# PRODUCT OPERATOR 

Question 1
The product operator $\prod$, is defined as

Created by T. Madas

Question 2
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Simplify, showing a clear method
$\square$


Created by T. Madas

Question 3
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Simplify, showing a clear method

Question 4
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Use a clear method to show that

$$
\prod_{m=1}^{3} \prod_{n=1}^{4}[\sqrt{m n}]=k^{3} \sqrt{6}
$$

where $k$ is a positive integer to be found.

Created by T. Madas

Question 5
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Given that $k \in \mathbb{N}$, use a detailed method to find the value of

Question 6
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Evaluate, showing a clear method
$\square$ , 2

Created by T. Madas

Question 7
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Use a clear method to determine the value of $k$ given that
$\square$

$$
\prod_{m=1}^{4} \prod_{n=1}^{3}[k m n]=4 \times 96^{7}
$$

$$
k=4
$$



Question 8
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Simplify, showing a clear method

$$
\square, \frac{2^{n}(n!)^{2}}{(2 n+1)!}
$$

GONNEATNK. A FEW THMS AND wok for DATTRENS
$\prod\left(\frac{r}{2 r+1}\right)=\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \cdots \frac{n-2}{2 n-3} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n+1}$
$=\frac{n!}{3 \times 5 \times 7 \times 9 \times \cdots(2 n-3)(2 n-1)(2 n+1)}$
GenATt MORE FACDORALS At fowows
$=\frac{n^{1} \times 2 \times 4 \times 6 \times \cdots \times(2 n-4)(2 n-2)(2 n)}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times \cdots \times(2 n-4)(2 n-3)(n-1)(2 n-1) 2 n(2 n+1)}$
$=\frac{n!\times 2^{n} \times[1 \times 2 \times 3 \times \cdots(n-2)(n-1) n]}{(2 n+1)!}$
$=\frac{n!\times 2^{n} \times n!}{(2 n+1)!}$
$=\frac{2^{n}(n!)^{2}}{(2 n+1)!}$
$\frac{2(2 n+1)!}{(2)}$

Created by T. Madas

Question 9
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Evaluate, showing a clear method
$\square$
$\square$ , 2
$\square$
$=\lim _{k \rightarrow \infty}\left[\frac{x^{2}-1}{2^{2}-1}\right]$
$=\lim _{x \rightarrow \infty}\left[\frac{\frac{2^{2}}{2 x}-\frac{1}{2^{2}}}{\frac{x^{2}}{2 t^{n}}}\right]$
$=\lim _{\infty}\left[\frac{2-\frac{1}{2^{20}}}{1^{-1}}\right]$

$$
=2
$$

Question 10
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Given that e is Euler's number, use a detailed method to find the exact value of

Question 11
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Simplify, showing a clear method, the following expression.

$$
\prod_{r=1}^{n}\left[\frac{2 r}{2 r+1}\right]
$$

Give the final answer as a single simplified fraction.

Question 12
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Evaluate, showing a clear method

Question 13
The product operator $\prod$, is defined as

Question 14
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

By showing a detailed method prove that

$$
\prod_{k=1}^{n}\left[\frac{2 k-1}{2 k+2}\right]=\binom{2 n+1}{n} \frac{1}{4^{n}(2 n+1)} .
$$

$\square$ , proof

$\square$


$\frac{1 \times 3 \times 5 \times \cdots \times(2 n-5) \times(2 n-3) \times(2 n-1)}{2^{n}[2 \times 3 \times 4 \times \cdots \times(n-1) n(n+1)]}=\frac{(\times 3 \times 5 \times \cdots \times(2 n-5)(2 n-3)(2 n-1)}{2^{n}(n+1)!}$ $2[2 \times 3 \times 4 \times \cdots \times(n-1) n(n+1)]$
$=\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times \cdots \times(2 n-5)(2 n-4)(2 n-3)(2 n-2)(2 n-1)(2 n)}{2^{n}(n+1)!\times 2 \times 4 \times 6 \times \ldots \times(2 n-4)(2 n-2)(3 n)}$
$\qquad$
$\frac{(2 n)!}{2^{2 n} \times n!(n+1)!}=\frac{2 n!(2 n+1)}{4^{n} n!(n+1)!(2 n+1)}=\frac{(2 n+1)!}{4^{n} n!(2+1)!(2 n+1)}$
$=\frac{(2 n+1)!}{(n+1)!n!} \times \frac{1}{4^{n}(2 n+1)}=\binom{2 n+1}{n} \frac{1}{4^{n}(2 n+1)}$

Question 15
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Evaluate, showing a clear method
$\square$
$\square$

Created by T. Madas

Question 16
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Solve the equation

$$
\prod_{r=1}^{\infty}\left[\sqrt[2 r]{2^{x}}\right]=2^{-(x+2)}
$$

You may assume that the left hand side of the equation converges.
$\square$ , $x=-1$


Question 17
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

By showing a detailed method prove that if $n$ is even

$$
\prod_{r=1}^{n}\left[\cos \frac{2 \pi}{n}+\cos \frac{2 \pi}{n} \cot \frac{(2 r-1) \pi}{n}\right]=1 .
$$

$\square$ , proof

Question 18
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

A sequence of numbers, $P(1), P(2), P(3) \ldots P(n)$ is defined by the equation

$$
P(n)=\frac{9}{10} \prod_{r=1}^{n}\left[1+\left[\sum_{k=1}^{r} 10^{k}\right]^{-1}\right]
$$

Express $P(n)$ in a simplified form not involving a sigma or product operators.


Question 19
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Show by a detailed method that
$\square$
, proof
$\square$

Created by T. Madas

Question 20
The product operator $\prod$, is defined as

$$
\prod_{r=1}^{k}\left[u_{r}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

The integer $Z$ is a square number and defined as

$$
Z=\prod_{r=1}^{20}\left(\frac{r!}{n!}\right),\{n \in \mathbb{N}: 1 \leq n \leq 20\}
$$

By considering the terms inside the product operator in pairs, or otherwise, determine a possible value of $n$.

You must show a detailed method in this question.
$\square$ , $n=10$

Question 21

$$
I=\int_{0}^{1}\left[\prod_{r=1}^{10}(x+r)\right]\left[\sum_{r=1}^{10}\left(\frac{1}{x+r}\right)\right] d x
$$

Show by a detailed method that

$$
I=a \times b!,
$$

where $a$ and $b$ are positive integers to be found.

The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

$\square$ , proof

Created by T. Madas


Question 23
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

Find the sum to infinity of the following expression

$$
\sum_{k=1}^{\infty}\left[\prod_{r=1}^{k}\left(\frac{8 r-7}{40 r}\right)\right]
$$

Question 24
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

a) By considering the sine double angle identity show that
$\square$ , proof

$$
\frac{2}{\cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{8}\right) \cos \left(\frac{\pi}{16}\right) \cos \left(\frac{\pi}{32}\right) \ldots}=\pi .
$$



Question 25
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

By writing $\sin x$ as an infinite factorized polynomial, where each of the factors represents a zero of $\sin x$, derive Wallis's formula

$$
\frac{\pi}{2}=\prod_{r=1}^{\infty} \frac{4 r^{2}}{4 r^{2}-1} .
$$

You may assume without proof that

$$
\lim _{x \rightarrow 0}\left[\frac{\sin x}{x}\right]=1
$$

$\square$ , proof

Question 26
The product operator $\prod$, is defined as

$$
\prod_{i=1}^{k}\left[u_{i}\right]=u_{1} \times u_{2} \times u_{3} \times u_{4} \times \ldots \times u_{k-1} \times u_{k}
$$

The function $f(n, k)$ is defined as

$$
f(n, k)=\left[\prod_{m=1}^{n}\left[\frac{2 n-2 m+1}{n!}\right]\right]\left[\prod_{r=1}^{k}\left[\frac{n-r+1}{2 n-2 r+1}\right]\left[\prod_{l=1}^{k}\left[\frac{1}{(2 l)}\right]\right], n \geq 2 k .\right.
$$

Show by a detailed method that

$$
f(n, k)=\frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}
$$

$\square$ proof

$=\frac{(2 n-1)(2 n-3) \ldots 5 \times 3 \times 4}{n!} \times \frac{n(n-1)(n-2) \ldots(n-2 k+1)}{(2 n-1)(2 n-3)(2 n-5) \ldots(2 n-2 k+1)} \times \frac{1}{2 \times 4 \times 6 \times \ldots \times 2 k}$ (Ware Thet $\eta$ ! is 4 consThm so ir can Bf fuutd arl)


- $(2 n-1)(2 n-3) \ldots 50 \times 1=\frac{2 n(n n-1)(2 n-2)(2 n-3) \ldots \times 5 \times 4 \times 3 \times 2 \times 1}{2 n(2 n-2) \ldots \times 4 \times 2}=-\frac{(2 n)!}{2^{n}[n(n-1)(n-2) \ldots \times 2 \times 1]}=\frac{(2 n)!}{2^{n} n!}$
- $n(n-1)(n-2) \ldots(n-2 k+1)=\frac{n(n-1)(n-2) \ldots(n-2 k+1)(n-2 k)(n-2 k-1) \ldots \times 3 \times 2 \times 1}{(n-2 k)(n-2 k-1 \times \ldots \times 3 \times 2 \times 1}=\frac{n!}{(n-2 k)!}$
- $2 \times 4 \times 6 \times \ldots \times 2 k=2^{k}[1 \times 2 \times 3 \times \ldots \times k]=2^{k} k!$

$=\frac{(2 n)!}{2^{k}[n(n-1)(n-2) \ldots(n-k+1)] \times(2 n-2 k)!}=\frac{(2 n)!}{2^{k}(2 n-2 k)![n(n-1)(n-2) \ldots(n-k+1)]}$
 $\cdots=\frac{\frac{(2 n)!}{2^{h} n!}}{\frac{n!}{2 n}} \times \frac{\frac{n!}{(n-2 k)!}}{\frac{(2 n)!(n-k)!}{2^{z}(2 n-2 k)!n!}} \times \frac{1}{k^{k} k!}$ $=\frac{(2 n)!}{2^{n}} \times \frac{(2 n-2 k)!}{(2 n)!(n-2 k)!(n-k)!} \times \frac{1}{k!}$ $=\frac{}{2^{k}[n(n-1)(n-2) \ldots(n-k+1)] \times(2 n-2 k)!}=\frac{2^{k}(2 n-2 k)![n(n)}{2 n(2 n-2)(2 n-4) \ldots(2 n-24+2)(2 n-2 k)(2 n-2 k-2)(2 n-2 k-4) \ldots \times 6 \times 4 \times 2}$
Note
 $=\frac{(2 n-2 k)!}{2^{n} k!(n-2 k)!(4-k)!}$ ts Revareo

