \frac{n}{n^{3}+1}
$$

convergent \square divergent
\square

Created by T. Madas

Created by T. Madas

Question 16 (***)
Determine whether the following series converges or diverges.

Show a full method, justifying every step in the workings.
convergent

Question 17 (***)

Created by T. Madas

Created by T. Madas

Question 18 (***)
Evaluate showing clearly your method

$$
\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}
$$

Question 19 (***)
Determine whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{5^{n}(n!)^{2}}{(2 n)!}
$$

Show a full method, justifying every step in the workings.

Created by T. Madas

Question 20 (***)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

Created by T. Madas

Question 21 (***)
By using a suitable test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{n=1}^{\infty} \frac{10^{n}}{n!}$.

Created by T. Madas

Question 22 (***)
Determine whether the following series converges or diverges.

Show a full method, justifying every step in the workings.

Question 23 (***)
The sum of the first n terms of an arithmetic series with first term a and common difference d, is denoted by S_{n}.

Simplify fully

$$
S_{n}-2 S_{n+1}+S_{n+2}
$$

$$
S_{n}-2 S_{n+1}+S_{n+2}=d
$$

Created by T. Madas

Question 24 (***)
It is given that
$\frac{1}{n} \sum_{r=1}^{n} x_{r}=2 \quad$ and

$$
\sqrt{\frac{1}{n} \sum_{r=1}^{n}\left(x_{r}\right)^{2}-\frac{1}{n^{2}}\left(\sum_{r=1}^{n} x_{r}\right)^{2}}=3
$$

Determine, in terms of n, the value of

Created by T. Madas

Question 25 (***)
It is given that

Created by T. Madas

Question 26 (***)
It is given that the following series converges.

$$
\sum_{n=1}^{\infty} \frac{(5 x)^{n}}{4 n^{2}}, x \in \mathbb{R}, x>0
$$

Determine the range of possible values of x.

Created by T. Madas

Question 27 (***+)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

Created by T. Madas

Question $28 \quad(* * *+)$
Investigate the convergence or divergence of the following series justifying every step in the workings.
a) $\sum_{n=1}^{\infty} \frac{\mathrm{e}^{n}(n!)^{2}}{(2 n)!}$.
convergent, convergent
b) $\sum_{t=1}^{\infty} \frac{(-1)^{t+1}}{\sqrt{t+1}}$.

Question 29 (***+)
By using an algebraic method, find the value of

$$
99^{2}-97^{2}+95^{2}-93^{2}+\ldots+3^{2}-1^{2}
$$

Created by T. Madas

Question 30 (***+)

Evaluate, showing clearly your method

Question 31

By using the comparison test and justifying every step in the workings, determine the

Created by T. Madas

Created by T. Madas

Question 32 (***+)
Show clearly that

Created by T. Madas

Question 33 (***+)

Consider the infinite series

$$
1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{4^{2} \times 2^{2}}-\frac{x^{6}}{6^{2} \times 4^{2} \times 2^{2}}+\frac{x^{8}}{8^{2} \times 6^{2} \times 4^{2} \times 2^{2}}-\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

Question $34(* * *+)$

Show clearly by an algebraic method that

$$
40^{2}-39^{2}+38^{2}-37^{2}+\ldots+2^{2}-1^{2}=820 .
$$

Created by T. Madas

Question 35 (****)
By justifying every step in the workings, determine the convergence or divergence of the following series.

Created by T. Madas

Question 36 (*****)
Determine whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n+1}}
$$

Show a full method, justifying every step in the workings.
You may assume without proof the value of $\lim _{n \rightarrow \infty}\left[\left(\frac{n}{n+1}\right)^{n}\right]$.

Created by T. Madas

Question 37 (*****)
The sum of the first n terms of a series with general term u_{n} is given by the expression

$$
S_{n}=n^{2}(n+1)(n+2)
$$

a) Find the first term of the series.
b) Show clearly that ...
i. $\quad \ldots u_{n}=n(n+1)(4 n-1)$
ii. $\quad \because \sum_{r=n+1}^{2 n} u_{r}=3 n^{2}(n+1)(5 n+2)$.

Question 38 (****)
Determine whether the following series converges or diverges.

$$
\sum_{t=1}^{\infty} \sqrt[t]{2^{t}+5^{t}}
$$

Show a full method, justifying every step in the workings.

Question 39 (****)

$$
\sum_{r=1}^{n}\left(a r^{2}+b r+c\right) \equiv n^{3}+5 n^{2}+6 n
$$

where a, b and c are integer constants.

Determine the value of a, b and c.

$$
a=3, b=7, c=2
$$

Created by T. Madas

Created by T. Madas

Question 40 (****)
Investigate the convergence or divergence of the following series justifying every step in the workings.

Created by T. Madas

Question 41 (****)
Show clearly that

$$
1^{3}-2^{3}+3^{3}-4^{3}+\ldots-40^{3}=-33200 .
$$

By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

Created by T. Madas

Question 43 (****)
By using a suitable test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$.

Created by T. Madas

Question $44 \quad(* * * *)$
The variance $\operatorname{Var}(n)$ of the first n natural numbers is given by

$$
\operatorname{Var}(n)=\frac{1}{n} \sum_{r=1}^{n} r^{2}-\left[\frac{1}{n} \sum_{r=1}^{n} r\right]^{2} \text {. }
$$

Determine a simplified expression $\operatorname{Var}(n)$ and hence evaluate $\operatorname{Var}(61)$.

$$
\operatorname{Var}(n)=\frac{1}{12}\left(n^{2}-1\right), \operatorname{Var}(61)=310
$$

Created by T. Madas

Question 45 (****)
By using a suitable test and justifying every step in the workings, determine the convergence or divergence of the following series.

Created by T. Madas

Question 46 (****)
Consider the infinite series

$$
1-\frac{x^{2}}{2}+\frac{x^{4}}{4 \times 2}-\frac{x^{6}}{6 \times 4 \times 2}+\frac{x^{8}}{8 \times 6 \times 4 \times 2}-\ldots
$$

a) Write the above series in Sigma notation, in its simplest form.

Next consider another infinite series

$$
x+\frac{x^{3}}{3}+\frac{x^{5}}{5 \times 3}+\frac{x^{6}}{7 \times 5 \times 3}+\frac{x^{9}}{9 \times 7 \times 5 \times 3}+\ldots
$$

b) Also, write this series in Sigma notation, in its simplest form.
[You are not required to investigate the convergence or the sum of these series.]

$$
\sum_{r=0}^{\infty} \frac{2^{r} r!}{(2 r+1)!} x^{2 r}
$$

Question 47 (****)
Determine whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{\binom{2 n}{n}}{2^{n}}
$$

Show a full method, justifying every step in the workings.

Question 48 (****)

$$
\sum_{r=1}^{n}\left[\binom{n}{r} x^{r}\left(1+x+x^{2}\right)^{n-r}\right]
$$

Simplify fully the above sum, into a summation free expression

Created by T. Madas

Created by T. Madas

Question 49
$(* * * *+)$
Consider the infinite series

$$
x^{\frac{1}{2}}-\frac{x^{\frac{3}{2}}}{1 \times 3}+\frac{x^{\frac{5}{2}}}{(1 \times 2)(3 \times 5)}-\frac{x^{\frac{7}{2}}}{(1 \times 2 \times 3)(3 \times 5 \times 7)}+\frac{x^{\frac{9}{2}}}{(1 \times 2 \times 3 \times 4)(3 \times 5 \times 7 \times 9)}-\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
x-\frac{2}{3}\left(2 x^{2}\right)+\frac{2 \times 2}{3 \times 5}\left(3 x^{3}\right)-\frac{2 \times 2 \times 2}{3 \times 5 \times 7}\left(4 x^{4}\right)+\frac{2 \times 2 \times 2 \times 2}{3 \times 5 \times 7 \times 9}\left(5 x^{5}\right)-\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\sum_{n=0}^{\infty}\left[\frac{2^{2 n} \times(-1)^{n} \times(n+1)!\times x^{n+1}}{(2 n+1)!}\right]
$$

Created by T. Madas

Question 51 (****+)
Use a suitable method to sum the following series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+2)}
$$

Question 52 (****+)
Consider the infinite series

$$
1+\frac{2}{1 \times 1}+\frac{6}{(1 \times 2)(1 \times 3)}+\frac{10}{(1 \times 2 \times 3)(1 \times 3 \times 5)}+\frac{2}{(1 \times 2 \times 3 \times 4)(1 \times 3 \times 5 \times 7)}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\sum_{r=0}^{\infty} \frac{(r+1)(r+2) 2^{r-1}}{(2 r)!}
$$

Created by T. Madas

Created by T. Madas

Question 53 (****+)
By using the comparison test and justifying every step in the workings, determine the convergence or divergence of the following series.

Question 54 ($* * * *+$)
A sequence is generated by the function

$$
u_{r}(\theta) \equiv r \sin (\theta+r \pi), r \in \mathbb{N}
$$

Find an expression or the value, whichever is appropriate, for each of the series

Created by T. Madas

Question $55 \quad(* * * *+)$
Consider the infinite series

$$
1+\frac{1}{1 \times 5}+\frac{1}{(1 \times 2)(5 \times 8)}+\frac{1}{(1 \times 2 \times 3)(5 \times 8 \times 11)}+\frac{1}{(1 \times 2 \times 3 \times 4)(5 \times 8 \times 11 \times 14)}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\sum_{r=1}^{\infty} \frac{\Gamma\left(\frac{5}{3}\right)}{3^{r-1} \times(r-1)!\times \Gamma\left(\frac{3 r+2}{3}\right)}=\sum_{r=0}^{\infty} \frac{\Gamma\left(\frac{5}{3}\right)}{3^{r} \times r!\times \Gamma\left(\frac{3 r+5}{3}\right)}
$$

Question 56 (****+)
By using a suitable test and justifying every step in the workings, determine the convergence or divergence of the following series.
a) $\sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}}$.

Question 57 (****+)
The following convergent series S is given below

$$
S=\sin \theta-\frac{1}{3} \sin 2 \theta+\frac{1}{9} \sin 3 \theta-\frac{1}{27} \sin 4 \theta \ldots
$$

By considering the sum to infinity of a suitable geometric series involving the complex exponential function, show that

$$
S=\frac{\sin \theta}{10+6 \cos \theta}
$$

Question 58 (****+)
A sequence of positive integers is generated by

$$
u_{n}=3^{n}-1, n=1,2,3,4, \ldots
$$

a) Write down the first seven terms of this sequence.
b) Verify that

$$
u_{n+1}=3 u_{n}+2 .
$$

c) Show clearly that ...
i. $\quad . \quad \frac{1}{u_{n+1}}<\frac{1}{3} \times \frac{1}{u_{n}}$.
ii. $\ldots \frac{1}{26}+\frac{1}{80}+\frac{1}{242}+\frac{1}{728}+\frac{1}{2186}+\ldots<\frac{1}{8}\left[\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots\right]$
d) Deduce that $2,8,26,80,242,728,2186, \ldots$

Created by T. Madas

Created by T. Madas

Question 59 (****+)

$$
u_{n}=\frac{\sqrt{n}+1}{\sqrt{n^{3}}-n}, n \in \mathbb{N}, n \geq 5
$$

By using the comparison test and justifying every step in the workings, determine the convergence or divergence of

Question 61 (****+)
Consider the infinite series

$$
x+\frac{x^{3}}{3^{2}}+\frac{x^{5}}{5^{2} \times 3^{2}}+\frac{x^{7}}{7^{2} \times 5^{2} \times 3^{2}}+\frac{x^{9}}{9^{2} \times 7^{2} \times 5^{2} \times 3^{2}}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\sum_{n=0}^{\infty}\left[\frac{2^{2 n}(n!)^{2}}{[(2 n+1)!]^{2}} x^{2 n+1}\right]
$$

Question 62 (****+)
Show clearly that
\square

$$
\sum_{r=0}^{\infty} \frac{r+4}{(r+2)!}=3 \mathrm{e}-5
$$

Created by T. Madas

Question 63 (****+)

$$
I_{n}=\int_{0}^{\ln 2} \tanh ^{n} x d x, n \in \mathbb{N}
$$

By considering a reduction formula for I_{n}, or otherwise, show clearly that

Created by T. Madas

Question $64 \quad(* * * *+)$
Investigate the convergence or divergence of the following series justifying every step in the workings.
a) $\sum_{n=1}^{\infty}\left[\frac{n+2}{n^{2}+2}\right]$.
divergent, convergent
b) $\sum_{n=1}^{\infty}\left[\frac{2^{n}+n^{2}}{3^{n}}\right]$.

Question $65 \quad(* * * *+)$
By considering the Mclaurin expansion of $\ln \left(\frac{1+x}{1-x}\right)$ find the value of

$$
\sum_{r=0}^{\infty} \frac{1}{(2 r+1) 4^{r}}
$$

giving the final answer as the natural logarithm of an integer.

Question 66 (****+)
Use partial fractions to sum the following series.

You may assume the series converges.
\square

$$
\sum_{n=1}^{\infty} \frac{2 n+1}{n^{4}+2 n^{3}+n^{2}}
$$

$\%$

Question 67 ($* * * *+$)
Sum each of the following double series.
a) $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left[\frac{1}{2^{m+n}}\right]$.

Created by T. Madas

Question $68 \quad(* * * *+)$
Consider the infinite series

$$
1-\frac{3 x^{2}}{1 \times 1}+\frac{9 x^{4}}{(1 \times 2)(1 \times 4)}-\frac{27 x^{6}}{(1 \times 2 \times 3)(1 \times 4 \times 7)}-\frac{81 x^{8}}{(1 \times 2 \times 3 \times 4)(1 \times 4 \times 7 \times 10)}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r-1} \Gamma\left(\frac{1}{3}\right)}{(r-1)!\times \Gamma\left(\frac{3 r-2}{3}\right)}\left(x^{2}\right)^{r-1}=\sum_{r=0}^{\infty} \frac{(-1)^{r} \Gamma\left(\frac{1}{3}\right)}{r!\times \Gamma\left(\frac{3 r+1}{3}\right)} x^{2 r}
$$

Created by T. Madas

Question 69 (****+)

$$
\sum_{n=1}^{\infty}\left[\frac{n \pm 2}{n^{2} \pm 2}\right]
$$

Use a comparison test to show that all four series described by the above expression are divergent.

Question 70 (****+)
By showing a detailed method, sum the following series.

By showing a detailed method, sum the following series.

Created by T. Madas

Question 72 (****+)
The positive integer functions f and g are defined as
\square , 5135
Evaluate

Created by T. Madas

Question $73 \quad(* * * *+)$
Find the Maclaurin expansion of $\arctan x$, and use it to show that

Created by T. Madas

Question 74 (*****)
It is given that

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n-1}+\binom{n}{n}=k^{n},
$$

where n and k are positive integer constants.
a) By considering the binomial expansion of $(1+x)^{n}$, determine the value of k.
b) By considering the coefficient of x^{n} in

$$
(1+x)^{n}(1+x)^{n} \equiv(1+x)^{2 n}
$$

simplify fully

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n-1}^{2}+\binom{n}{n}^{2} .
$$

\square

$$
\text {], } k=2
$$

Question 75 ($* * * * *$)
By considering the binomial expansion of
sum each of the following series.

Created by T. Madas

Question 76 (*****)

$$
f(x) \equiv \frac{1-x}{1+x+x^{2}+x^{3}},-1<x<1 .
$$

Show that $f(x)$ can be written in the form
where $g(x)$ is a simplified function to be found.
\square
$g(x)=(1-x)^{2}$

\square
that we FAve
$f(x)=\frac{1}{1+x}-\frac{x}{1+x^{2}}$
$f(x)=\left(1-x+x^{2}-x^{3}+\cdots\right)-x\left(1-x^{2}+x^{4}-x^{6}+\cdots\right)$
$\begin{aligned} f(x)= & =\begin{array}{l}1-x+x^{2}-x^{3} \\ -x+x^{2}-x^{5}+x^{6}-x^{2} / x^{8}-x^{9}+x^{10} \\ -x^{3} \\ -x^{5}\end{array}+x^{2}-x^{9}\end{aligned}$
$f(x)=\left(1-2 x+x^{2}\right)+\left(x^{4}-2 x^{5}+x^{6}\right)+\left(x^{8}-2 x^{9}+x^{10}\right)+$
$f(x)=\left(1-2 x+x^{2}\right)+x^{4}\left(1-2 x+x^{2}\right)+x^{8}\left(1-2 x+x^{2}\right)+\cdots$
$f(x)=\left(1-2 x+x^{2}\right)\left[1+x^{4}+x^{8}+x^{12}+\ldots\right]$
$f(x)=(1-x)^{2} \sum_{r=0}^{\infty} x^{4 r}$

Longer Altionative
$f(x)=\frac{1-x}{1+x+x^{2}+x^{4}}=\cdots=\frac{1-x}{(1+x)\left(1+x^{2}\right)} \cdots$ Now PARTAR FRAATIONS
$\left\{\frac{1-x}{(1+x)\left(1+x^{2}\right)}=\frac{A}{1+x}+\frac{B x+C}{1+x^{2}}\right.$
$\left\{\begin{array}{l}1-x \equiv A\left(1+x^{2}+(1+x)(B x+C)\right. \\ \text { if } x=-1 \Rightarrow 2=2 A \Rightarrow A=1 \\ \text { if } x=0 \Rightarrow 1=A+c \Rightarrow C=0 \\ \text { If } x=1 \Rightarrow 0=2 A+2 B \Rightarrow B=-1\end{array}\right\}$
-

Created by T. Madas

Question 77 (*****)
The sum to infinity S of the convergent geometric series is given by

$$
S=1+x+x^{2}+x^{3}+x^{4}+\ldots, \quad|x|<1,
$$

By integrating the above equation between suitable limits, or otherwise, find

$$
\sum_{r=1}^{\infty}\left[\frac{1}{r \times 2^{r}}\right]
$$

You may assume that integration and summation commute.

Created by T. Madas

Question 78
Show clearly that

Created by T. Madas

Question 79 (*****)
Investigate the convergence or divergence of each of the following two series using standard tests and justifying every step in the workings.
a) $\sum_{n=1}^{\infty}\left[\frac{1}{n(n+3)}\right]$.
b) $\sum_{n=4}^{\infty}\left[\frac{1}{n(n-3)}\right]$.

You may not conclude simply by summing each the series.

Created by T. Madas

Question 80 (*****)
The finite sum C is given below.

$$
C=\sum_{r=0}^{n}\left[\binom{n}{r}(-1)^{n} \cos ^{n} \theta \cos n \theta\right]
$$

Given that $n \in \mathbb{N}$ determine the 4 possible expressions for C.

Give the answers in exact fully simplified form.

$$
\begin{array}{r}
n, n=4 k, k \in \mathbb{N}: C=\cos n \theta \sin ^{n} \theta, n=4 k+1, k \in \mathbb{N}: C=\sin n \theta \sin ^{n} \theta \\
n=4 k+2, k \in \mathbb{N}: C=-\cos n \theta \sin ^{n} \theta, n=4 k+3, k \in \mathbb{N}: C=-\sin n \theta \sin ^{n} \theta
\end{array}
$$

Question 81 (*****)

$$
f(x) \equiv \frac{2-3 x}{(1-x)(1-2 x)},-\frac{1}{2}<x<\frac{1}{2} .
$$

Show that $f(x)$ can be written in the form

$$
f(x)=\sum_{r=0}^{\infty}\left[x^{r} g(r)\right]
$$

where $g(r)$ is a simplified function to be found.

- next Aasust Tite mast somuation so ir stnats from $F=0$ Afton $f(x)=2+2 \sum_{r=0}^{\infty}\left(2^{r+2}-1\right) x^{r+1}-3 \sum_{r=0}^{\infty}\left(r^{r+1}-1\right) x^{r+1}$
$f(x)=2+\sum_{r=0}^{\infty}\left[2\left(2^{r+2}-1\right)-3\left(2^{r+1}-1\right)\right] x^{r+1}$
$f(x)=2+\sum_{r=0}^{\infty}\left(4 \times 2^{r+1}-2-3 \times 2^{r+1}+3\right) x^{r+1}$
$f(x)=2+\sum_{r=0}^{\infty}\binom{n+1}{2+1} x^{r+1}$

$$
f(x)=2+\sum_{r=1}^{\infty}\left(2^{r}+1\right) x^{r}
$$

$f(x)=\left(2^{0}+1\right) x^{0}+\sum_{r=1}^{\infty}\left(2^{n}+1\right) r^{r}$

$$
f(x)=\sum_{r=0}^{\infty}\left(2^{r}+1\right) x^{n}
$$

$f(x)=(2-3 x)\left(1+3 x+7 x^{2}+15 x^{3}+\cdots\right) \leftarrow$ reaneneuter
$f(x)=\begin{array}{r}2+6 x+14 x^{2}+30 x^{3}+\cdots \\ -3 x-9 x^{2}-21 x^{2}-\end{array}$
$f(x)=2+3 x+5 x^{2}+9 x^{3}+\cdots$
WHHllat ONE MIGNTT-DEDOCE is $\sum_{r=0}^{\infty}\left(2^{r}+1\right) x^{r}$

Created by T. Madas

Question 82 (*****)
Show, by considering standard series, that

Created by T. Madas

Question 83 (*****)
Show, by a detailed method, that

$$
\frac{48}{2 \times 3}+\frac{47}{3 \times 4}+\frac{46}{4 \times 5} \ldots+\frac{2}{48 \times 49}+\frac{1}{49 \times 50}=A+B \sum_{r=1}^{50} \frac{1}{r}
$$

where A and B are constants to be found.
$\square, A=\frac{51}{2}, \quad B=-1$
\square
writt lats ins sifma nation
$\sum_{k=1}(k+1)(k+2)$
$\sum_{k=1}^{40} \frac{49-k}{(k+1)(k+2)}=\sum_{k=1}^{48}\left(\frac{50}{k+1}-\frac{51}{k+2}\right)$
$\begin{aligned}= & \frac{50}{2}-\frac{57^{7}}{}{ }^{-\frac{1}{3}} \\ \frac{50}{3}-\frac{51}{4} & -\frac{1}{4} \\ & \frac{50}{4}-\frac{55}{5}\end{aligned}$
$\frac{50}{47}-\frac{51}{46}-7-\frac{1}{48}$
$=25-\left[\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{4}\right]-\frac{5}{54}$
$=25-\left[\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{45}\right]-1-\frac{1}{50}$

Created by T. Madas

Question 84 (*****)

$$
S=1+\frac{2}{4}+\frac{2 \cdot 3}{4 \cdot 8}+\frac{2 \cdot 3 \cdot 4}{4 \cdot 8 \cdot 12}+\frac{2 \cdot 3 \cdot 4 \cdot 5}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots
$$

By considering a suitable binomial series, or other wise, find the sum to infinity of S.

Question 85

$$
3+33+333+3333+33333+\ldots
$$

Express the sum of the first n terms of the above series in sigma notation.

You are not required to sum the series.

Created by T. Madas

Question 86 (*****)

$$
S_{n}=(2 \times 1!)+(5 \times 2!)+(10 \times 3!)+(17 \times 4!)+\ldots+\left(n^{2}+1\right) n!
$$

Use an appropriate method to show that

$$
S_{n}=n(n+1)!
$$

STher By cortina- THe sfate wis Sigut nutaton $(2 \times!!)+(5 \times 2!)+(10 \times 3!)+(17 \times 4!)+\cdots+\left[\left(n^{2}+1\right) \times n!\right]=\sum_{r=1}^{n}\left[\left(r^{2}+1\right) r!\right]$
 $(r+1)!-r!=(r+1) r!-r!=r \times r!$
 $(r+2)!-r!=(r+2)(r+1) r!-r!$ $(r+2)!-r!=\left(r^{2}+3 r+2\right) r!-r!$
$(r+2)!-r!=\left(r^{2}+3 r+r\right) r!$ $(r+2)!-r!=\left(r^{2}+3 r+1\right) r!$
$(r+2)!-r!=\left(r^{2}+1\right) r!+3 r \times r!$
\qquad $(r+2)!-r!=\left(r^{2}+1\right) r!+3[(r+1)!-r!]$ $\begin{aligned}(r+2)! & =\left(r^{2}+1\right) r+3(r+1)!-3 r! \\ & =2(r+1)!-r\end{aligned}$ $(r+2)!-3(r+1)!+2 r!=\left(r^{2}+1\right) r!$ Hanct we thate
$\left(r^{2}+1\right) r!\equiv(r+2)!-3(r+1)!+2 r!$
\square , proof

$$
\begin{aligned}
& \text { Werting the locriry wost osshint } \\
& \left(r^{2}+1\right) r!\equiv(r+2)!-3(r+1)!+2 r! \\
& \begin{array}{l}
2 \times 1!=3!-3 \times 2!+2 \times 1! \\
5 \times 2!=4!-3 \times 3!+2 \times 2!
\end{array} \\
& r=2 \quad 5 \times 2!=4!-3 \times 3!+2 \times 2! \\
& \begin{array}{ll}
r=3 & 10 \times 3! \\
r=4 & 17 \times 4!
\end{array}=5!-3 \times 4!+2 \times 3! \\
& \begin{array}{cc}
\vdots & \vdots \\
F=n-1 \\
{[(n-1)+1][(n-1)!}
\end{array}=\begin{array}{ll}
(n+1)!-3 \times n) & +2 \times(n-1)!
\end{array} \\
& i=n \quad \frac{\left(n^{2}+1\right) n!}{n}=\underline{(n+2)!-3 \times(n+1)!+2 \times n!} \\
& \sum_{k=1}^{n}[(n+n)!]=(n+2)!-2(n+1)!-3 \times 2!+2 \times!!+2 \times 2! \\
& =(n+2)(n+1)!-2(n+1)!-6+2+4 \\
& =(n+2-2)(n+1)! \\
& =n(n+1)!
\end{aligned}
$$

Consider the infinite series

$$
1+\frac{-1}{2 \times 1} x^{2}+\frac{-1 \times 1}{4 \times 3 \times 2 \times 1} x^{4}+\frac{-1 \times 1 \times 3}{6 \times 5 \times 4 \times 3 \times 2 \times 1} x^{6}+\frac{-1 \times 1 \times 3 \times 5}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} x^{8}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

Question 88 (*****)

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\frac{9}{1^{2}+2^{2}+3^{2}+4^{2}}+\frac{11}{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}}+\ldots
$$

Show, by a detailed method, that the sum of the first 40 terms of the series shown above is $\frac{240}{41}$.

Created by T. Madas

Created by T. Madas

Question 89 (*****)
By showing a detailed method, sum the following series.

$$
\frac{1}{2^{2} 2!}+\frac{1}{2^{4} 4!}+\frac{1}{2^{6} 6!}+\frac{1}{2^{8} 8!}+\ldots+\frac{1}{2^{2 r}(2 r)!}+\ldots
$$

$$
\frac{1}{2}\left[\mathrm{e}^{\frac{1}{4}}-\mathrm{e}^{-\frac{1}{4}}\right]^{2}=2 \sinh ^{2}\left(\frac{1}{4}\right)
$$

$$
\cosh \left(\frac{1}{2}\right)=1+\frac{1}{2!2^{2}}+\frac{1}{2^{4} 4!}+\frac{1}{2^{6} 6!}+\frac{1}{2^{8} 8!}+\cdots
$$

$\cos \left(\frac{1}{2}\right)=1+S$
$S=\cosh \frac{1}{2}-1$
$\vec{f}=\frac{1}{2} e^{\frac{1}{2}}+\frac{1}{2} \mathrm{e}^{-\frac{1}{2}}-1$
$S=\left[1+2 \sin ^{2}\left(\frac{4}{4}\right]\right]-1$
$S=\frac{1}{2}\left(e^{\frac{1}{2}}-2+e^{-\frac{1}{2}}\right)$
$\$=2 \sinh ^{2}\left(\frac{1}{4}\right)$
$\S=\frac{1}{2}\left(e^{\frac{1}{7}}-e^{-\frac{1}{7}}\right)^{2}$

Question 90
(*****)
A function is defined as

$$
[x] \equiv\{\text { the greatest integer less or equal to } x\}
$$

The function f is defined as

$$
f(n)=n\left[\frac{3}{5}+\frac{3 n}{100}\right], n \in \mathbb{N} .
$$

Determine the value of

$$
\sum_{n=1}^{82} f(n)
$$

\square , 5877
$[x] \equiv\{$ GRSATEST INTEGER LeSS OR GPMAL TO $x\}$

- $f(n)=n\left[\frac{3}{5}+\frac{3 n}{100}\right], n \in \mathbb{N}$.
 $\left.\cdot \frac{3}{5}+\frac{3 n}{100} \leqslant 1 \quad \right\rvert\, \cdot \frac{3}{5}+\frac{3 n}{10} \leqslant$

- $\frac{3}{5}+\frac{3 n}{100} \leqslant 1$	- $\frac{3}{5}+\frac{3 n}{100} \leqslant 2$	- $\frac{3}{5}+\frac{3 n}{100} \leqslant 3$
$\frac{3 n}{100} \leqslant \frac{2}{5}$	$\frac{3 n}{100} \leqslant \frac{7}{5}$	$\frac{37}{100} \leqslant \frac{12}{5}$
$3 n \leqslant 40$	$3 n \leqslant 140$	
$n \leqslant \frac{40}{3}=13 \frac{1}{3}$	$n \leqslant \frac{40}{3}=4 \frac{2}{3}$	$3 n \leqslant 240$
\therefore 析 frese 13 "thens"	The trems ${ }^{\text {a }}$ ¢ [...] $]$	The treus of [...]
of [...] AREAU	From lith to 46 th HeF 1	FFOM 47th To A $_{\text {mt }}$

- Somuling vip the seeits
$\sum_{n=1}^{82} f(n)=\sum_{n=1}^{82} n\left[\frac{3}{5}+\frac{3 n}{100}\right]$

Created by T. Madas

Created by T. Madas

Question 91 (*****)
Use partial fractions and a suitable Mclaurin expansion to sum the following series.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+3)} \\
& \frac{2}{3} \ln 2-\frac{5}{18} \\
& \hline
\end{aligned}
$$

Question 92 ($* * * * * *)$
The function f is defined for $n \in \mathbb{N}$ as

$$
f(n) \equiv 1 \times n^{2}+2(n-1)^{2}+3(n-2)^{2}+4(n-3)^{2}+\ldots+(n-1) \times 2^{2}+n \times 1^{2}
$$

Determine a simplified expression for the sum of $f(n)$, giving the final answer in fully factorized form.

Created by T. Madas

Question 93 (*****)
Find the sum of the first 16 terms of the following series.

Created by T. Madas

Question 94 (*****)

$$
S_{n}=1 \times 3+3 \times 3^{2}+5 \times 3^{3}+7 \times 3^{4}+\ldots+(2 n-1) \times 3^{n}
$$

Find a simplified expression for S_{n}, giving the answer in the form $A+f(n) \times 3^{n+1}$, where A is an integer and $f(n)$ a linear function of n.
[The standard techniques used for the summation of a geometric series are useful in this question]

Question 95 (******)
By showing a detailed method, sum the following series.

$$
\sum_{r=1}^{\infty}\left[\frac{2^{r}}{(r+1)!}\right]
$$

Created by T. Madas

Question 96
(*****)
The $r^{\text {th }}$ term of a progression is given by

$$
u_{r}=a k^{r-1}
$$

where a and k are constants with $k \neq \pm 1$.

Show clearly that

Question 97 (*****)
It is given that the following series converges to a limit L.

$$
\sum_{r=1}^{\infty}\left[\frac{2 x-1}{x+2}\right]^{r}
$$

Determine with full justification the range of possible values of L.
\square , $L>-\frac{1}{2}$

$\sum_{i=1}^{\infty}\left(\frac{2 x+1}{x x_{1}}\right)^{\prime}=L$		
- NEXT WE fequire THE RANCE OF vAWES Of x FOR WHITH THE SUM - INFinty exists \|n	<1	
$-1<\frac{2 x-1}{312}<1$		
$\rightarrow \frac{2 x-x-2}{x+2}<0$ $\rightarrow \frac{x+2}{x+2}$ $\rightarrow \frac{x-3}{x-3}<0$ $\rightarrow \frac{3 x+1}{2+2}>0$		
$\frac{x+1}{4} r_{1}-r_{1}^{x} x_{i}^{2} r$		
$\therefore \frac{1-1}{2} \times x<3$		

- Thus we Have

$$
\begin{aligned}
& L(x)=\frac{2 x-1}{3-x}, \quad-\frac{1}{3}<x<3 \\
& \begin{array}{r}
L^{\prime}(x)=\frac{(3-x) \times 2-(2 x-1) \times(-1)}{(3-x)^{2}}=\frac{2(3-x)+(2 x-1)}{(3-x)^{2}}
\end{array} \\
& L^{\prime}(x)=\frac{S}{(3-x)^{2}}>0 \text { for Thef hoout Dowind } \\
& \text { - as L(a) is an incemasina findotoon, the minumm quaximuer } \\
& \text { CMN BE fasly found } \\
& L\left(-\frac{1}{3}\right)=\frac{2\left(-\frac{1}{4}\right)-1}{3-\left(-\frac{1}{3}\right)}=\frac{-\frac{5}{3}}{\frac{10}{3}}=-\frac{1}{2} \\
& L(3)=+\infty \\
& \therefore L>-\frac{1}{2}
\end{aligned}
$$

Created by T. Madas

Question 98 (*****)
By considering the trigonometric identity for $\tan (A-B)$, with $A=\arctan (n+1)$ and $B=\arctan (n)$, sum the following series

You may assume the series converges.
\square
\square

Created by T. Madas

$$
\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}=\frac{\pi^{2}}{8}
$$

Created by T. Madas

Question 100 (*****)
Evaluate the following expression

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left[\frac{1}{3^{m+n}}\right]
$$

Created by T. Madas

Question 101
(*****)

$$
S=1-\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}-\ldots
$$

Find the sum to infinity of S, by considering the binomial series expansion of $(1+x)^{n}$ for suitable values of x and n.
\square $S_{\infty}=\sqrt{\frac{2}{3}}$

Created by T. Madas

Question 102 (*****)
Show clearly that

Created by T. Madas

Question 103
The function f is defined as

$$
f(n)=\frac{\mathrm{e}^{-\lambda} \lambda^{n}}{n!}
$$

where $n=0,1,2,3,4, \ldots$ and λ is a positive constant.

By showing a detailed method, prove that ...
a) $\ldots \sum_{n=0}^{\infty}[n f(n)]=\lambda$.

Question 104 (*****)
Find in exact simplified form an exact expression for the sum of the first n terms of the following series

$$
\begin{aligned}
& 1+11+111+1111+11111+\ldots \\
& \square, S_{n}=\frac{1}{81}\left[10^{n+1}-10-9 n\right]
\end{aligned}
$$

Created by T. Madas

Question 105 (*****)
The product operator \qquad is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Find the sum to infinity of the following expression

Created by T. Madas

$$
\begin{aligned}
& \text { Question } 106 \\
& \text { Find the value of } \\
& \sum_{r=0}^{\infty}\left[\frac{\sin ^{4}(\pi \times * * *)}{4^{r}}\right]
\end{aligned}
$$

Hint: Express $\sin ^{4} \theta$ in terms of $\sin ^{2} \theta$ and $\sin ^{2} 2 \theta$ only.

Question 107 (*****)
Find the sum to infinity of the following series.

$$
\frac{1}{1}-\frac{1}{1+4}+\frac{1}{1+4+9}-\frac{1}{1+4+9+16}+\frac{1}{1+4+9+16+25}+\ldots
$$

You may find the series expansion of $\arctan x$ useful in this question.
\square , $6(\pi-3)$

white THe Serers in "Confact" Notition Hang bef tore $=-6\left[-\frac{1}{2}+-\frac{1+2}{4}-\frac{6}{6}+\frac{1}{4}-\cdots\right]$ $=-6\left[-1+\frac{1}{2}+\frac{1}{-1}-\frac{1}{2}+\frac{3}{-}-\frac{1}{6}+\frac{1}{2}\right]$ $=6-6\left[1-\frac{1}{2}+5-\neq+5-6+7\right]$ $=6-642$

$\Rightarrow \int \frac{1}{1+x^{2}} d x=x-4 x^{2}+4 x^{3}-4 x^{2}+\ldots+c$	
\rightarrow antan$x=C+x-\frac{1}{3} x^{5}+\frac{1}{5} x^{5}-\frac{1}{7^{2}} x^{7}+\cdots \cdot$ (ut $x=0 \Rightarrow c=0$ 	
$\rightarrow 6 \pi=24 \sum_{i=0} \frac{(1) T}{2+1}$	
Finty cousmis.	
	$=\underline{5 T-18}=\underline{6(T r-3)}$

Created by T. Madas

Question 108
(*****)

$$
f(x) \equiv \frac{1-7 x}{(1+x)(1-3 x)},-\frac{1}{3}<x<\frac{1}{3} .
$$

Show that $f(x)$ can be written in the form

$$
f(x)=1-\sum_{r=1}^{\infty}\left[x^{r} g(r)\right]
$$

where $g(r)$ is a simplified function to be found.
\square

$$
g(r)=3^{r}+2 \times(-1)^{r+1}
$$

- Hinge we may wert t
$\left.f(x)=1-\sum_{r=1}^{\infty}\left[3^{r}+(-1) \times 2\right] x^{r}\right]$
$f(x)=1-\sum_{r=1}^{\infty}\left[\left(3+2(-1)^{r+1}\right) x^{r}\right]$

Created by T. Madas

$$
\zeta(2)=\sum_{r=1}^{\infty} \frac{1}{r^{2}}=\frac{\pi^{2}}{6}
$$

By using this fact alone find the exact value of

Created by T. Madas

Question 110
$(* * * * *)$

$$
S=\frac{3}{8}+\frac{3 \times 9}{8 \times 16}+\frac{3 \times 9 \times 15}{8 \times 16 \times 24}+\frac{3 \times 9 \times 15 \times 21}{8 \times 16 \times 24 \times 32}+\frac{3 \times 9 \times 15 \times 21 \times 27}{8 \times 16 \times 24 \times 32 \times 40} \ldots
$$

By considering a suitable binomial expansion, show that $S=1$.

Created by T. Madas

Question 112 (******)
Sum the following series of infinite terms.

Created by T. Madas

Question 113 (*****)
By considering the simplification of $\arctan (2 n+1)-\arctan (2 n-1)$,
determine the exact value of

Created by T. Madas

Question 114 (******)
Determine the exact value of the following sum.

$$
\sum_{n=2}^{20}\left[\frac{n^{3}-n^{2}+1}{n^{2}-n}\right]
$$

\square
\square $\frac{4199}{20}$

Created by T. Madas

Question 115 (*****)

$$
\sum_{r=1}^{\infty}\left[\frac{1}{r^{2}}\right]=L
$$

It is given that the above infinite series converges to a limit L.
Find, in terms of L where appropriate, the limit of each of the following infinite series.
a) $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\frac{1}{8^{2}}+\frac{1}{10^{2}}+\ldots$
b) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{9^{2}}+\ldots$
c) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\ldots$
d) $\frac{1}{1^{2}}+\frac{1}{2^{2}}-\frac{8}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{8}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}-\frac{8}{9^{2}}+\ldots$

$$
\frac{2}{2^{2}}\left(\frac{1}{2}\right) x^{2}+\frac{3}{2^{2} \times 4^{2}}\left(\frac{1}{2}+\frac{1}{4}\right) x^{4}+\frac{4}{2^{2} \times 4^{2} \times 6^{2}}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right) x^{6}+\frac{5}{2^{2} \times 4^{2} \times 6^{2} \times 8^{2}}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right) x^{8}+\ldots
$$

Write the above series in Sigma notation, in its simplest form.
[You are not required to investigate its convergence or to sum it.]

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[\frac{n+1}{(n!)^{2}}\left(\frac{x}{2}\right)^{2 n} \sum_{m=1}^{n} \frac{1}{2 m}\right] \text { or } \sum_{n=1}^{\infty} \sum_{m=1}^{n}\left[\frac{n+1}{2 m(n!)^{2}}\left(\frac{x}{2}\right)^{2 n}\right] \\
& \\
& \text { ? }
\end{aligned}
$$

Question 117 (*****)

Determine the sum to infinity of the following series

$$
\frac{10}{1!}+\frac{7}{2!}+\frac{4}{3!}+\frac{1}{4!}-\frac{2}{5!}-\frac{5}{6!}+\ldots
$$

Created by T. Madas

Question 118 (*****)
Consider the binomial infinite series expansion
where $a \in \mathbb{R}, n \in \mathbb{Q}, n \notin \mathbb{N}$.

$$
(1+a x)^{n}
$$

Show that the series converges if $|a x|<1$.
$(1+\infty x)^{n}=1+\frac{n}{1!}(a x)+\frac{n(n-1)}{2!}(a x)^{2}+\frac{n(n-1)(n-2)}{3!}(a x)^{3}+$.
$(1+a x)^{n}=\sum_{r=0}^{\infty} \frac{n(n-1)(n-2) \cdots(n-r+1)}{r!}(a x)^{r}$

- 7fus for converinnce By D'Afmesier's metho test
$\lim _{r \rightarrow a}\left|\frac{u_{T+1}}{u_{r}}\right| \rightarrow L<1$ For conbresmice
- Htruce
$\left|\frac{\frac{n(n-1)(n-2) \ldots(n-(r+1)+1)(a x]^{r+1}}{(\Gamma+1)!}}{\frac{n(n-1)(n-2) \cdots(n-r+1)}{\Gamma!}(a x)^{r}}\right|=\left|\frac{\frac{n(n-1)(n-2) \ldots(n-r)(a x)^{r+1}}{(r+1)!}}{\frac{n(n-1)(n-2) \ldots(n-r+1)(a x) r}{r!}}\right|$ $\left|\frac{5 \cdot n(n-1)(n-2) \cdots(n-r)(a x)^{r+1}}{(r+n) \cdot n(n-1)(n-22) \ldots(n-r+1)(a x)^{r}}\right|=\left|\frac{(n-r)}{(r+1)}(a x)\right|=\left|\frac{n-r}{r+1}\right||a x|$
- $\lim _{r \rightarrow \infty}\left|\frac{u_{r+1}}{u_{r}}\right|=\lim _{r \rightarrow \infty}\left|\frac{n-r}{r+1}\right||a x|=|a x|$

Question 119
The $n^{\text {th }}$ term of a series is given recursively by

$$
u_{n+1}=\frac{n}{2 n+1} u_{n}, n \in \mathbb{N}, u_{1}=2
$$

a) Show, by direct manipulation, that

$$
u_{n}=\frac{2^{n} \times[(n-1)!]^{2}}{(2 n-1)!}
$$

[you may not use proof by induction in this part]
b) Determine whether $\sum_{n}^{\infty} u_{n}$ converges or diverges. converges

Created by T. Madas

Question 120 (*****)
Determine, in terms of k and n, a simplified expression

$$
\sum_{r=2}^{n}\left[\frac{r(1-k)-1}{r(r-1) k^{r}}\right]
$$

\square $\frac{1}{n}\left(\frac{1}{k}\right)^{n}-\frac{1}{k}$

$\begin{aligned} & \text { - START. By PReTAC FRNCTIONS } \\ & \qquad \begin{array}{l} \frac{r(1-k)-1}{r(r-1)}=\frac{A}{r}+\frac{B}{r-1} \\ r(1-k)-1 \equiv A(r-1)+B r \\ \text { if } r=0 \Rightarrow-1=-A \Rightarrow A=1 \\ \text { if } r=1 \Rightarrow-k=B \Rightarrow B=-k \end{array} \end{aligned}$ Hrwet we now thot	
- Hrwet wo	
$0 \cdot 6$	
- ${ }^{\text {a }}$	
-1/	(1才)
s	
E	

Created by T. Madas

Question 121 ($* * * * *$)
Use an appropriate method to sum the following series

You may assume the series converges.

Question 122 (******)
The $n^{\text {th }}$ term of a series is given recursively by

$$
u_{n}=\frac{2 n}{2 n+1} u_{n-1}, n \in \mathbb{N}, u_{0}=1
$$

a) Show, by direct manipulation, that

$$
u_{n}=\frac{4^{n} \times(n!)^{2}}{(2 n+1)!}
$$

[you may not use proof by induction in this part]
b) Determine whether $\sum_{n}^{\infty} u_{n}$ converges or diverges.

Created by T. Madas

Question 123 (*****)
The following convergent series S is given below

$$
S=\frac{\sin \theta}{1!}-\frac{\sin 2 \theta}{2!}+\frac{\sin 3 \theta}{3!}-\frac{\sin 4 \theta}{4!}+\ldots
$$

By considering the sum to infinity of a suitable series involving the complex exponential function, show that

Question 124 (*****)

$$
g(x) \equiv \sum_{r=0}^{\infty} f(x, r)-\frac{1-x}{\sqrt{1-x^{2}} \sqrt[3]{1-x^{3}}},-1<x<1
$$

Given that the first term of the series expansion of $g(x)$ is $\frac{1}{5} x^{5}$, determine in exact simplified form a simplified expression of $f(x, r)$.
$\square, f(x, r)=\frac{(-x)^{r}}{r!}$

- Tous we now thrut
$\sum_{r=5}^{5} f(x, r)-\left(1-x+\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+\frac{1}{24} x^{y}-\frac{5}{2 t} x^{5}\right)=\frac{1}{5} x^{5}$
$\sum_{r=0}^{5} f\left(x_{r}\right)=1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}$
$\sum_{i=0}^{5} f(x, y)=\frac{x}{0!}-\frac{x^{1}}{1!}+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{1}{4!} x^{11}-\frac{1}{5!} x^{c}$
$\therefore f(2,1)-\frac{\left(-\lambda^{r}\right.}{\Gamma!}$

Question 125 (*****)
Determine the value of the following infinite convergent sum.

Created by T. Madas

Created by T. Madas

Question 128 (*****)

Use the standard techniques for the summation of a geometric series, to show that

$$
S_{n}=\left(n^{2}-2 n+3\right) \times 2^{n+1}-6
$$

[You may not use proof by induction in this question.]

Created by T. Madas

Question 129 (******)
By showing a detailed method, sum the following series.

$$
\sum_{r=0}^{9}\left[(r+1) \times 11^{r} \times 10^{9-r}\right]
$$

Created by T. Madas

Question 130 (******)
Use the ratio test to show that the following series converges

$$
\sum_{n=1}^{\infty}\left[\frac{5^{n}+1}{n^{n}+8}\right]
$$

You may assume without proof that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-n}=\frac{1}{\mathrm{e}}$.
\square , proof

$$
\begin{aligned}
& \text { AS AU THE THONS ARF POSTIUE WE MAY GNNORE MODNU IN THE RATO THTT } \\
& \frac{u_{n+1}}{u_{n}}=\frac{\frac{5^{n+1}+1}{(n+1)^{n+1}+8}}{\frac{5^{n}+1}{n^{n}+8}}=\frac{5^{n+1}+1}{(n+1)^{n+1}+8} \times \frac{n^{n}+8}{s^{1}+1} \\
& <\frac{5^{n+1}+5}{\left(n_{n+1}^{n+1}+8\right.} \times \frac{n^{n}+8}{5^{n}+1} \\
& -\frac{5\left(8^{n}+T\right)}{(n+1)^{n+1}+8} \times \frac{n^{n}+6}{-5)^{n}+1} \\
& =\frac{5\left(n^{n}+8\right)}{(n+1)^{n+1}+8} \\
& <\frac{5 \times n^{n}}{(n+1)^{n+1}+8} \\
& <\frac{A \times n^{n}}{(n+1)^{n+1}} \quad \text { (for suffiannoy } \text { (Abes } A \text {) } \\
& =A \frac{n^{n}}{(n+1)^{n}(n+1)} \\
& =4\left(\frac{n}{n+1}\right)^{n} \times \frac{1}{n+1} \\
& =\frac{A}{n+1} \times\left(\frac{n+1}{n}\right)^{-n}=\frac{A}{n+1} \times\left(1+\frac{1}{n}\right)^{-n} \\
& =\frac{A}{n+1} \times e^{-1} \rightarrow 0 \quad \text { As } n \rightarrow \infty
\end{aligned}
$$

Created by T. Madas

Question 131
(******)

$$
f(x)=\frac{1}{\sqrt{1-x}},-1<x<1
$$

a) By manipulating the general term of binomial expansion of $f(x)$ show that

$$
f(x)=\sum_{r=0}^{\infty}\binom{2 r}{r}\left(\frac{1}{4} x\right)^{r}
$$

b) Find a similar expression for $\frac{1}{\sqrt{16-x^{2}}}$ and show further that

$$
\frac{x}{\left(16-x^{2}\right)^{\frac{3}{2}}}=\sum_{r=1}^{\infty}\binom{2 r}{r}\left(\frac{1}{16} r\right)\left(\frac{1}{8} x\right)^{2 r-1}
$$

c) Determine the exact value of

\square $\frac{25}{108}$

Question 132 (*****)
Determine, in terms of n, a simplified expression

$$
\sum_{r=1}^{n}\left[\frac{r^{2}+9 r+19}{(r+5)!}\right]
$$

and hence, or otherwise, deduce the value of

$$
\sum_{r=1}^{\infty}\left[\frac{r^{2}+7 r+11}{(r+4)!}\right]
$$

W,$\sum_{r=1}^{n}\left[\frac{r^{2}+9 r+19}{(r+5)!}\right]=\frac{1}{6}-\frac{n+5}{(n+5)!}$,

$$
\sum_{r=1}^{\infty}\left[\frac{r^{2}+7 r+11}{(r+4)!}\right]=\frac{5}{24}
$$

$\text { € } \begin{aligned} & \frac{r^{2}+9 r+19}{(r i 5)!} \equiv \frac{A}{(r+5)!}+\frac{B}{(r+3)!} \\ \Rightarrow & r^{2}+9 r+19 \equiv A+B(r+5)(r+4) \\ \Rightarrow & r^{2}+9 r+19 \equiv \\ & B r^{2}+9 B r+(20 B+A) \\ & \therefore B=1 \& A=-1 \end{aligned}$ \qquad

- Now Poccio is follows
$\Longrightarrow \sum_{r=1}^{n}\left[\frac{\Gamma^{2}+4 r+19}{(r+5)!}\right]=\frac{6}{5!}-\frac{n+6}{(n+5)!}$

 $\Rightarrow \sum_{i=1}^{\infty}\left[\frac{p^{2} \pi+n}{(1+4)!}\right]=\frac{5}{2 t}$

Question 133 ($* * * * * *)$
The $n^{\text {th }}$ term of a series is given recursively by

$$
A_{n}=\frac{a(2 n+1)}{2 n+4} A_{n-1}, n \in \mathbb{N}, n \geq 1
$$

where a is a positive constant.

Given further that $A_{0}=1$, show that
\square , proof

Question 134 (*****)
By considering the series expansions of $\ln \left(1-x^{2}\right)$ and $\ln \left(\frac{1+x}{1-x}\right)$, or otherwise, find the exact value of the following series.
$\sum_{r=1}^{\infty}\left[\left(\frac{1}{2 r}+\frac{1}{2 r+1}\right)\left(\frac{1}{4}\right)^{r}\right]$.

$$
\square,-1+\frac{1}{2} \ln 12
$$

$\begin{array}{ll} \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots & \|x\|<1 \\ \ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots & \|x\|<1 \end{array}$ Now uling tife sugerted seefes $\begin{aligned} \ln \left(1-x^{2}\right)= & -x^{2}-\frac{1}{2} x^{4}-\frac{1}{3} x^{6}-\frac{1}{4} x^{8}-\cdots \\ \ln \left(\frac{1+x}{1-x}\right)= & \ln (1+x)-\ln (1-x) \\ = & x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots \\ & -\left[-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{4}{4} x^{4}-\ldots\right] \\ = & 2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{3}+\ldots \end{aligned}$ looking at the repurrio sferis $\begin{aligned} & \left(\frac{1}{2}+\frac{1}{3}\right) \frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \frac{1}{16}+\left(\frac{1}{6}+\frac{1}{7}\right) \frac{1}{64}+\left(\frac{1}{8}+\frac{1}{9}\right. \\ = & \frac{1}{2} \times \frac{1}{4^{4}}+\frac{1}{4} \times \frac{1}{4^{2}}+\frac{1}{6} \times \frac{1}{4^{3}}+\frac{1}{8^{2} \times \frac{1}{4^{4}}+\cdots} \\ & \frac{1}{3} \times \frac{1}{4^{4}}+\frac{1}{5} \times \frac{1}{4^{2}}+\frac{1}{7} \frac{1}{4^{3}}+\frac{1}{9} \times \frac{1}{4^{9}}+\cdots \\ = & \frac{1}{2} \times \frac{1}{2^{2}}+\frac{1}{4^{2}} \times \frac{1}{2^{4}}+\frac{1}{6^{2}} \times \frac{1}{2^{6}}+\frac{1}{8^{4}} \times \frac{1}{2^{8}}+\cdots \\ & \frac{1}{3^{8}} \times \frac{1}{2^{2}}+\frac{1}{5^{2}} \times \frac{1}{2^{4}}+\frac{1}{7} \times \frac{1}{2^{6}}+\frac{1}{9} \times \frac{1}{2^{9}}+\cdots \end{aligned}$ $\begin{aligned} & -\frac{1}{2} \ln \left(1-x^{2}\right)=\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\frac{x^{8}}{8}+\cdots \\ & \frac{1}{2 x} \ln \left(\frac{1+x}{1-x}\right)=1+\frac{1}{3} x^{2}+\frac{1}{5} x^{6}+\frac{1}{7} x^{6}+\frac{1}{9} x^{8}+\cdots \end{aligned}$	

- a tadina these resuus wo obitin
 - Tinus wit thut
\qquad - Let $x=\frac{1}{2}$ $\sum_{r=1}^{\infty}\left(\frac{1}{2 r}+\frac{1}{2 r+1}\right)\left(\frac{1}{2}\right)^{2 r}=\frac{1}{2 \times \frac{1}{2}} \ln \left(\frac{1+\frac{1}{2}}{1-\frac{2}{2}}\right)-\frac{1}{2} \ln \left(1-\frac{1}{4}\right)-1$ $\sum_{r=1}^{\infty}\left(\frac{1}{2 r}+\frac{1}{2 r+1}\right)\left(\frac{1}{4}\right)^{r}=\ln 3-\frac{1}{2} \ln \frac{3}{4}-$ $=\frac{1}{2}\left[\ln 9-\ln \frac{3}{4}\right]-1$ $=\frac{1}{2}\left[\ln 9+\ln \frac{4}{3}\right]-1$ $=\frac{1}{2} \ln 12-1$

Question 135 (******)
By considering a suitable binomial expansion, show that
\square proof

 MANiPOLATANG FORTAFR $\frac{1}{\sqrt{1-x^{2}}}=1+\frac{1 \times 2}{1!\times 2} \frac{3^{2}}{2}+\frac{1 \times 2 \times \times \times 4}{2!\times 2 \times 4} \frac{a^{4}}{4}+\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{3!\times 2 \times 4 \times 6} \frac{x^{6}}{8}+\frac{1 \times 2 \times 3 \times 1 \times 5 \times 5 \times 6 \times 7 \times 8 \times 8}{4!\times 2 \times 4 \times 6 \times 8} \frac{x^{8}}{16}+0\left(x^{6}\right)$ $\frac{1}{\sqrt{1-x^{2}}}=1+\frac{2!}{1!\times \sum^{2} \times x^{2}} \frac{x^{2}}{2}+\frac{4!}{2!\times 2^{2}(x \times 2)} \frac{a^{4}}{4}+\frac{6!}{3!\frac{1}{2}^{\frac{1}{2} \times(1 \times 2 \times 3)} \frac{x^{6}}{8}+\frac{8!}{4!\times 2^{4} \times(1 \times 2 \times 5 \times 54)} \frac{x^{8}}{16}+o\left(x^{*}\right)}$ INEGRATING BORH SIOLS, WITTNN THE RADIUS OF CONULRCENCE

Question 136 (*****)
The product operator \prod, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Find the sum to infinity of the following expression

$$
\square, \sqrt[8]{\frac{5}{4}}-1
$$

$$
\sum_{k=1}^{\infty}\left[\prod_{r=1}^{k}\left(\frac{8 r-7}{40 r}\right)\right]
$$

\square

This is a Binomiac expansion with tofe "1"
Missing AT The fromy $=\frac{1}{40}+\frac{1}{40} \times \frac{1}{80}+\frac{1}{40} \times \frac{1}{80} \times \frac{7}{120}+\frac{1}{40} \times \frac{9}{80}+\frac{17}{120} \times \frac{23}{160}+\cdots$
$=\frac{1}{40}+\frac{1 \times 9}{40 \times 80}+\frac{1 \times 9 \times 17}{40 \times 80 \times 120}+\frac{1 \times 9 \times 7 \times 25}{409 \times 6 \times 109 \times 40}$
$\frac{1}{40 \times 1}, \frac{1 \times 9}{40^{2}(1 \times 2)}, \frac{1 \times 9 \times 17}{40^{3}(1 \times 2 \times 3)}+\frac{1 \times 9 \times 17 \times 25}{40^{4}(1 \times 2 \times 3 \times 4)}$
 (2) By insection Tits will awe As $-\frac{1}{8}, \frac{-9}{8}, \frac{-17}{8}, \frac{-25}{8}$

$=\frac{1}{(-3)(-5)!!}+\frac{1 \times 9}{\left.(-8)^{2}-5\right)^{2} 2!}+\frac{1 \times 9 \times 17}{(-8)^{3}(-5)^{2} 3!}+\frac{1 \times 9 \times 17 \times 25}{\left.(-8)^{2(-5}\right)^{4} 4!}$
$=\left(1-\frac{1}{5}\right)^{-\frac{1}{2}}-1$
$=\left(\frac{4}{5}\right)^{-\frac{1}{8}}-1$
$=\sqrt[8]{\frac{5}{4}}-1$

Question 137 (******)
A sequence $u_{1}, u_{2}, u_{3}, u_{5}, u_{6}, \ldots$ is generated by the recurrence relation

$$
n^{2} u_{n+1}=(n+1) u_{n}, \quad n=1,2,3,4, \ldots
$$

It is further given that

Find in exact form the value of u_{1}.

Question 138 (*****)
Find the sum to infinity of the following convergent series.

$$
\frac{1}{4 \times 2!}+\frac{1}{5 \times 3!}+\frac{1}{6 \times 4!}+\frac{1}{7 \times 5!}+\frac{1}{8 \times 6!}+\ldots
$$

\square
\square

$\frac{\text { Wrinna- THE SERES in SKMAA NOTATION }}{\infty}$
$S_{\infty}=\sum_{r=1}^{\infty} \frac{1}{(\Gamma+3)(r+1)!}$

- TRY $\frac{1}{(r+3)(r+1)!} \equiv \frac{A}{(r+3)!}+\frac{B}{(r+1)!}$
$\begin{aligned} \text { TeY } N \in X T & \frac{1}{(T+3)(t+1)!} \equiv \frac{A}{(T+3)!}+\frac{B}{(T+2)!}\end{aligned}$
$\Rightarrow \frac{1}{(r+3)(r+1)!} \equiv \frac{A+B(r+3)}{(r+3)!}$
$\rightarrow \frac{r+2}{(\Gamma+3)(r+2)(r+1)!} \equiv \frac{A+B(r+3)}{(r+3)!}$
$\Rightarrow \frac{r+2}{(r+3)!} \equiv \frac{A+B(r+3)}{(r+3)!}$
$\Rightarrow r+2 \equiv(A+3 B)+B r$
\therefore B

Question 139
a) Use an appropriate integration method to evaluate the following integral.

$$
\int_{0}^{1} x^{3} \arctan x d x
$$

b) Obtain an infinite series expansion for $\arctan x$ and use this series expansion to verify the answer obtained for the above integral in part (a).
[you may assume that integration and summation commute]
\square , $\frac{1}{6}$

 \square

Question 140 (*****)
Find the sum to infinity of the following series.

$$
1+\frac{1}{3 \times 4}+\frac{1}{5 \times 4^{2}}+\frac{1}{7 \times 4^{3}}+\frac{1}{9 \times 4^{4}}+\ldots
$$

Mites B - At han tat returns
anchor

$$
=\frac{1}{(2 x+1) 2^{2^{k} \times 2}}=\frac{1}{2} \frac{1}{(2+1) \times 4^{k}}
$$

Now Canara tiff infinite soul courts)

$=2 \times \frac{1}{2} \sum_{k=0}^{\infty}\left[\frac{1}{(x+1) 4^{k}}\right]=2 \sum_{k=0}^{\infty}\left[\frac{1}{2} \frac{1}{2(2 k+1) \times \psi^{k}}\right]=2 \sum_{k=0}^{\infty}\left[\int_{0}^{\frac{1}{2}} x^{k} d x\right]$

$\therefore=2 \int_{0}^{\frac{1}{2}}\left[\sum_{k=0}^{\infty} x^{2 k}\right] d x=2 \int_{0}^{\frac{1}{2}}\left[1+x^{2}+x^{4}+x^{6}+\cdots\right] d x$
$=2 \int_{0}^{\frac{1}{2}} \frac{1}{1-x^{2}} d x=\int_{0}^{\frac{1}{2}} \frac{2}{(1-x)(1+x)} d x$
$=\int_{0}^{\frac{1}{2}} \frac{1}{1+x}+\frac{1}{x-x} d x=[\ln |+x|-\ln |-x|]_{0}^{\frac{1}{2}}$
$=\left(\ln \frac{2}{2}-\ln t\right)-(\ln t-\ln 1)=\ln \frac{3 / 2}{2}=\ln 3 / /$

Question 141 (*****)
By showing a detailed method, sum the following series.

Question 142 (*****)
Evaluate the following expression

$$
\sum_{k=1}^{\infty}\left[\sum_{r=1}^{k} r\right]^{-1}
$$

- rewpira for supuaty to fongas
$\sum_{k=1}^{\infty}\left[\sum_{r=1}^{k} r\right]^{-1}=\sum_{k=1}^{\infty}\left[\frac{1}{\sum_{n=1}^{n} n}\right]$
$=\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots$
- INTRODUCE A finte unit Ere the somuatow, say n

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2 \cdot 3+4}+\cdots+\frac{1}{1+2+3+++4}\right] \\
& =\lim _{n \rightarrow \infty}\left[\sum_{[r=1}^{n} \frac{1}{\frac{1}{2} r(r+1)}\right] \\
& =2 \lim _{n=0}\left[\sum_{r=1}^{n} \frac{1}{r(r+1)}\right] \\
& =2 \lim _{n \rightarrow \infty}\left[\sum_{r=1}^{n} \frac{1}{r}-\frac{1}{r+1}\right] \\
& =2 \operatorname{Lim}_{n \rightarrow \infty}\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{x}\right)+\cdots+\left(\frac{k^{n}}{n}-\frac{1}{n+1}\right)\right] \\
& -2 \operatorname{Lim}_{n \rightarrow \infty}\left[1-\frac{1}{n+1}\right] \\
& =2
\end{aligned}
$$

- splar indo two prafions by inseccian

Created by T. Madas

Question 143 (*****)
The first three terms of a series S are

$$
S=7+9 x+8 x^{2}+\ldots
$$

The $n^{\text {th }}$ term of S is given by

$$
A\left(\frac{3}{4} x\right)^{n}+B\left(\frac{1}{3} x\right)^{n}
$$

where A and B are non zero constants.

Given that the sum to infinity of S is 19 , determine the value of x.

Created by T. Madas

Question 144 (*****)
Find a simplified expression for the following sum

$$
\frac{1}{100!}+\frac{1}{99!}+\frac{1}{2!98!}+\frac{1}{3!97!}+\frac{1}{4!96!}+\ldots+\frac{1}{2!98!}+\frac{1}{99!}+\frac{1}{100!}
$$

Question 145 (*****)
Show by detailed workings that

$$
\int_{0}^{\infty} \frac{x}{\mathrm{e}^{x}-1} d x=\frac{\pi^{2}}{6}
$$

Question 146 (${ }^{(* * * * *) ~}$
Consider the following convergent infinite series.

$$
\sum_{r=0}^{\infty} \frac{2^{r+4}}{(r+3) r!}
$$

Use appropriate techniques to show that the sum to infinity of the above series is $4\left(e^{2}-1\right)$

Question 147 (******)
A family of infinite geometric series S_{k}, has first term $\frac{k-1}{k!}$ and common ratio $\frac{1}{k}$, where $k=3,4,5,6, \ldots, 99,100$.

Find the value of

$$
\frac{10^{4}}{100!}+\sum_{k=3}^{100}\left[[(k-1)(k-2)-1] S_{k}\right]
$$

\square

(3) Werte the first fen trell of THIS Grikeat geouttric progetssion) (6) Next conaloge tIE summations with the sumeal Sik fuumd $\begin{aligned} & \sum_{k=3}^{100}\left[\delta_{k}[(k-1)(k-2)-1]\right] \\ = & \sum_{k=3}^{103}\left[\frac{(k-1)(k-2)-1}{(k-1)!}\right] \\ = & \sum_{k=3}^{\infty}\left[\frac{\left(\frac{(k-1)(k-2)}{(k-1)!}-\frac{1}{(k-1)!}\right]}{=}=\sum_{k=3}^{\infty 0}\left[\frac{1}{(k-3)!}-\frac{1}{(k-1)!}\right]\right. \end{aligned}$

\square
(9) wertur tht som explactiy in A" TABle farf" $\sum_{k=3}^{100}\left[\frac{1}{(k-3)!}-\frac{1}{(k-1)!}\right]=$
$\frac{2!}{4!} \frac{4!}{b!}$
$\frac{1}{96!}-\frac{1}{98!}$
$\frac{1}{9!!}-\frac{1}{99!}$
$=\frac{1}{0!}+\frac{1}{1!}-\left(\frac{1}{98!}+\frac{1}{99!}\right)$
$=2-\left(\frac{99+1}{99!}\right)$
$=2-\left(\frac{99 t}{99!}\right)$
$=2-\frac{100}{99!}$
(6) Finfuy tobing the trem at the front of the summation
$\frac{10^{6}}{100!}+\sum_{k=3}^{100}\left[[(k-1)(k-2)-1] S_{k}\right]=\frac{10^{4}}{100!}+2-\frac{100}{99!}$
$=\frac{100^{2}}{100!}+2-\frac{100}{99!}$
$=\frac{100}{99!}+2-\frac{100}{99!}$
$=2$

Created by T. Madas

Question 148 (*****)
A discrete random variable X is geometrically distributed with parameter p. Show that ...
a) $\ldots \mathrm{E}(X)=\frac{1}{p}$.
b) $\ldots \mathrm{E}(X)=\frac{1-p}{p^{2}}$.

Created by T. Madas

Question 149 (*****)
Find the sum to infinity of the following convergent series

$$
1+\frac{2^{3}}{2!}+\frac{3^{3}}{3!}+\frac{4^{3}}{4!}+\frac{5^{3}}{5!}+\frac{6^{3}}{6!}+\ldots
$$

\square

Created by T. Madas

Question 150 (*****)
The function f is defined as

$$
f(n, x) \equiv \sum_{r=0}^{n}\binom{n}{r} r x^{r}(1-x)^{n-r}
$$

where $n \in \mathbb{N}, x \in \mathbb{R}, 0<x<1$.

Show that $f(n, x) \equiv n x$.

Created by T. Madas

Question 151 (*****)
The binomial probability distribution $X \sim \mathrm{~B}(n, p)$ satisfies

$$
P(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where $r=0,1,2,3, \ldots, n$ and $0<p<1$.

The expectation of X is defined as

$$
\mathrm{E}(X) \equiv \sum_{r=0}^{n}[r \mathrm{P}(X=r)]
$$

$$
\mathrm{E}(X)=n p
$$

Show that

Created by T. Madas

Question 152 (*****)
The function f is defined in terms of the real constants, a, b and c, by

$$
f(x)=\left(a+b x+c x^{2}\right)(1-x)^{-3}, \quad x \in \mathbb{R}, \quad|x|<1 .
$$

a) Show that

$$
f(x)=a+(3 a+b) x+\frac{1}{2} \sum_{n=2}^{\infty}\left[[a(n+1)(n+2)+b n(n+1)+c n(n-1)] x^{n}\right]
$$

b) Use the expression of part (a) to deduce the value of

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
$$

\square , 6

Created by T. Madas

Question 153 (*****)
The function f is defined by

$$
f(x) \equiv \sum_{n=1}^{\infty}\left[n x^{n}\right], \quad x \in \mathbb{R}, \quad|x|<1
$$

Use the above function to find the sum to infinity of the following series.
\square
\square

$$
\frac{1}{3}+\frac{2}{9}+\frac{3}{27}+\frac{4}{81}+\frac{5}{243}+\ldots
$$

$)_{-}$
$<$ $+$

Question 154 (*****)
Find the value of $x \in \mathbb{R}$ in the following equation

$$
\sum_{n=0}^{\infty}\left[\frac{n(n-1)(n-2)(n-3)}{2^{n+k}}\right]=3 .
$$

\square

$$
k=4
$$

Question 155 (*****)
Evaluate the following expression

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[\frac{1}{2^{m+n}}\right]
$$

Detailed workings must be shown.
\square

$$
\begin{aligned}
& \text { Wett TtAE Gownele Progetsion's Expuctiv } \\
& \cdots=2 \sum_{n=0}^{\infty} \frac{1}{2^{n}}-2 \sum_{n=0}^{\infty} \frac{1}{2^{2 n+1}} \\
& =2\left[1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots\right]-2\left[\frac{1}{2}+\frac{1}{8}+\frac{1}{22}+\frac{1}{2 B}+\cdots\right]
\end{aligned}
$$

USING $S_{D}=\frac{a}{a r-i N}$ GAat CAAE $=2 \times \frac{1}{1-\frac{1}{2}}-2 \times \frac{\frac{1}{2}}{1-\frac{1}{4}}$ $=2 \times \frac{1}{2}-2 \times \frac{2}{11}$ $=2 \times 2-\frac{4}{3}$ $=4-\frac{4}{3}$ $\stackrel{-2}{4} /$

Created by T. Madas

Question 156 (*****)
It is given that for $x \in \mathbb{R},-\frac{1}{k}<x<\frac{1}{k}, k>0$,

$$
f(x, k) \equiv \frac{k+1}{(1-x)(1+k x)} .
$$

Given further that

$$
f(x, k) \equiv \sum_{r=0}^{\infty}\left[a_{r} x^{r}\right]
$$

where a_{r} are functions of k, show that

$$
\sum_{r=0}^{\infty}\left[a_{r}^{2} x^{r}\right]=\frac{(1-k x)(1+k)^{2}}{(1-x)(1+k x)\left(1-k^{2} x\right)}
$$

You may assume that $\sum_{r=0}^{\infty}\left[a_{r}^{2} x^{r}\right]$ converges.

Question 157 (******)
It is given that

- $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots=\frac{1}{4} \pi$
- $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\ldots=\frac{1}{12} \pi^{2}$
- $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots=\ln 2$

Assuming the following integral converges find its exact value.

$$
\int_{0}^{1}(\ln x)(\arctan x) d x
$$

[you may assume that integration and summation commute]

$$
\frac{1}{48}\left[\pi^{2}-12 \pi+24 \ln 2\right]
$$

Created by T. Madas

Question 158 (*****)
Given that p and q are positive, shown that the natural logarithm of their arithmetic mean exceeds the arithmetic mean of their natural logarithms by

$$
\sum_{r=1}^{\infty}\left[\frac{2}{2 r-1}\left(\frac{\sqrt{p}-\sqrt{q}}{\sqrt{p}+\sqrt{q}}\right)^{4 r-2}\right]
$$

You may find the series expansion of $\operatorname{artanh}\left(x^{2}\right)$ useful in this question.
\square proof

Question 159
Show that

$$
1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\frac{x^{12}}{12!}+\frac{x^{15}}{15!}+\ldots=\frac{1}{3}\left[\mathrm{e}^{x}+2 \mathrm{e}^{\frac{1}{2} x} \cos \left(\frac{1}{2} \sqrt{3} x\right)\right]
$$

You may find useful in this question the fact that if $z=\mathrm{e}^{\mathrm{i} \frac{2}{3} \pi}$ then $1+z+z^{2}=0$.
\square , proof
\square - tiderar op ol orbanan
$e^{x}+e^{x e^{i \frac{2 \pi}{2}}}+e^{x e^{i+2}}=3+3\left(\frac{x^{3}}{2!}\right)+3\left(\frac{x^{6}}{6!}\right)+3\left(\frac{x^{9}}{9!}\right)+$ $e^{x}+e^{x\left(\cos \left(\frac{\pi}{3}+i \sin \frac{2 \pi}{3}\right)\right.}+e^{x\left(\cos 2 \pi-i \sin \frac{2 \pi}{2}\right)}=3 \sum_{r=0}^{\infty} \frac{x^{35}}{(35)!}$ $e^{x}+e^{x\left(-\frac{1}{2}+\frac{T_{2}^{2}}{2} i\right)}+e^{x(-t-\sqrt{3} i)}-3 \sum_{i=0}^{\infty}\left(x^{25}\right)!$ $e^{x}+e^{x} e^{2}+e^{2} e=3 \sum_{k=0}^{\frac{1}{3} D!}$
$3 \sum_{T=0}^{v} \frac{x^{2 n}}{30!!}=e^{x}+e^{-\frac{1}{2} t}\left[e^{x \frac{3}{2} i}+e^{-x \frac{T}{2}!}\right]=e^{x}+e^{-\frac{1}{2} x}\left[2 \cosh \left(1 \frac{\sqrt{3} x}{2} x\right)\right]$ $3 \sum_{1=0}^{\infty} \frac{x^{3 x}}{36!}=c^{x}+2 e^{-t x} a \dot{a}\left(\frac{1}{2} x\right)$ $\left.\sum_{i=0}^{\infty} \frac{3^{3 r}}{(3)!}=\frac{1}{3}\left[e^{x}+1 e^{-\frac{1}{2} \cos \left(\frac{12}{2} x\right.}\right)\right]$

