Created by T. Madas
-) RESIDUES and APPLICATIONS in SERIES SUMMATION

The Residue Theorem can often be used to sum various types of series.

The following results are valid under some restrictions on $f(z)$, which more often than not are satisfied when the series converges.
$\sum_{r=-\infty}^{\infty} f(r)$
use $\oint_{\Gamma_{n}} f(z) \pi \cot \pi z d z$, where Γ_{n} is the square with vertices at $\left(n+\frac{1}{2}\right)(\pm 1 \pm \mathrm{i})$ $\sum_{r=-\infty}^{\infty}(-1)^{r} f(r)$
use $\oint_{\Gamma_{n}} f(z) \pi \operatorname{cosec} \pi z d z$, where Γ_{n} is the square with vertices at $\left(n+\frac{1}{2}\right)(\pm 1 \pm \mathrm{i})$

$\sum_{r=-\infty}^{\infty}(-1)^{r} f\left(\frac{2 r+1}{2}\right)$

Question 1

$$
f(z)=\frac{\pi \cot \pi z}{(a+z)^{2}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=-\infty}^{\infty} \frac{1}{(a+r)^{2}}=\pi^{2} \operatorname{cosec}^{2}(\pi a), a \notin \mathbb{Z}
$$

\square

 $\left|\int_{\Gamma}^{+n N} f(x) d z\right|=$
$\frac{\left.\pi M \times 8 \cdot n+\frac{1}{2}\right)}{\left(n+\frac{1}{2}\right)^{2}-2 a\left(n+\frac{1}{2}\right)-a^{2}}=O\left(\frac{1}{4}\right) \rightarrow 0$ \& $n \rightarrow \infty$

Created by T. Madas

Question 2

$$
f(z)=\frac{\pi \cot \pi z}{(3 z+1)(2 z+1)}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that
$\sum_{r=-\infty}^{\infty} \frac{1}{(3 r+1)(2 r+1)}=\frac{\pi}{\sqrt{3}}$

Question 3

$$
f(z)=\frac{\pi \cot \pi z}{4 z^{2}-1}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=1}^{\infty} \frac{1}{4 r^{2}-1}=\frac{1}{2}
$$

Question 4

$$
f(z)=\frac{\pi \cot \pi z}{z^{2}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ ，show that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}}=\frac{\pi^{2}}{6}
$$

 （e）AUSO $\quad z=1 \geqslant n+\frac{1}{2} \quad \forall \quad \angle \in \Gamma_{4}$ 亩手市度

， ，

\qquad

Question 5

$$
f(z)=\frac{\pi \cot \pi z}{z^{4}}, z \in \mathbb{C} .
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{4}}=\frac{\pi^{4}}{90}
$$

\square

Question 6

$$
f(z)=\frac{\pi \cot \pi z}{\left(z^{2}+1\right)^{2}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=1}^{\infty} \frac{1}{\left(r^{2}+1\right)^{2}}=\frac{1}{4} \pi^{2} \operatorname{cosech}^{2} \pi+\frac{1}{4} \pi \operatorname{coth} \pi-\frac{1}{2}
$$

\square

$=\lim _{z \rightarrow i}\left[\frac{-\pi^{2}(z+i) \operatorname{cosec} c^{2} \pi z-2 \pi \omega t \pi z}{(2+i)^{3}}\right]=\frac{-\pi^{2}(2 i) \operatorname{cosec}^{2}(i \pi r)-2 \pi \omega t(i \pi)}{(2 i)^{3}}$ - $\operatorname{cosec}^{2} i \theta=\frac{1}{\sin ^{2} i \theta} \equiv \frac{1}{(\sin \theta)^{2}}=\frac{1}{-\sin 2 \theta}=-\cos \cos ^{2} \theta$ - coti $\theta=\frac{\cos i \theta}{\sin 1 \theta}=\frac{\cos \theta}{i \sin \theta}=-i \operatorname{coth} \theta$
$=\frac{-\pi^{2}(2 i)(-\operatorname{cosecth} \pi)-2 \pi(-\operatorname{ioth} \pi)}{-8 i}=\frac{2 \pi^{2} \operatorname{cosech} \pi}{-8 t}+2 i \operatorname{coth} \pi$ $-\frac{1}{4} \pi^{2} \operatorname{cosech}^{2} \pi-\frac{1}{4} \pi r a t h \pi$

- $\lim _{z \rightarrow-i}\left[\frac{d}{b z}\left[(z+i)^{2} f(z z)\right]\right]=\ldots$ Anost unartchl
 $=\frac{2 \pi^{2} i\left(-\operatorname{cosech}^{2} \pi\right)-2 \pi(i \operatorname{tath} \pi)}{8 i}=\frac{-2 \pi^{2} i \operatorname{coseck} k^{2} \pi-2 \pi i a t h \pi}{8 i}$ $=-\frac{1}{4} \pi^{2} \operatorname{cosec} / \pi-\frac{1}{4} \pi u t h \pi$ S. THE RESIDUE THEARM NOW $\int_{\Gamma} f(z) d z=2 \pi i<\sum\left(\right.$ Resionts MSice $\left(C_{4}\right)$

Tix are
Tixwm
coud
=

\square

Question 7

$$
f(z)=\frac{\pi \operatorname{cosec} \pi z}{(a+z)^{2}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=-\infty}^{\infty} \frac{(-1)^{r}}{(a+r)^{2}}=\pi^{2} \operatorname{cosec}(\pi a) \cot (\pi a), a \notin \mathbb{Z}
$$

Question 8

$$
f(z)=\frac{\pi \operatorname{cosec} \pi z}{(2 z+1)(3 z+1)}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=-\infty}^{\infty} \frac{(-1)^{r}}{(2 r+1)(3 r+1)}=\frac{\pi}{3}(2 \sqrt{3}-3)
$$

\square

 usina sindomed inceugutits $\leqslant \int_{T} \frac{|\pi \operatorname{cosec}+1 z|}{\left|\sigma^{2} z^{2}-\left|s^{2} z-1\right|\right.}|d z|$

 $\frac{8 \pi H(n+1)}{6(5+1)^{2}-5(\sqrt{3}+2)-1}$ $=O\left(\frac{1}{n}\right) \rightarrow 0 \quad \begin{gathered}\square, n \rightarrow \infty\end{gathered}$

 $0= \pm \times i \times\left[\pi-\frac{2 \pi}{15}+\sum_{m=-\infty}^{\infty}\left(\frac{-1}{m}(3 \pi)^{m}(2 \pi i)\right]\right.$ $\sum_{n=-\infty}^{\infty} \frac{\left(\frac{(-1)}{} 3 m+1\right)(m+1)}{}=\frac{2 \pi}{3}-\pi=\frac{2 \sqrt{3}}{3} \pi-\pi=\frac{\pi}{3}[2 \sqrt{3}-3]$ $\therefore \sum_{r=-\infty}^{\infty} \frac{s_{1}(1+1)(x+1)}{(3)}=\frac{\pi}{3}[2 \sqrt{3}-3]$
$=\frac{2}{\mid e^{i \pi[t 5(x+z)+i y]}-e^{-1 \pi[\pm[(x+z)+i y]}}$
 $\left.\begin{array}{lccccc}\begin{array}{lcccc} \\ e^{i \pi\left(n+\frac{1}{2}\right)} & -i & 1 & -i & i \\ e^{-i \pi(n+t)} & i & -i & i & -i\end{array} & \end{array}\right\}$

Question 9

$$
f(z)=\frac{\pi \operatorname{cosec} \pi z}{4 z^{2}-1}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

Question 10

$$
f(z)=\frac{\pi \operatorname{cosec} \pi z}{z^{2}}, z \in \mathbb{C} .
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r}}{r^{2}}=-\frac{1}{12} \pi^{2}
$$

 - Also coovitrictuy $\left|\left|\left|\left\lvert\, z n+\frac{1}{2}\right.\right.\right.\right.$
$\frac{1}{|2|} \leqslant \frac{1}{n+\frac{1}{2}}$

(a) π \qquad
\qquad

 $\Rightarrow \sum_{m=-\infty} \frac{(-1)^{4}}{m^{2}}+\sum_{m=1} \frac{(-1)^{m}}{m^{2}}=-\frac{\pi^{2}}{6} \quad k \quad\left(\cdots+\frac{1}{6}-\frac{1}{9}+\frac{1}{4}-1\right)+\left(-1+\frac{1}{4}-\frac{1}{4}+\frac{1}{16}+\cdots\right)$ $\Rightarrow \sum_{n=1}^{m} \frac{m^{2} m^{2}}{m^{2}}=-\frac{\pi^{2}}{6}$ OR $\sum^{\infty}(-1)^{2}=-T^{2}$

Question 11

$$
f(z)=\frac{\pi \operatorname{cosec} \pi z}{z^{4}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r^{4}}=\frac{7 \pi^{4}}{720}
$$

 (2) 4no cometuanul $|z| \geqslant n+\frac{1}{2}, * z \in \Gamma_{4}$ $\frac{1}{|a|} \leqslant \frac{1}{n+\frac{1}{2}}$ \qquad
\qquad $\left.\left|\int_{\Gamma_{4}} \frac{T \operatorname{cosectz}}{z^{4}} d z\right| \leq \int_{\Gamma_{4}} \frac{|\pi \omega \operatorname{sen} \pi|}{|z 4|}|d z| \leqslant \int_{\Gamma .} \frac{\pi M}{(n+z) 4}|d z|=\frac{\pi M}{(h+t) 4+}\left|\int_{\pi}\right| d z \right\rvert\,$ - ${ }^{\left(n+\frac{1}{2}\right) t} \times\left(\frac{1}{h^{3}}\right) \rightarrow 0$ ts $n \rightarrow \infty$ atanc in intert As $n \rightarrow \infty$
 $\Rightarrow \sum_{m=0} \frac{(-1)^{m_{1}}}{m^{4}}+\sum_{m=1}^{\infty} \frac{(-1)^{2}}{m^{4}}=-\frac{7 T^{4}}{300}$ $\Rightarrow 2 \sum_{m=1} \frac{\left(-2^{4}\right.}{m^{4} 4}=-\frac{2 \pi^{4}}{360}$ ($\sin \left(x+\frac{1}{m_{1} 4} 4\right.$ (x0s) $\Rightarrow \sum_{m=1}^{\infty} \frac{(1)^{m}}{m^{4}}=-\frac{7 \pi^{4}}{720}$ $\rightarrow \sum_{m=1}^{\infty} \frac{(G)^{n+1}}{m^{4}}=\frac{7 \pi^{4}}{720}$

Created by T. Madas

Question 12

$$
f(z)=\frac{\pi \tan \pi z}{z^{4}}, z \in \mathbb{C} .
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=0}^{\infty} \frac{1}{(2 r+1)^{4}}=\frac{\pi^{4}}{96}
$$

Created by T. Madas

Question 13

$$
f(z)=\frac{\pi \sec \pi z}{z^{3}}, z \in \mathbb{C} .
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(2 r+1)^{3}}=\frac{\pi^{3}}{32}
$$

