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Question 1 

( )
2

sin z
f z

z
≡ , z ∈� . 

Find the residue of the pole of ( )f z . 

MM3-A , ( )0 1res z = =  

 

 

Question 2 

( ) 5ez
f z z

−≡ , z ∈� . 

Find the residue of the pole of ( )f z . 

MM3-F , ( ) 10
24

res z = =  
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Question 3 

( )
2

2

2 1

2 1

z z
f z

z z

+ +
≡

− +
, z ∈� . 

Find the residue of the pole of ( )f z . 

MM3-B , ( )1 4res z = =  

 

 

Question 4 

( )
2

2 1

2

z
f z

z z

+
≡

− −
, z ∈� . 

Find the residue of each of the two poles of ( )f z . 

MM3-E , ( ) 52
3

res z = = , ( ) 11
3

res z = − =  
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Question 5 

( )
22 5 2

z
f z

z z
≡

− +
, z ∈� . 

Find the residue of each of the two poles of ( )f z . 

MM3-J , ( )1 1
2 6

res z = = − , ( ) 22
3

res z = =  
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Question 6 

( )
i

3

1 e z

f z
z

−
≡ , z ∈� . 

a) Find the first four terms in the Laurent expansion of  ( )f z  and hence state the 

residue of the pole of ( )f z . 

b) Determine the residue of the pole of ( )f z  by an alternative method 

MM3-K , ( ) 10
2

res z = =  
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Question 7 

( )
2

3 2

4

2 2

z
f z

z z z

+
≡

+ +
, z ∈� . 

Find the residue of each of the three poles of ( )f z . 

( )0 2res z = = , ( ) ( )11 i 1 3i
2

res z = − + = − + , ( ) ( )11 i 1 3i
2

res z = − − = − +  

 

 

Question 8 

( )
4

tan 3z
f z

z
≡ , z ∈� . 

Find the residue of the pole of ( )f z . 

MM3L , ( )0 9res z = =  

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 9 

( )
( )( )

2

22

2

4 1

z z
f z

z z

−
≡

+ +
, z ∈� . 

Find the residue of each of the three poles of ( )f z . 

( ) ( )12i 7 i
25

res z = = + , ( ) ( )12i 7 i
25

res z = − = − , ( ) 141
25

res z = − = −  

 

 

Question 10 

( )
1

e 1z
f z ≡

−
, z ∈� . 

Find the residue of the pole of ( )f z , at the origin. 

( )0 1res z = =  
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Question 11 

( )
( )

2
23 10i 3

z
f z

z z

≡

− −

, z ∈� . 

Find the residue of each of the two poles of ( )f z . 

( )
5

3i
256

res z = = , ( ) 51 i
3 256

res z = = −  
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Question 12 

( )
3

cot cothz z
f z

z
≡ , z ∈� . 

Find the residue of the pole of ( )f z  at 0z = . 

MM3-D , ( ) 70
45

res z = = −  
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Question 13 

( )
6

5 4 3

1

2 5 2

z
f z

z z z

+
≡

− +
, z ∈� . 

Find the residue of each of the three poles of ( )f z . 

( ) 651
2 24

res z = = − , ( )
65

2
24

res z = = , ( )
21

0
8

res z = =  
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Question 14 

( )
( ) ( )2

4

1 2i 6 i 1 2i
f z

z z
≡

− + − +
, z ∈� . 

Find the residue of each of the two poles of ( )f z . 

( )2 i ires z = − = , ( )( )1 2 i i
5

res z = − = −  
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Question 15 

( )
4

e

1

kzz
f z

z
≡

+
, z ∈� , k ∈� , 0k > . 

Show that the sum of the residues of the four poles of ( )f z , is 

sin sinh
2 2

k k   
   
   

 . 

MM3-C , proof  
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Question 1 

By integrating a suitable complex function over an appropriate contour find 

2

0

1

4cos 5
d

π

θ
θ − . 

V , MM3-C , 
2

3

π
−  
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Question 2 

By integrating a suitable complex function over an appropriate contour find 

2

0

1

2 cos
d

π

θ
θ+ . 

MM3-J , 
2

3

π
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Question 3 

By integrating a suitable complex function over an appropriate contour find 

2
6 6

0

cos sin d

π

θ θ θ . 

MM3-A , 
5

512

π
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Question 4 

By integrating a suitable complex function over an appropriate contour find the exact 

value of 

2

0

1

5 4sin
d

π

θ
θ+ . 

MM3-N , 
2

3

π
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Question 5 

By integrating a suitable complex function over an appropriate contour find the exact 

value of 

2 2

0

sin

5 4cos

t
dt

t

π

− . 

4

π
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Question 6 

By integrating a suitable complex function over an appropriate contour find the exact 

value of 

( )

2

2
0

1

5 3sin
d

π

θ
θ− . 

5

32

π
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Question 7 

2

0

1

3 2cos sin
I dx

x x

π

=
− + . 

By integrating a suitable complex function over an appropriate contour find the exact 

value of I . 

π  
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Question 8 

2

0

cos3

5 4cos

x
I dx

x

π

=
− . 

By integrating a suitable complex function over an appropriate contour find the exact 

value of I . 

12

π
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Jordan’s Lemma 

Suppose that ( ) 0f z →  uniformly, as z → ∞ , for 0 arg z π≤ ≤ . 

If 0α > , then ( ) ie

R

z
f z dz

α

γ
 0→  as R → ∞ , where ( ) ieR R

θγ θ = , for 0 θ π≤ ≤ . 

Proof 

Given 0ε >  we may always pick 0R , so that if 0R R> , ( )f z ε< , Rz γ∀ ∈ . 

Thus  

( )ie

R

z
f z dz

α

γ
 =

( ) ( )i cos isin i i

0

e e ie
R

f R d

π
α θ θ θ θ θ

+ =

( )i cos sin i i

0

e e e ieR R
f R d

π
α θ α θ θ θ θ− ≤ ( )i cos sin i i

0

e e e ieR R
f R d

π
α θ α θ θ θ θ− =  

( )i cos sin i i

0

e e e i eR R
f R d

π
α θ α θ θ θ θ− = ( )sin i

0

e eR
f R d

π
α θ θ θ− ≤

sin

0

e R
R d

π
α θε θ− =

2 sin

0

2 e R
R d

π

α θε θ−         since sin is even about  
2

π
θ

 
  

  

Now by Jordan’s Inequality 

2 sin
1

θ

π θ
≤ ≤ , if 0

2

π
θ< ≤  

2
sin

θ
θ

π
≥  

2
sine eπθ θ− ≤ , if 0

2

π
θ< ≤  

Hence 

2 sin

0

2 e R
R d

π

α θε θ− ≤
22

0

2 e
R

R dπ

π

α θ
ε θ

−

 =
2 2

0

2 e
2

R
R

R
π

π

α θπ
ε

α

− 
−  

=

2 0

2

e
R

π
π

α θεπ

α

− 
  

= 1 e Rαεπ

α

− −
 

→0 since as R → ∞ , 0ε → �  
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Question 1   

By integrating a suitable complex function over an appropriate contour find 

2

cos

1

x
dx

x

∞

−∞ + . 

V , MM3-B , 
e

π
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Question 2 

By integrating a suitable complex function over an appropriate contour find 

2
0

1

1
dx

x

∞

+ . 

2

π
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Question 3   

By integrating a suitable complex function over an appropriate contour find 

( )
2

2

0

1

4

dx

x

∞

+ . 

MM3-D , 
32

π
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Question 4  

By integrating a suitable complex function over an appropriate contour find 

4
0

1

1
dx

x

∞

+ . 

2

4

π
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Question 5    

By integrating a suitable complex function over an appropriate contour find 

( )( )
2

2 2

1

4 1

dx

x x

∞

−∞
+ + . 

9

π
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Question 6   

By integrating a suitable complex function over an appropriate contour find 

( )
2

2

1

4 5

dx

x x

∞

−∞
+ + . 

2

π
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Question 7   

Given that 0k >  find the exact value of  

2

cos

2 5

x kx
dx

x x

∞

−∞ + +        and        
2

sin

2 5

x kx
dx

x x

∞

−∞ + + . 

MM3-G , ( )21 e 2sin cos
2

k k kπ − − , ( )21 e sin 2cos
2

k k kπ − +  
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Question 8    

By integrating a suitable complex function over an appropriate contour find 

a) … 
2 2

0

cosax
dx

x b

∞

+ , 0a > . 

b) … 
2 2

0

cosax
dx

x b

∞

+ , 0a < . 

 

e
, 0

2

ab

a
b

π −

> , 
e

, 0
2

ab

b

π
<  
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Question 9  

By integrating a suitable complex function over an appropriate contour find 

2 2
0

sinx ax
dx

x b

∞

+ , 0a > . 

1 e
2

abπ −  
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Question 10   

By integrating a suitable complex function over an appropriate contour find 

( )

( )

2

2
2

0

1 cos

1

x x
dx

x

α
∞

−

+ , 0α > . 

1 e
2

απα −  
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Question 11   

By integrating a suitable complex function over an appropriate contour find 

( )
2

2 2

0

cosax
dx

x b

∞

+ , 0a > . 

( )
3

e 1

4

ab
ab

b

π − +
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Question 12   

By integrating a suitable complex function over an appropriate contour find 

6
0

cos

1

x
dx

x

∞

+ . 

3 3
1 e cos 3 sin

6e 2 2

π      
+ +               
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Question 13   

By integrating a suitable complex function over an appropriate contour find an exact 

simplified value for  

2

1
dx

ax bx c

∞

−∞ + + , 

where a , b  and c  are real constants such that 0a >  and 2 4 0b ac− < . 

V , MM3S , 
2

2

4ac b

π

−
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Question 14   

( )2

2

0

ln 1

1

x
I dx

x

∞

+
=

+ . 

By integrating  
( )
2

ln i

z 1

z +

+
  over a semicircular contour find the exact value of  I . 

ln 2I π=  
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Question 1   

By integrating a suitable complex function over an appropriate contour show that 

0

sin

2

x
dx

x

π
∞

= . 

V , MM3R , proof  
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Question 2   

By integrating a suitable complex function over an appropriate contour show that 

( )
( )22 2

0

sin
1 e

2

ax
dx

ax x a

π
∞

−= −
+ . 

V , MM3V , proof  
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Question 3   

By integrating a suitable complex function over an appropriate contour show that 

2
0

1 cos

2

x
dx

x

π
∞

−
= . 

MM3L , proof  
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Question 4  

4

0

ln

1

x
dx

x

∞

+ . 

a) Find the value of the above improper integral, by integrating 

( )
4

log

1

z
f z

z
=

+
, z ∈� , 

over a semicircular contour with a branch cut starting at the origin and 

oriented in some arbitrary direction in the third or fourth quadrant. 

b) State the value of  

4

0

1

1
dx

x

∞

+ . 

2 2

16

π
− , 

2

4

π
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Question 5  

( )
2

2

0

ln

1

x
dx

x

∞

+ . 

Find the value of the above improper integral, by integrating 

( )
( )

2

2

log

1

z
f z

z
=

+
, z ∈� , 

over a semicircular contour with a branch cut starting at the origin and oriented in 

some arbitrary direction in the third or fourth quadrant. 

MM3-E , 
3

8

π
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Question 6  

( )
2

4

0

ln

1

x
dx

x

∞

+ . 

a) Find the value of the above improper integral, by integrating 

( )
( )

2

4

log

1

z
f z

z
=

+
, z ∈� , 

over a semicircular contour with a branch cut starting at the origin and 

oriented in some arbitrary direction in the third or fourth quadrant. 

4

0

1 2
You may assume without proof that 

41

dx

x

π
∞

=

+

 
 
    

b) State the value of  

4

0

ln

1

x
dx

x

∞

+ . 

33 2

64

π
, 

2 2

16

π
−  
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Question 1   

( )
2

log

1

z
f z

z
=

+
, z ∈� . 

 By integrating ( )f z  over a suitable contour Γ , show that 

2

0

1

21
dx

x

π
∞

=
+ . 

proof  
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Question 2   

By integrating a suitable complex function over an appropriate contour show that 

( )
1

0

cosec
1

p
x

dx p
x

π π

∞ −

=
+ , 0 1p< < . 

V , proof  
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Question 3  

By integrating a suitable complex function over an appropriate contour show that 

1

2

0

cosec
2 21

p
x p

dx
x

π π
∞

−
 

=  
+   , 0 2p< < . 

proof  

 

 

 

 

 

 

 

 

 

 

 

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 4  

( )
( )( )

log

1 2

z
f z

z z
=

+ +
, z ∈� . 

 By integrating ( )f z  over a suitable contour Γ , show that 

( )( )
0

1
ln 2

1 2
dx

x x

∞

=
+ + . 

proof  
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Question 5  

( )
( )( )

log z
f z

z a z b
=

+ +
, z ∈� , 

where a
+∈� , b +∈�  with b a> . 

 By integrating ( )f z  over a suitable contour Γ , show that 

( )( )
0

1 1
ln

b
dx

x a x b b a a

∞

 
=  

+ + −   . 

MM3-H , proof  
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Question 6  

By integrating a suitable complex function over an appropriate contour show that 

3

0
31

x
dx

x

π
∞

=
+ . 

proof  
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Question 7  

( )
2

2

0

ln

1

x
dx

x

∞

+ . 

An attempt is made to find the value of the above improper integral, by integrating 

( )
( )

2

2

ln

1

z
f z

z
=

+
, z ∈� , 

over the standard “keyhole” contour with a branch cut taken on the positive x  axis. 

a) Show that such attempt fails.  

b) Calculate the value of the two integrals that can be found during this attempt. 

2
0

1

21
dx

x

π
∞

=
+ , 

2
0

ln
0

1

x
dx

x

∞

=
+  
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Question 8  

Use a substitution followed by integration of a suitable complex function over an 

appropriate contour, to show that 

( ) ( )
1
2

0

1 1tan sec
2 2

x dx

π
α

π πα= ,  1 1α− < < . 

proof  
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Question 1  

Consider the contour Γ  located in the first quadrant, defined as the boundary of a 

quarter circular sector of radius R , with centre at the origin O . 

By integrating a suitable complex function over Γ  show that 

4
0

1 2

41
dx

x

π
∞

=
+ . 

MM3F , 
2

4

π
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Question 2   

By integrating a suitable complex function over a contour defined as the outline of a 

circular sector subtending an angle of  1
3

π  at the origin, find an exact value for  

6
0

1

1
dx

x

∞

+ . 

No credit will be given for integration over alternative contours. 

V , MM3T , 
3

π
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Question 3   

By integrating a suitable complex function over an appropriate contour find 

3
0

1

1
dx

x

∞

+ . 

2 3

9

π
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Question 4   

By integrating a suitable complex function over an appropriate contour show that 

( ) ( )2 2

0 0

cos sin
8

x dx x dx
π

∞ ∞

= =  . 

proof  
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Question 5   

By integrating a suitable complex function over an appropriate contour show that 

2 2
0

ln ln

2

x a
dx

aa x

π
∞

=
+ . 

proof  
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Question 6 

By integrating a suitable complex function over an appropriate contour show that 

sech x dx π

∞

−∞

= . 

proof  
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Question 7   

It is required to evaluate the integral 

2

0

e cosx
x dx

∞
− . 

a) Show that the above integral can be written as 

( )
2

1
2

1
4

i1 e e
2

x
dx

∞
− +−

−∞  

b) By integrating the complex function ( )
2

e z
f z

−= , over a rectangular contour 

with vertices at ( ),0R− , ( ),0R , ( )1, i
2

R  and ( )1, i
2

R− , show that 

2 1
4

0

1e cos e
2

x
x dx π

∞
−− = . 

You may assume without proof that 

2

0

1e
2

x
dx π

∞
− = . 

proof  
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Question 8   

( )
1

f z
z

≡ , z ∈� ,  0z ≠ . 

By considering the integral of ( )f z  over two different suitably parameterized closed 

paths, show that 

2

2 2
0

1

39cos 4sin
d

π
π

θ
θ θ

=
+ . 

MM3I , proof  
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Question 9 

The complex number  cos i sinz c a bθ θ= + + , 0 2θ π≤ < , traces a closed contour C , 

where a , b  and c  are positive real numbers with a c> . 

By considering   

1

C

dz
z� , 

show that 

( ) ( )

2

2 2

0

cos 2

cos sin

a c
d

bc a b

π
θ π

θ
θ θ

+
=

+ + . 

proof  

 

 


