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RESIDUES and APPLICATIONS 

in SERIES SUMMATION 
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The Residue Theorem can often be used to sum various types of series. 

The following results are valid under some restrictions on ( )f z , which more often 

than not are satisfied when the series converges. 
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Question 1  
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 By integrating ( )f z  over a suitable contour Γ , show that 
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Question 2  
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Question 3  
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Question 4  
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 By integrating ( )f z  over a suitable contour Γ , show that 

2

2

1

1

6
r

r

π

∞

=

= . 

proof  

  

 

 

 

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 5  
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 By integrating ( )f z  over a suitable contour Γ , show that 
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Question 6  
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Question 7  
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Question 8  
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Question 9  
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Question 10  
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Question 11  
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Question 12  
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 By integrating ( )f z  over a suitable contour Γ , show that 
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Question 13  
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 By integrating ( )f z  over a suitable contour Γ , show that 

( )

( )

3

3

0

1

322 1

r

r
r

π

∞

=

−
=

+ . 

MM3Q , proof  

 


