RESIDUES

and

INTEGRATION

CALCULATIONS OF RESIDUES

Question 1

$$
f(z) \equiv \frac{\sin z}{z^{2}}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$.

Question 2

$$
f(z) \equiv \mathrm{e}^{z} z^{-5}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$.
(20)

$$
4, \quad \square, \operatorname{res}(z=0)=\frac{1}{24}
$$

Created by T. Madas

Question 3

$$
f(z) \equiv \frac{z^{2}+2 z+1}{z^{2}-2 z+1}, z \in \mathbb{C}
$$

3
Find the residue of the pole of $f(z)$.
\square , $\operatorname{res}(z=1)=4$

Question 4

$$
f(z) \equiv \frac{2 z+1}{z^{2}-z-2}, z \in \mathbb{C} .
$$

FACDREANG THE Function
$f(z)=\frac{z^{2}+2 z+1}{z^{2}-2 z+1}=\frac{(z+1)^{2}}{(z-1)^{2}}$
$\underline{\underline{f(z)} \text { HAS A DOUBLE POLE AT } z=1}$
$\operatorname{Lim}_{z \rightarrow 1}\left[\frac{d}{d z}\left[(z-1)^{2} f(z)\right]\right]=\operatorname{Lim}_{z \rightarrow 1}\left[\frac{d}{d z}\left[(z-1)^{2} \frac{(z+1)^{2}}{(z-1)^{2}}\right]\right]$

- $\operatorname{Lin}_{2 \rightarrow 2}\left[\frac{d}{c}(\operatorname{crin})^{2}\right]$
$\left.=\lim _{\Delta x \rightarrow 1}[8 x+1)\right]$
$=1$

Created by T. Madas

Question 5

$$
f(z) \equiv \frac{z}{2 z^{2}-5 z+2}, \quad z \in \mathbb{C}
$$

Find the residue of each of the two poles of $f(z)$.

Question 6

$$
f(z) \equiv \frac{1-\mathrm{e}^{\mathrm{i} z}}{z^{3}}, z \in \mathbb{C}
$$

a) Find the first four terms in the Laurent expansion of $f(z)$ and hence state the residue of the pole of $f(z)$.
b) Determine the residue of the pole of $f(z)$ by an alternative method

$$
\text { No, } \operatorname{res}(z=0)=\frac{1}{2}
$$

$$
f(z) \equiv \frac{z^{2}+4}{z^{3}+2 z^{2}+2 z}, z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

$$
\operatorname{res}(z=0)=2, \quad \operatorname{res}(z=-1+\mathrm{i})=\frac{1}{2}(-1+3 \mathrm{i}), \quad \operatorname{res}(z=-1-\mathrm{i})=-\frac{1}{2}(1+3 \mathrm{i})
$$

Question 8

$$
f(z) \equiv \frac{\tan 3 z}{z^{4}}, z \in \mathbb{C}
$$

\square

Fieroy $\begin{aligned} z^{3}+2 z^{2}+2 z & =z\left(z^{2}+2 z+2\right) \\ & =z\left[(z+1)^{2}-1+2\right)\end{aligned}$ $=z\left[(z+1)^{2}+1\right]$ - $\lim _{z \rightarrow 0}[z f(z)]=\lim _{z \rightarrow \infty}\left[z \frac{z^{2}+4}{z\left(z^{2}+z+z\right)}\right]=\frac{4}{2}=2$ - $\lim _{z \rightarrow+1+i}[$ (3 $\left.4-1) \frac{z^{2}+4}{z(3+-1(2)+i)]}\right]=\lim _{z \rightarrow-1+i}\left[\frac{z^{2}+4}{z(z+1+i)}\right]$ $=\frac{(-1+i)^{2}+t}{(-1+i)(-1+i+1+i)}=\frac{1-2 i-1+4}{2 i(-1+i)}=\frac{k-2 i}{-2-2 i}=\frac{2-i}{-1-i}$ $=\frac{(2-i)(-1+i)}{(-1-i)(-i+i)}=\frac{-2+2 i+i+1}{2}=\frac{-i+3 i}{2}=\frac{1}{2}(-1+3 i)$ - $\lim _{z \rightarrow-1-i}\left[(z+z+i) \frac{z^{2}+4}{z(z+1-1)(z+1+i)}\right]=\lim _{z \rightarrow-1-1}\left[\frac{z^{2}+4}{z(z+1-1)}\right]$ $=\frac{(-1-1)^{2}+4}{(-1-i)(-1-i+1-i)}=\frac{(1+i)^{2}+4}{-(1+i)(-2 i)}=\frac{(+i+2)^{2}+4}{2 i(1+i)}=\frac{1+2 i-1+4}{-2+2 i}=\frac{4+2 i}{-2+2 i}$ $=\frac{-+1}{-i+i}=\frac{(2+i)(-1-1)}{(-1+i)(-1-i)}=\frac{-2-2 i-i+1}{2}=\frac{-1-3 i}{2}=-\frac{1}{2}(1+3 i)$

Find the residue of the pole of $f(z)$.

Question 9

$$
f(z) \equiv \frac{z^{2}-2 z}{\left(z^{2}+4\right)(z+1)^{2}}, z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

$$
\operatorname{res}(z=2 \mathrm{i})=\frac{1}{25}(7+\mathrm{i}), \operatorname{res}(z=-2 \mathrm{i})=\frac{1}{25}(7-\mathrm{i}), \operatorname{res}(z=-1)=-\frac{14}{25}
$$

Question 10
$\left\{f(z)=\frac{z^{2}-2 z}{(z+1)^{2}(z+4)}=\frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)} \quad \begin{array}{ll}\text { thas supt fotts AT } z= \pm 2 i \\ \text { Hts +Dousit folt A } z=-1\end{array}\right.$ - manoct at $2 i$
$\lim _{z \rightarrow 2 i}\left[(z-2 i) \frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)}\right]=\lim _{z \rightarrow 2 i}\left[\frac{z^{2}-2 z}{(z+2 i)(z+1)^{2}}\right]=\frac{-4-4 i}{4 i(1+2 i)^{2}}$ $=\frac{-1-i}{\mid\left(1+\left.2 i\right|^{2}\right.}=\frac{(-1-i)(1-2 i)^{2}}{i \times 5 \times 5}=\frac{-(1+i)(1-4 i-4)}{25 i}=\frac{-(1+i)(-3-i i)}{25 i}$ $=\frac{(1+i)(3+4 i)}{25 i}=\frac{3+4 i+3 i-4}{25 i}=\frac{-1+7 i}{75 i}=\frac{-i-7}{-25}=\frac{7+i}{25}$

- Resiove 符 -2
$\lim _{2 \rightarrow-4}\left[(z+2 i) \frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)}\right]=\lim _{b \rightarrow-2 i}\left[\frac{z^{2}-2 z}{(914)^{2}(z-4 i)}\right]=\frac{-4+4 i}{(1-2)^{2}(-4 i)}$ $=\frac{1-i}{\left((1-2 i)^{2}\right.}=\frac{(1-i)(1+2 i)^{2}}{t \times 5 \times 5}=\frac{(1-i)(1+4 i-4)}{25 i}=\frac{(1-i)(-3+4 i)}{25 i}=\frac{-3+4 i+3 i+4}{25 i}$ $=\frac{1+7 i}{25 i}-\frac{i-7}{-25}+\frac{7 i}{25}$ Caslout ar - -1

Find the residue of the pole of $f(z)$, at the origin.

Created by T. Madas

Created by T. Madas

Question 11

$$
f(z) \equiv \frac{z}{\left(3 z^{2}-10 \mathrm{i} z-3\right)^{2}}, z \in \mathbb{C}
$$

Find the residue of each of the two poles of $f(z)$.

$$
\operatorname{res}(z=3 \mathrm{i})=\frac{5}{256}, \quad \operatorname{res}\left(z=\frac{1}{3} \mathrm{i}\right)=-\frac{5}{256}
$$

Created by T. Madas

Question 12

$$
f(z) \equiv \frac{\cot z \operatorname{coth} z}{z^{3}}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$ at $z=0$.
\square $\operatorname{res}(z=0)=-\frac{7}{45}$

IB Best to findo THf zefiout By Expfinsias for $f(z)=\frac{\operatorname{cotzooth} z}{z^{3}}$ $f(z)=\frac{1}{z^{3}} \times \frac{\cos z}{\sin z} \times \frac{\cosh z}{\sin z}$
$=\frac{1}{z^{3}} \times \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}+o\left(z^{4}\right)}{z-\frac{z^{3}}{5}+\frac{z^{5}}{5}+o\left(z^{3}\right)} \times \frac{1+\frac{z^{2}}{2}+\frac{z^{4}}{24}+o\left(z^{(}\right)}{z+\frac{z^{3}}{3}+z^{3}}+0(z)$ $=\frac{1}{z^{5}} \times \frac{1-\frac{z^{2}}{2}+\frac{z^{9}}{5}+0\left(z^{4}\right)}{1-\frac{z^{2}}{6}+\frac{z^{2}}{7^{2}}+O\left(z^{6}\right)} \times \frac{1+\frac{z^{2}}{2}+\frac{z^{4}}{4}+O(z)}{1+\frac{z^{2}}{4}+\frac{z^{4}}{4}+0(z)}$ $\frac{1}{25}>1+\frac{z^{2}}{2}+\frac{z^{4}}{4}-z^{2}-\frac{z^{4}}{4}+z^{4}+o\left(z^{c}\right)$
 $=\frac{1}{z^{5}} \times \frac{1-\frac{1}{6} z^{4}+O\left(z^{6}\right)}{1-\frac{1}{90} z^{4}+O\left(z^{6}\right)}$

Pewette in oence to complete the expanstal
$=\frac{1}{z^{5}}\left[1-\frac{1}{6} z^{4}+o\left(z^{6}\right)\right]\left[1-\frac{1}{9_{0}} z^{4}+o\left(z^{6}\right)\right]^{-1}$
$=\frac{1}{75}\left[1-\frac{1}{6} z^{4}+o\left(z^{c}\right)\right]\left[1+\frac{1}{30} z^{4}+o\left(z^{4}\right)\right]$
$=\frac{1}{z^{8}}\left[1+\frac{1}{80^{2}} z^{2}-\frac{1}{6} z^{4}-\frac{1}{5 p^{2}} z^{8}+o\left(z^{0}\right)\right]$
$=\frac{1}{z^{2}}\left[1-\frac{7}{18 z^{4}}+o\left(z^{8}\right)\right]$
$=\frac{1}{2^{5}}-\frac{7}{4 \sqrt{2}}+o\left(z^{2}\right)$

Created by T. Madas

Question 13

$$
f(z) \equiv \frac{z^{6}+1}{2 z^{5}-5 z^{4}+2 z^{3}}, z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

Question 14

$$
f(z)=\frac{4}{z^{2}(1-2 \mathrm{i})+6 z \mathrm{i}-(1+2 \mathrm{i})}, z \in \mathbb{C} .
$$

Find the residue of each of the two poles of $f(z)$.

$$
\operatorname{res}(z=2-\mathrm{i})=\mathrm{i}, \quad \operatorname{res}\left(z=\frac{1}{5}(2-\mathrm{i})\right)=-\mathrm{i}
$$

$\left\{f(z)=\frac{4}{z^{2}(1-2 i)+6 i z-\left(1+22^{i}\right)}\right.$
BY THE Qutidnatic. Formwer
$z=\frac{-6 i \pm \sqrt{\left(6 i i^{2}+4(i-2 i)(1+2 i)\right.}}{2(1-2 i)}=\frac{-6 i \pm \sqrt{36+4 \times 5}}{2(i-2 i)}=\frac{-6 i+\sqrt{-6 i}}{2(1-2 i)}$
$=\frac{-6 i \pm 4 i}{2(1-2 i)}=\frac{(-3 \pm 2) i}{1-2 i}=\left\langle\frac{-i}{-1-2 i}=\frac{i(1+2 i)}{\frac{-5 i}{1+4}}=\frac{1}{3}(2-i)\right.$
$f(z)$ his suple pous it $z=2-i$ a $\frac{1}{5}(2-i)$

- $\lim _{z \rightarrow 2-i}\left[(z-2+i) \times \frac{4}{z^{2}(1-2 i)+6 i z-(1+2 i)}\right]=\frac{0}{0}=\cdots B y L^{2}+\operatorname{tasp}(t a L \ldots$
$=\lim _{z \rightarrow 2-i}\left[\frac{4}{2 z(1-2 i)+6 i}\right]=\frac{4}{2(2-i)(1-2 i)+6 i}=\frac{2}{(2-i)(-2 i)+3 i}$
$=\frac{2}{2-4 i-i-2+3 i}=\frac{2}{-2 i}=-\frac{1}{i}=i$
$\left.\lim _{z \rightarrow \frac{1}{5}(z i)}\left[z-\frac{1}{5}(z-i)\right] \times \frac{4}{z^{2}(1-2 i)+5 i z-(1+2 i)}\right]=\frac{0}{0}=\ldots$ By L LossitaL
$=\lim _{z \rightarrow \frac{1}{5}(2-i)}\left[\frac{4}{2 z(1-2 i)+6 i}\right]=\frac{4}{2 \times \frac{1}{5}(2-i)(1-2 i)+6 i}=\frac{10}{(2-i)(1-2 i)+15 i}$ $=\frac{10}{2-4 i-i z x+15 i}=\frac{10}{10 i}=\frac{1}{i}=-i$

Question 15

$$
f(z) \equiv \frac{z \mathrm{e}^{k z}}{z^{4}+1}, z \in \mathbb{C}, k \in \mathbb{R}, k>0
$$

Show that the sum of the residues of the four poles of $f(z)$, is
\square , proof

UNIT CIRCLE

 CONTOURQuestion 1
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{2 \pi} \frac{1}{4 \cos \theta-5} d \theta
$$

$$
\mathrm{V}
$$

\square
\square
$-\frac{2 \pi}{3}$

2y The Resinut Thtarecm wa that $\int_{\Gamma} f(z) d z=2 \pi i \times \sum($ Residios $\operatorname{wsint} \Gamma)$ $\int_{\Gamma} \frac{-1}{(2 z-1)(z-2)} d z=2 \pi i \times \frac{1}{3} i$

Question 2
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos \theta} d \theta
$$

$=\frac{-2 i}{-2+\sqrt{3}+2+\sqrt{3}}=\frac{-2 i}{2 \sqrt{3}}=-\frac{i}{\sqrt{3}}$ BY THE RESIOUE THfORFM
$\int_{\gamma} f(z) d z=2 \pi i \times \sum($ (zesioves mulide γ)
$\int_{\gamma} \frac{-2 i}{z^{2}+4 z+1} d z=2 \pi i \times\left(\frac{-i}{\sqrt{3}}\right)$
$\int_{0}^{2 \pi} \frac{1}{2+\cos \theta} d \theta=\frac{2 \pi}{\sqrt{3}}$

Question 3
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{2 \pi} \cos ^{6} \theta \sin ^{6} \theta d \theta
$$

\square

$=\int_{0}^{2 \pi}(\cos \theta \sin \theta)^{6} d \theta=\int_{0}^{2 \pi}\left(\frac{1}{2} \sin 2 \theta\right)^{6} d \theta$
$=\frac{1}{64} \int_{0}^{2 \pi} \sin ^{6} 2 \theta d \theta=\frac{1}{64} \int_{0}^{2 \pi}\left[\frac{1}{2 i}\left(e^{\dot{a} \theta}-e^{2 \theta}\right)\right]^{6} d \theta$
$=\frac{1}{64}\left(\frac{1}{2 i}\right)^{6} \int_{0}^{2 \pi}\left[\left(e^{i \theta}\right)^{2}-\left(e^{-i \theta}\right)^{2}\right]^{6} d \theta$
$=\frac{1}{64} \times \frac{1}{-64} \int_{\Gamma}\left(z^{2}-\frac{1}{z^{2}}\right)^{6}\left(\frac{d z}{i z}\right) \triangleleft d^{2} \theta=\frac{d z}{i e^{3 \theta}}$
$=\frac{i}{6 \psi^{2}} \int_{\Gamma} \frac{1}{z}\left(z^{2}-\frac{1}{z^{2}}\right)^{6} d z$

- expand binomany
$=\frac{i}{2^{12}} \int_{\Gamma} \frac{1}{z^{2}}\left[z^{12}-6 z^{8}+15 z^{4}-20+\frac{15}{z^{4}}-\frac{6}{z^{8}}+\frac{1}{z^{12}}\right] d z$

Question 4
By integrating a suitable complex function over an appropriate contour find the exact value of

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \sin \theta} d \theta
$$

\square
\square
 Compur The feriout to Titt pas $\lim _{z \rightarrow-\frac{1}{2} i}\left[\left(z+\frac{1}{2} i\right) f(z)\right]=\lim _{z \rightarrow-\frac{1}{2} i}\left[\left(z+\frac{1}{2} i\right) \frac{1}{(2 z+i)(z+2 \pi)}\right]$ $\int_{0}^{2 \pi} \frac{1}{5+4 \sin \theta} d y$ $\left\{\begin{array}{l}z-e^{i \theta} \\ d z=i e^{i \theta} d \theta \\ d z=i z d \theta\end{array}\right.$
$=\int_{\Gamma} \frac{1}{5+4 \times \frac{1}{2}\left(z-\frac{1}{z}\right)} \frac{d z}{1 z}$
$=\oint_{\Gamma} \frac{d z}{\left[S+\frac{7}{+}\left(z-\frac{1}{z}\right)\right](j z)}=\oint_{\Gamma} \frac{d z}{5 i z+2 z\left(z-\frac{1}{z}\right)}$ $=\oint_{\Gamma} \frac{d z}{\operatorname{siz} 1 z z^{3}-2}=\oint_{\Gamma} \frac{1}{2 z^{2}+s t z-2} d z$ FACTRERE THE DSNOMINATOR OR WI THE CNADATIC Formara/ comptetina Tte spones

- "b-4ac" $=(5)^{2}-422 \times(-2)=-25+16=-9$
\qquad $z=\frac{-3 i+\sqrt{-y}}{2 \times 2}=\frac{-3 i+s i}{*}=\ll-\frac{1}{2} i$
 BY THE REHDNO THEORFM $\int_{0}^{2 T} \frac{1}{5+4 \cos \theta} d \theta=\oint_{i} \frac{1}{2 z^{2}+\operatorname{siz}-2} d z-2 \pi i x \sum(\operatorname{cotsocts} \operatorname{mosin} \Gamma)$ $\frac{2 \pi}{3}$ $=\lim _{z \rightarrow-\frac{1}{2} i}\left[(z) \frac{1}{2} i \frac{1}{2\left(z+\frac{1}{i} i(2+2 i)\right.}\right]$ $=\frac{1}{2\left(-\frac{1}{2} i+2 i\right)}=\frac{1}{3 i}$ $\therefore \int_{0}^{2 \pi} \frac{1}{5+4 \sin \theta} d \theta=2 \pi i \times \frac{1}{3 i}=\frac{2 \pi}{3}$

Question 5
By integrating a suitable complex function over an appropriate contour find the exact value of

Question 6
By integrating a suitable complex function over an appropriate contour find the exact value of

Created by T. Madas

Question 7

$$
I=\int_{0}^{2 \pi} \frac{1}{3-2 \cos x+\sin x} d x
$$

By integrating a suitable complex function over an appropriate contour find the exact value of I.

Created by T. Madas

Question 8

$$
I=\int_{0}^{2 \pi} \frac{\cos 3 x}{5-4 \cos x} d x
$$

By integrating a suitable complex function over an appropriate contour find the exact value of I.

SEMI CIRCLE

CONTOUR

Jordan's Lemma
Suppose that $f(z) \rightarrow 0$ uniformly, as $|z| \rightarrow \infty$, for $0 \leq \arg z \leq \pi$.
If $\alpha>0$, then $\int_{\gamma_{R}} f(z) \mathrm{e}^{\mathrm{i} \alpha z} d z \rightarrow 0$ as $R \rightarrow \infty$, where $\gamma_{R}(\theta)=R \mathrm{e}^{\mathrm{i} \theta}$, for $0 \leq \theta \leq \pi$.
Proof
Given $\varepsilon>0$ we may always pick R_{0}, so that if $R>R_{0},|f(z)|<\varepsilon, \forall z \in \gamma_{R}$.
Thus

$$
\left|\int_{\gamma_{R}} \mathrm{e}^{\mathrm{i} \alpha z} f(z) d z\right|=\left|\int_{0}^{\pi} \mathrm{e}^{\mathrm{i} \alpha R(\cos \theta+\mathrm{i} \sin \theta)} f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{ie}^{\mathrm{i} \theta} d \theta\right|=
$$

$$
\left|\int_{0}^{\pi} \mathrm{e}^{\mathrm{i} \alpha R \cos \theta} \mathrm{e}^{-\alpha R \sin \theta} f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{i}^{\mathrm{i} \theta} d \theta\right| \leq \int_{0}^{\pi}\left|\mathrm{e}^{\mathrm{i} \alpha R \cos \theta} \mathrm{e}^{-\alpha R \sin \theta} f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{i} \mathrm{e}^{\mathrm{i} \theta}\right| d \theta=
$$

$$
\int_{0}^{\pi}\left|\mathrm{e}^{\mathrm{i} \alpha R \cos \theta}\left\|\mathrm{e}^{-\alpha R \sin \theta}\right\|\right| f\left(R \mathrm{e}^{\mathrm{i} \theta}\right)| | \mathrm{i}| | \mathrm{e}^{\mathrm{i} \theta}\left|d \theta=\int_{0}^{\pi} \mathrm{e}^{-\alpha R \sin \theta}\right| f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \mid d \theta \leq
$$

$\varepsilon R \int_{0}^{\pi} \mathrm{e}^{-\alpha R \sin \theta} d \theta=2 \varepsilon R \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{-\alpha R \sin \theta} d \theta \quad\left[\right.$ since $\sin \theta$ is even about $\left.\frac{\pi}{2}\right]$
Now by Jordan's Inequality

$$
\begin{aligned}
& \frac{2}{\pi} \leq \frac{\sin \theta}{\theta} \leq 1, \text { if } 0<\theta \leq \frac{\pi}{2} \\
& \sin \theta \geq \frac{2 \theta}{\pi} \Rightarrow \mathrm{e}^{-\sin \theta} \leq \mathrm{e}^{\frac{2}{\pi} \theta} \text {, if } 0<\theta \leq \frac{\pi}{2} \\
& \text { Hence } \\
& \left.2 \varepsilon R \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{-\alpha R \sin \theta} d \theta \leq 2 \varepsilon R\right]_{0}^{\frac{\pi}{2}} \mathrm{e}^{-\frac{2}{\pi} \alpha R \theta} d \theta=2 \varepsilon R\left[-\frac{\pi}{2 \alpha R} \mathrm{e}^{-\frac{2}{\pi} \alpha R \theta}\right]_{0}^{\frac{\pi}{2}}= \\
& \frac{\varepsilon \pi}{\alpha}\left[\mathrm{e}^{\left.-\frac{2}{\pi} \alpha R \theta\right]_{\frac{\pi}{2}}^{0}=\frac{\varepsilon \pi}{\alpha}\left[1-\mathrm{e}^{-\alpha R}\right] \rightarrow 0 \text { since as } R \rightarrow \infty, \varepsilon \rightarrow 0 \square}\right.
\end{aligned}
$$

Question 1
By integrating a suitable complex function over an appropriate contour find

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x
$$

Question 2
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} d x
$$

Question 3
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+4\right)^{2}} d x
$$

\square

NaxT consectr the conrabstan thonk $\gamma, A \in \infty$ $\left|\int_{0}^{\pi} \frac{i R e^{i \theta}}{\left(R^{2} e^{2 \theta}++\left.4\right|^{2}\right.} d \theta\right|=\left|\int_{0}^{\pi} \frac{i R_{0}^{i \theta} e^{4} e^{4 \theta}+8 R^{2} e^{2 \theta}+16}{d \theta}\right|$
$\leqslant \int_{0}^{\pi}\left|\frac{i R e^{i \theta}}{R^{2} e^{4 i \theta \theta}+8 e^{2} e^{2 \theta}+16}\right| d \theta=\int_{0}^{\pi} \frac{\left|i R e^{i \theta}\right|}{\left|2 e^{2} e^{i \theta}+8 R^{2} e^{2 \theta \theta}+16\right|} d \theta$

$=\int_{0}^{\pi} \frac{R}{| | R^{2} \times 1\left|-\left|8 R^{2} \times 1\right|-16\right|} d \theta=\int_{0}^{\pi} \frac{R}{\left|R^{4} 4-8\right| R^{2}-16 \mid} d \theta$
$=\frac{R}{\left|R^{4}\right|-8\left|R^{2}-16\right|} \int_{0}^{\pi} 1 d \theta=\frac{\pi R}{\left|\left|R^{4}\right|-8\right| R^{2}|-6|}=O\left(\frac{1}{R^{2}}\right)$
catcof unvisith $A S R \rightarrow \infty$

$\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+4\right)^{2}} d x=\frac{\pi}{6}$
$2 \int_{0}^{\infty} \frac{1}{\left(x^{2}+4\right)^{2}} d x=\frac{\pi}{16}$ (vat interente
$\xrightarrow{\int_{0}^{\infty} \frac{1}{\left(x^{2}+4\right)^{2}} d x=\frac{\pi}{32}}$

Question 4
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x
$$

\square

Question 5
By integrating a suitable complex function over an appropriate contour find

Created by T. Madas

Question 6

By integrating a suitable complex function over an appropriate contour find

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+4 x+5\right)^{2}} d x
$$

Question 7
Given that $k>0$ find the exact value of

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x \cos k x}{x^{2}+2 x+5} d x \text { and } \int_{-\infty}^{\infty} \frac{x \sin k x}{x^{2}+2 x+5} d x \\
& \square, \frac{1}{2} \pi \mathrm{e}^{-2 k}(2 \sin k-\cos k), \frac{1}{2} \pi \mathrm{e}^{-2 k}(\sin k+2 \cos k)
\end{aligned}
$$

$f(z)$ thas suple pocts $A T-1 \pm 2 i$, sctonay THe ant $A T-1+2 i$ is
Waint Γ, so WE NGG its resiout
$\lim _{z \rightarrow-1+2 i}[(z+1-2 i)(z+z+2 i)(z+1+2 i)]=\frac{(-1+2 i) e^{i k(1+2 i)}}{\gg(2 i+y+2 i}$
$=\frac{1}{4 i}(-1+2 i) e^{-i k} \times e^{-2 k}=\frac{e^{-2 k}}{4 i}(-1+2 i)(\cos k-i \sin k)$

$\int_{T} f(z) d z=2 \pi i \times \sum$ (REtioutu wast Γ)
$\int_{-R}^{R} \frac{x e^{i k x}}{x^{2}+2 x+5} d e+\int_{\gamma_{k}^{(\theta)}} \frac{z e^{z^{2}+2 z+5}}{i k z} d z=2 \pi i x \frac{e^{-2 k}}{4 i}(-1+2 i)(\cos k-\sin k)$
$\int_{-R}^{R} \frac{x x^{i b x}}{x^{2}+2 x+5} d x+\int_{\left.\gamma_{R}(2)\right]} \frac{z^{2} e^{i k z}+2 z+5}{} d z=\frac{\pi}{2} e^{-x}(-1+2 i)(\cos x-i \sin k)$
 By Jordan's Lomua whiof sitites
\qquad
\qquad

Finsuy we Hot \& $\mathrm{H}, \mathrm{r} \rightarrow \infty$
$\int_{-\infty}^{\infty} \frac{x e^{i k}}{x^{2}+2 x+5} d x=\frac{\pi}{2} e^{2 k}(-1+2 i)(\cos k-i \sin k)$
$\int_{-\infty}^{\infty} \frac{x \cos k+i x \sin h x}{x^{2}+2 x+s} d x \frac{\pi}{2} e^{-x t}[(-\cos k+2 \sin k)+i(2 \cos k+\sin k)]$
Sterefings eract a minginaly
$\int_{-\infty}^{\infty} \frac{2 \operatorname{coskx}}{x^{2}+2 x+5} d x=\frac{\pi}{2} e^{-2 k}(2 s m k-\cos k)$
$\int_{-\infty}^{\infty} \frac{x \sin b x}{x^{2}+2 x+5} d x=\frac{\pi}{2} e^{-2 x}(\sin k+2 \cos k)$

Question 8
By integrating a suitable complex function over an appropriate contour find
a) $\ldots \int_{0}^{\infty} \frac{\cos a x}{x^{2}+b^{2}} d x, a>0$.

Created by T. Madas

Question 9
By integrating a suitable complex function over an appropriate contour find

Question 10
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{\left(1-x^{2}\right) \cos \alpha x}{\left(1+x^{2}\right)^{2}} d x, \alpha>0
$$

\qquad
\qquad
camuate IIS reesldue
$\lim _{z \rightarrow i} \frac{d}{d z}\left[(z-i)^{2} \frac{\left(1-z^{2}\right) e^{i \alpha z}}{(z-i)^{2}(z+i)^{2}}\right]=\lim _{z \rightarrow i} \frac{d}{d z}\left[\frac{\left(1-z^{2}\right)^{i \alpha z}}{(z+i)^{2}}\right]$
$=\operatorname{Lim}_{z \rightarrow i}\left[\frac{(z+i)^{2}\left[(-2 z) e^{i \alpha z}+i \alpha\left(1-z^{2}\right) e^{i \alpha z}\right]-\left(1-z^{2}\right) e^{i \alpha z} \times 2(z+i)}{(z+i)^{4}}\right]$
$=\lim _{z \rightarrow i}\left[\frac{\left.(z+i) x e^{i \alpha z}\left[i x\left(1-z^{2}\right)-2 z\right]-2\left(1-z^{2}\right) e^{i \alpha z}\right]}{(z+i)^{3}}\right]$
$=\frac{2 i e^{-\alpha}[2 x i-2 i]-2 \times 2 \times e^{-\alpha}}{(2 i)^{3}}=\frac{\left.e^{-\alpha}[4-4 x-4]\right]}{-8 i}=\frac{\alpha e^{-\alpha}}{2 i}$

- by The residue Thforkm
$\int_{\Gamma} f(z) d z=2 \pi i \times \sum($ Eesioust insiot $\Gamma)$
$\int_{-R} \frac{\left(1-x^{2}\right) e^{i \alpha x}}{\left(1+x^{2}\right)^{2}} d x+\int_{\gamma} \frac{\left(1-z^{2}\right) e^{i \alpha z}}{\left(1+z^{2}\right)^{2}} d z=2 \pi i \times \frac{\alpha e^{-\alpha}}{2 i}$

$$
\begin{aligned}
& \text { ZEno, As IT SATISGILS JoRDAN'S LAMMA } \\
& \text { - Thes wot Hthet } \\
& \int_{-\infty}^{\infty} \frac{\left(1-x^{2}\right) e^{i \alpha x}}{\left(1+x^{2}\right)^{2}} d x=\pi \alpha e^{-\alpha} \\
& \int_{-\infty}^{\infty} \frac{\left(1-x^{2}\right) \cos \alpha x}{\left(1+x^{2}\right)^{2}} d x+i \int_{-\infty}^{\infty} \frac{\left(1-x^{2}\right) \sin \alpha x}{\left(1+x^{2}\right)^{2}} d x=\pi \alpha e^{-\alpha} \\
& \text { END } \\
& \left.\int^{\infty}\left(1-x^{2}\right) \cos \alpha x\right) \\
& \int_{0}^{\infty} \frac{\left(1-x^{2}\right) \cos \alpha x}{\left(1+x^{2}\right)^{2}} d x=\frac{\pi}{2} \alpha e^{-\alpha}
\end{aligned}
$$

Question 11
By integrating a suitable complex function over an appropriate contour find

$$
\frac{\pi \mathrm{e}^{-a b}(a b+1)}{4 b^{3}}
$$

Question 12
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{\cos x}{1+x^{6}} d x
$$

$$
\left.\frac{\pi}{6 \mathrm{e}}\left[1+\sqrt{\mathrm{e}}\left[\cos \left(\frac{\sqrt{3}}{2}\right)+\sqrt{3} \sin \left(\frac{\sqrt{3}}{2}\right)\right]\right]\right]
$$

\square

Question 13
By integrating a suitable complex function over an appropriate contour find an exact simplified value for

$$
\int_{-\infty}^{\infty} \frac{1}{a x^{2}+b x+c} d x
$$

where a, b and c are real constants such that $a>0$ and $b^{2}-4 a c<0$.

$$
\mathrm{V}
$$

\square

$$
, \frac{2 \pi}{\sqrt{4 a c-b^{2}}}
$$

 S4aca) B(tow

 The KPP Hocf s. insiof Γ
$R=[f ; z]=\lim _{z \rightarrow 3}[(z-z) t(x)]=\lim _{z \rightarrow 2}\left[\frac{z-z_{0}}{a z_{2}+(z+c}\right]$

 $-\frac{1}{-b+\sqrt{-\Delta i}+b}-\frac{1}{\sqrt{-\Delta} i}$

Question 14

$$
I=\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x
$$

By integrating $\frac{\ln (z+\mathrm{i})}{\mathrm{z}^{2}+1}$ over a semicircular contour find the exact value of I.

$$
I=\pi \ln 2
$$

\square

$\lim _{z \rightarrow i}\left[\left(z-i \frac{\log (z+i)}{(z-i)(z+i)]}-\frac{\log 2 i}{2 i}=\frac{1}{2 i}\left[\ln 2+i \frac{\pi}{2}\right]\right]\right.$ - A THe RHimas thenegr
$\int_{\Gamma} f(z) d z=$ 2mi $\times \sum C$ Resious inside Γ $\int_{\Gamma} \frac{\ln (2+i)}{z^{2}+1} d z=2 \pi i\left[\frac{1}{2 i}\left[\ln 2+i \frac{\pi}{2}\right]\right]$ - Firscy cansibich tut conebitian of $f(z)$ outr rit $A R C \quad \gamma_{R}(\theta)$ \& $R \rightarrow \infty$
\square

SEMI CIRCLE

 CONTOUR
WITH HOLE

Question 1
By integrating a suitable complex function over an appropriate contour show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

V \square proof

$\Rightarrow \int_{\Gamma} f(z) d z=0$
$\Rightarrow\left\{\int_{-R}^{-1}+\int_{r_{1}}^{t}+\int_{\varepsilon}^{2}+\int_{r_{2}}\right\} f(x)=0$
$\Rightarrow \int_{-R}^{-\varepsilon} \frac{e^{i x}}{2} d x+\int_{\pi}^{0} \frac{e^{i \varepsilon e^{i \theta}}}{\operatorname{sen}}\left(\sqrt{i \theta} e^{i \sigma} d \theta\right)+\int_{\varepsilon}^{2} \frac{e^{i 2}}{x} d x+\int_{\int_{2}} \frac{e^{i z}}{2} d z=0$
 $\Rightarrow \int_{-\infty}^{-t} \frac{e^{x}}{x} d x+i \int_{\pi}^{0} e^{i \varepsilon e^{j \theta}} d \theta+\int_{\varepsilon}^{\infty} \frac{-\dot{x} x}{2} x+0=0$

Question 2
By integrating a suitable complex function over an appropriate contour show that

Question 3
By integrating a suitable complex function over an appropriate contour show that

$$
\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x=\frac{\pi}{2}
$$

\square

Created by T. Madas

Question 4

$$
\int_{0}^{\infty} \frac{\ln x}{1+x^{4}} d x
$$

a) Find the value of the above improper integral, by integrating

$$
f(z)=\frac{\log z}{1+z^{4}}, z \in \mathbb{C},
$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.
b) State the value of

$$
-\frac{\pi^{2} \sqrt{2}}{16}, \frac{\pi \sqrt{2}}{4}
$$

$=\int_{0}^{\pi} \frac{R(\ln R+\theta)}{R^{2}-1} d \theta=\frac{R}{R^{2}-1} \int_{0}^{\pi} h R+\theta d \theta=\frac{R}{R^{2}+1}\left[\theta \ln R+\frac{\left.b t^{2}\right]^{2}}{\pi}=\frac{R \pi(4 R}{R^{4}-1}+\frac{R \pi^{2}}{2(R+1)} \rightarrow 0 \leftrightarrow R \rightarrow \infty\right.$
 $\left|\int_{\gamma_{2} f(z) d z}\right|=\left|\int_{\pi}^{0} \frac{\log \left(\varepsilon e^{i \theta}\right)}{\varepsilon^{i} e^{i \theta}+1}\left[i \varepsilon e^{i \theta} d \theta\right]\right|=\left|-\int_{0}^{\pi} \frac{[\ln \varepsilon]+i \theta]\left[i \varepsilon^{i \theta}\right]}{\varepsilon^{i \theta} e^{i \theta \theta}+1} d \theta\right| \leq \int_{0}^{\pi} \frac{|\ln \varepsilon+i \theta|\left|i c e^{i \theta}\right|}{\left|\varepsilon^{4} e^{4 i \theta}+1\right|} d \theta$

 $\int_{0}^{\infty} \frac{\ln x+i \pi}{1+x \|} d x+\int_{0}^{\infty} \frac{\ln x}{1+x^{4}} d x=-\frac{\pi^{2} \sqrt{2}}{8}+i \frac{\pi^{2} \sqrt{2}}{4}$

 Created by T. Madas

Question 5

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

Find the value of the above improper integral, by integrating

$$
f(z)=\frac{(\log z)^{2}}{1+z^{2}}, z \in \mathbb{C}
$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.

Created by T. Madas

Question 6

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{4}} d x
$$

a) Find the value of the above improper integral, by integrating

$$
f(z)=\frac{(\log z)^{2}}{1+z^{4}}, z \in \mathbb{C}
$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.

$$
\left[\text { You may assume without proof that } \int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi \sqrt{2}}{4}\right]
$$

b) State the value of
$\int_{0}^{\infty} \frac{\ln x}{1+x^{4}} d x$.

$$
\frac{3 \pi^{3} \sqrt{2}}{64},-\frac{\pi^{2} \sqrt{2}}{16}
$$

Created by T. Madas

KEYHOLE CONTOUR

(Branch Cuts)

Created by T. Madas

Question 1

$$
f(z)=\frac{\log z}{1+z^{2}}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}
$$

Question 2
By integrating a suitable complex function over an appropriate contour show that

$$
\int_{0}^{\infty} \frac{x^{p-1}}{1+x} d x=\pi \operatorname{cosec}(p \pi), 0<p<1
$$

Question 3
By integrating a suitable complex function over an appropriate contour show that
\square

$\leqslant \int_{0}^{2 \pi}\left\|\frac{i \varepsilon^{\gamma}}{1+\varepsilon^{\ell / \theta}}\right\| d \theta=\int_{0}^{2 \pi} \frac{\varepsilon^{\Gamma}}{\left(1+\varepsilon^{2} e^{2 i \theta} \mid\right.} d \theta$ $\leqslant \int_{0}^{2 \pi} \frac{\varepsilon^{p}}{\|n\|-\left\|\varepsilon^{2}\right\|} d \theta=\frac{\varepsilon^{p}}{1-\varepsilon^{2}} \int_{0}^{2 \pi} 1 d \theta=\frac{2 \pi \varepsilon^{p}}{1-\varepsilon^{2}}$ $\rightarrow 0$ ts $\varepsilon \rightarrow 0$ $\underset{\substack{\text { CRNOANAFR } \rightarrow 12 \\ \text { CNOMLCABL } \rightarrow 0}}{ }$ (NCMEATA $\rightarrow 0$ Thos As $\mathrm{x} \rightarrow \infty, \varepsilon \rightarrow 0$	$\begin{aligned} & \Rightarrow\left[1-e^{2 \pi i(p-1)}\right] \int_{0}^{\infty} \frac{x^{r-1}}{1+x^{2}} d x=-2 \pi i e^{i \eta(p-1)} \sin \left[\frac{\pi r}{2}-\frac{\pi}{2}\right] \\ & \rightarrow \int_{0}^{m} \frac{x^{r-1}}{1+x^{2}} d x=\frac{2 \pi i e^{i n(p-1)} \sin \left(\frac{\pi}{2}-\frac{\pi p}{2}\right)}{1-e^{2 \pi i(p-1)}} \\ & \Rightarrow \int_{0}^{\infty} \frac{x^{p-1}}{1+x^{2}} d x=\frac{-\eta i e^{i \pi(\rho-1)}}{1-e^{\operatorname{cri}\left(\frac{\operatorname{cin}}{2}(p-1)\right.}} \end{aligned}$ TiDe fictife

Created by T. Madas

Question 4

$$
f(z)=\frac{\log z}{(z+1)(z+2)}, z \in \mathbb{C}
$$

By integrating $f(z)$ over a suitable contour Γ, show that

Question 5

$$
f(z)=\frac{\log z}{(z+a)(z+b)}, z \in \mathbb{C}
$$

where $a \in \mathbb{R}^{+}, b \in \mathbb{R}^{+}$with $b>a$.

By integrating $f(z)$ over a suitable contour Γ, show that

$$
\int_{0}^{\infty} \frac{1}{(x+a)(x+b)} d x=\frac{1}{b-a} \ln \left(\frac{b}{a}\right)
$$

\qquad

- $\lim _{z \rightarrow a}\left[(3+a) \frac{\ln z}{(3+a)(z+b)}\right]=\frac{\ln (a)}{-a+b}=\frac{\ln a+i \pi}{b-a}$ - $\lim _{z \rightarrow-b}\left[(z+6) \frac{\ln z}{(z+a)(z+b)}\right]=\frac{\ln (-b)}{-b+a}=\frac{\ln b+i \pi}{a-b}$

Question 6
By integrating a suitable complex function over an appropriate contour show that

Created by T. Madas

Question 7

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

An attempt is made to find the value of the above improper integral, by integrating

$$
f(z)=\frac{(\ln z)^{2}}{1+z^{2}}, z \in \mathbb{C}
$$

over the standard "keyhole" contour with a branch cut taken on the positive x axis.
a) Show that such attempt fails.
b) Calculate the value of the two integrals that can be found during this attempt.

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}, \int_{0}^{\infty} \frac{\ln x}{1+x^{2}} d x=0
$$

Question 8
Use a substitution followed by integration of a suitable complex function over an appropriate contour, to show that

$$
\int_{0}^{\frac{1}{2} \pi}(\tan x)^{\alpha} d x=\frac{1}{2} \pi \sec \left(\frac{1}{2} \pi \alpha\right),-1<\alpha<1
$$

proof

SPECIAL

CONTOURS

Question 1
Consider the contour Γ located in the first quadrant, defined as the boundary of a quarter circular sector of radius R, with centre at the origin O.

By integrating a suitable complex function over Γ show that

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi \sqrt{2}}{4}
$$

2 \square $\frac{\pi \sqrt{2}}{4}$

Question 2
By integrating a suitable complex function over a contour defined as the outline of a circular sector subtending an angle of $\frac{1}{3} \pi$ at the origin, find an exact value for

$$
\int_{0}^{\infty} \frac{1}{1+x^{6}} d x
$$

No credit will be given for integration over alternative contours.
\square , $\frac{\pi}{3}$
\square

Question 3
By integrating a suitable complex function over an appropriate contour find

$$
\int_{0}^{\infty} \frac{1}{1+x^{3}} d x
$$

Question 4
By integrating a suitable complex function over an appropriate contour show that

Question 5
By integrating a suitable complex function over an appropriate contour show that

$$
\int_{0}^{\infty} \frac{\ln x}{a^{2}+x^{2}} d x=\frac{\pi \ln a}{2 a}
$$

$f(z)=\frac{\log z}{\alpha^{2} z^{2}}+4$ 4s 4 setinat Ponk at $z=0$ kerible cinture wilt A sumplat at fronk- CANcell ore, so we wile ony find $\int_{0}^{\infty} \frac{1}{0^{2}+x^{2}} d x$ in toy Muletion. So consiser. $\int_{0} f(z a) d z$ ntert in sout AKBitrelly Dietetions - $f(x)$ uns surfe pocss 45 कai \& owly the one $4 T$ ai \& insidef 1^{7} CAlWNGTE THE RYSNOE: $\begin{aligned} & \operatorname{Lim}_{z \rightarrow a i}[f(z)(z-a i)]=\operatorname{Lim}_{z}\left[\frac{\log z}{(a-a i)(z+a i)}(z-a i)\right] \\ = & \frac{\log (a i)}{2 a i}=\frac{\ln \|a\|+\operatorname{lita} \mid(a i)}{2 a i}=\frac{\operatorname{lo} \mu+i \frac{\pi}{2}}{2 a i} \end{aligned}$	Sy THE PENDCK THERTM $\begin{aligned} & \left.\int_{\Gamma} f(z) d z=2 \pi i \times \sum \text { (Restous iosic } \Gamma\right) \\ & \left\{\int_{\varepsilon}^{6}+\int_{\gamma_{1}}+\int_{-2}^{c}+\int_{y_{2}}\right\} f(z) d z=2 \pi i \times \frac{\ln a+i \frac{\pi}{2}}{2 a i} \end{aligned}$ hert the comabston or $\lambda,(\theta)=R r^{i \theta}+\mathrm{D} \rightarrow \mathrm{m}$ $\begin{aligned} L H z & =2 e^{i \theta} \quad 0 \leqslant \theta \leqslant \pi \\ d z & \\| e^{i \theta} \\ \left\|\int_{\gamma_{1}} f(x) d z\right\| & =\left\|\int_{0}^{\pi} \frac{\log \left(R e^{i \theta}\right)}{a^{2}+R^{2} e^{2 i \theta}}\left[i R e^{i \theta} d \theta\right)\right\| \\ & =\left\|\int_{0}^{\pi} \frac{[\ln \|R\|+i \theta]\left[i R e^{i \theta}\right]}{a^{2}+R^{2} e^{2 i \theta}} d \theta\right\| \\ & \leqslant \int_{0}^{\pi} \frac{\left.\|\ln R+i \theta\| \mid i R e^{i \theta}\right)}{\mid a^{2}+R^{2} e^{2 i \theta}} d \theta \end{aligned}$ [new ors Nowlentor THe Therrvalt nifyultuli $\|w+z\| \leq\|w\|+\|z\|$ on Dinomintur

$\begin{aligned} = & \frac{\pi R \ln R}{R^{2}-a^{2}}+\frac{R}{R^{2}-a^{2}} \times \frac{1}{2} \pi^{2}=O\left(\frac{\ln R}{R}\right)+O\left(\frac{1}{R}\right) \\ & \rightarrow 0 \text { \& } R \rightarrow \infty \end{aligned}$ Wokt THt conve\|pitican of $\gamma_{2}(\theta)=\varepsilon e^{i \theta}$, , $\varepsilon \rightarrow 0$ $\begin{aligned} \left\|\int_{\gamma_{2}} f(z) d z\right\| & \left.=\left\|\int_{\pi}^{\pi} \frac{\log \left(\varepsilon e^{i \theta} \mid\right.}{a^{2}+\varepsilon^{2} e^{i \theta}}\left(i \varepsilon e^{i \theta} d \theta\right)\left\{\begin{array}{l} z=\varepsilon e^{i \theta} \\ \\ \end{array}\right\}\right\|-\int_{0}^{\pi} \frac{\left[\ln (t+i \theta]\left(i \varepsilon e^{i \theta}\right)\right.}{a^{2}+\varepsilon^{2} e^{i \theta}} d \theta \right\rvert\, \\ & \leq \int_{0}^{\pi} \frac{\|\ln \varepsilon+i \theta\|\left(i \varepsilon e^{i \theta} \mid\right.}{\left\|a^{2}+\varepsilon^{2} e^{2 i \theta}\right\|} d \theta \end{aligned}$ THF TWo ingequithis is Tafe Geefor boonce) $\begin{aligned} & \leqslant \int_{0}^{\pi} \frac{[\|\varphi \varepsilon+\|i \theta\|] \varepsilon}{\left\|a^{2}-\|-\| \varepsilon^{2} e^{2 i \theta}\right.} d \theta=\int_{0}^{\pi}(\ln \varepsilon+\theta) \varepsilon d \theta \\ & =\frac{\varepsilon \ln \varepsilon}{a^{2}-\varepsilon^{2}} \int_{0}^{\pi}\left\|d \theta+\frac{\varepsilon}{a^{2}-\varepsilon^{2}}\right\|=\int_{0}^{\pi} \theta d \theta \\ & =\frac{\pi \varepsilon \ln \varepsilon}{a^{2}-\varepsilon^{2}}+\frac{c}{a^{2}-\varepsilon^{2}} \times \frac{1}{2} \pi^{2} \rightarrow 0 \quad A S \varepsilon \rightarrow 0 \end{aligned}$ SNice The Dewounatios $\rightarrow a^{2}$ $\mid M L \rightarrow-\infty$ Steong Numitaiol $\rightarrow 0$ sinct it Jux Simpted ε	

Question 6
By integrating a suitable complex function over an appropriate contour show that

$$
\int_{-\infty}^{\infty} \operatorname{sech} x d x=\pi
$$

Question 7
It is required to evaluate the integral

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos x d x
$$

a) Show that the above integral can be written as

$$
\frac{1}{2} \mathrm{e}^{-\frac{1}{4}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(x+\frac{1}{2}\right)^{2}} d x
$$

b) By integrating the complex function $f(z)=\mathrm{e}^{-z^{2}}$, over a rectangular contour with vertices at $(-R, 0),(R, 0),\left(R, \frac{1}{2} \mathrm{i}\right)$ and $\left(-R, \frac{1}{2} \mathrm{i}\right)$, show that

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos x d x=\frac{1}{2} \mathrm{e}^{-\frac{1}{4}} \sqrt{\pi}
$$

Created by T. Madas

Question 8

$$
f(z) \equiv \frac{1}{z}, z \in \mathbb{C}, \quad z \neq 0
$$

By considering the integral of $f(z)$ over two different suitably parameterized closed paths, show that

$$
\int_{0}^{2 \pi} \frac{1}{9 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=\frac{\pi}{3}
$$

\square , proof

ORAE AT THE ORGIN OR PARAMETRIZE AS $z=e^{i \theta}, d z=i e^{i \theta}, \theta$ मिOM D कि था $\oint^{\frac{1}{7} d z=\int^{2 \pi} \frac{1}{e^{1 \theta}}\left(i e^{1 \theta}\right)=\int_{0}^{2 \pi} i d \theta=2 \pi i}$ $\oint_{\Gamma} \frac{1}{z} d z=\oint_{\Gamma} \frac{1}{x+i y}(d x+i d y)=\oint \frac{x-i y}{x^{2}+y^{2}}(b x+i d y)=2 \pi i$ - $x=3 \cos \theta$ - $d x=-3 \sin \theta d \theta$ - $y=2 \sin \theta$ $-d y=2 \cos \theta d \theta$ - θ rans from 0 to 2π

$$
\begin{aligned}
& \Rightarrow \int_{\theta=0}^{2 \pi} \frac{-2 \sin \theta(-3 \sin \theta d \theta)+3 \cos \theta(2 \cos \theta d \theta)}{9 \cos ^{2} \theta+4 \sin \theta}=2 \pi \\
& \Rightarrow \int_{0}^{2 \pi} \frac{6 \sin ^{2} \theta+6 \cos \theta}{9 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=2 \pi \\
& \Rightarrow \int_{0}^{2 \pi} \frac{6\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{9 \cos ^{2} \theta+4 \operatorname{cin}^{2} \theta} d \theta=2 \pi \\
& \Rightarrow \int \frac{6}{9 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=2 \pi \\
& \therefore \int_{0}^{2 \pi} \frac{1}{9 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=\frac{\pi}{3}
\end{aligned}
$$

Question 9
The complex number $z=c+a \cos \theta+\mathrm{i} b \sin \theta, 0 \leq \theta<2 \pi$, traces a closed contour C, where a, b and c are positive real numbers with $a>c$.

By considering
show that

$$
\int_{0}^{2 \pi} \frac{a+c \cos \theta}{(c+a \cos \theta)^{2}+(b \sin \theta)^{2}} d \theta=\frac{2 \pi}{b}
$$

