## WAVE EQUATION $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad z=z(x, t)$

## Propagating Waves

Question 1
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

a) Derive the above partial differential equation from first principles, for standing waves or propagating waves, where $c$ is a positive constant.
b) Show further that if $z$ represents the vertical displacement of propagating wave then $c$ represents the propagating speed.

## Created by T. Madas

## Question 2

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0
$$

It is further given further that

$$
F(x)=\left\{\begin{array}{cl}
1-x^{2} & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

b) Indicate in the different regions of the $x-t$ plane expressions for $z(x, t)$.
c) Sketch the wave profiles for $t=0$ and $t=\frac{2}{c}$.



Created by T. Madas

## Question 3

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

for $-\infty<x<\infty, t \geq 0$.
b) Given further that

$$
F(x)=\left\{\begin{array}{ll}
1 & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

sketch the wave profiles for $t=\frac{n}{c}, n=0,1,2,3,4$.


## Question 4

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0 \text {. }
$$

It is further given further that

$$
F(x)=\left\{\begin{array}{cl}
1-x^{2} & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

b) Indicate in the different regions of the $x-t$ plane expressions for $z(x, t)$.
c) Given that $t=T>\frac{1}{c}$, determine expressions for $z(x, t)$.


## Question 5

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0 \text {. }
$$

It is further given further that

$$
F(x)=\left\{\begin{array}{cl}
1-|x| & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

b) Indicate in the different regions of the $x-t$ plane expressions for $z(x, t)$.
c) Sketch the wave profiles for $t=0$ and $t=\frac{1}{2 c}$.


Question 6
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \text { and } \frac{\partial z}{\partial t}(x, 0)=G(x)
$$

a) Derive D'Alembert's solution

$$
\begin{aligned}
& z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi \\
& \text { for }-\infty<x<\infty, t \geq 0
\end{aligned}
$$

b) Given further that

$$
F(x)=0 \quad \text { and } \quad G(x)=\left\{\begin{array}{ll}
1 & |x| \leq 1 \\
0 & |x|>1
\end{array},\right.
$$

sketch the wave profiles for $t=\frac{n}{c}, n=0,1,2$.


Question 7
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=0 \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x)
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0 \text {. }
$$

It is further given further that

$$
G(x)=\left\{\begin{array}{cc}
\cos \left(\frac{1}{2} \pi x\right) & |x| \leq 1 \\
0 & |x|>1
\end{array}\right.
$$

b) Indicate in the different regions of the $x-t$ plane expressions for $z(x, t)$.


$$
\xrightarrow{A}
$$

(a) $z(x, t)=0$ in retoons $A, \epsilon_{1} \xrightarrow\left[\{ ]{\int_{0}^{0} \cos \frac{\pi \xi}{2} d \xi}\right.$
(1) in Refran B
$z\left(x_{x} t\right)=\frac{1}{x} \int_{-1}^{5=-x_{2}+t d_{2}(p)} \cos \left(\frac{\pi x}{2}\right) d z=\frac{1}{2 c} \times \frac{2}{\pi}\left[\sin \frac{\pi}{2}\right]_{-1}^{x_{2}+c_{2}}$
$=\frac{1}{\pi C}\left[\sin \left[\frac{\pi}{2}\left(x_{2}+t_{2}\right)\right]-1\right]$
(4) in pegan c
$z\left(x_{3} t_{s}\right)=\frac{1}{2 c} \int_{-1} \cos \left(\frac{\pi}{2} \frac{\pi}{2} d \xi=\frac{1}{c} \int_{0}^{1} \cos \left\{\frac{\pi \xi}{2}\right) d \xi=\frac{1}{C} \times \frac{2}{\pi}\left[\sin \frac{\pi \xi}{2}\right]_{0}^{1}\right.$
(1) intena $\frac{\pi c}{D}$
$\left.z\left(x_{4} t_{t}\right)=\frac{1}{z} \int_{\xi=x_{4}-t_{t}(\xi)}^{1} \cos \frac{\pi \xi}{2} \right\rvert\, d \xi=\frac{1}{2 c} \times \frac{2}{\pi}\left[\operatorname{syn}\left(\frac{\pi \pi}{2}\right)\right]_{x_{4}+t_{z}}^{1}$
$\frac{1}{\pi c}\left[1-\sin \left[\frac{\tilde{H}}{2}\left(x_{2}-t_{4}\right)\right]\right]$

## Question 8

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0
$$

It is further given further that

$$
F(x)=\left\{\begin{array}{cc}
\cos x & |x|<\frac{1}{2} \pi \\
0 & |x| \geq \frac{1}{2} \pi
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

b) Indicate in the different regions of the x-t plane expressions for $z(x, t)$, and hence show that there is a region of $x-t$ plane where $z(x, t)$ represents a stationary wave.


## Created by T. Madas

## Question 9

It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial t^{2}},
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x) .
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-t)+\frac{1}{2} F(x+t)+\frac{1}{2} \int_{x-t}^{x+t} G(\xi) d \xi
$$

for $-\infty<x<\infty, t \geq 0$.
b) Given further that

$$
F(x)=0 \quad \text { and } \quad G(x)=\left\{\begin{array}{cc}
1 & x<0 \\
x+1 & x \geq 0
\end{array},\right.
$$

use the method of the characteristics in the $x-t$ plane to solve the equation of part (b) and hence sketch the wave profile when $t=1$.


Question 10
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x)
$$

a) Derive D'Alembert's solution

$$
\begin{aligned}
& z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi \\
& \text { for }-\infty<x<\infty, t \geq 0
\end{aligned}
$$

It is further given further that

$$
G(x)=\left\{\begin{array}{cc}
\cos x & |x| \leq \frac{\pi}{2} \\
0 & |x|>\frac{\pi}{2}
\end{array}\right.
$$


b) Indicate in the different regions of the $x-t$ plane expressions for $z(x, t)$.
c) Show that if $t<\frac{\pi}{2 c}$ there exists a range of values of $x$, over which $z(x, t)$ represents a stationary wave.

Question 11
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x)
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0 \text {. }
$$

It is further given further that

$$
F(x)=\left\{\begin{array}{ll}
1 & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad G(x)=0\right.
$$

b) Use the result of part (a) with the method of characteristics to determine expressions for

$$
z(x, t), \quad \text { for } t<\frac{1}{c}, \quad t=\frac{1}{c} \quad \text { and } t>\frac{1}{c}
$$

c) Sketch the wave profiles for $t=\frac{n}{2 c}, n=0,1,2,3$.

## Created by T. Madas

## Question 12

It is given that $u=u(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}},
$$

subject to the initial conditions

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x) .
$$

a) Derive D'Alembert's solution

$$
u(x, t)=\frac{1}{2} f(x-t)+\frac{1}{2} f(x+t)+\frac{1}{2} \int_{x-t}^{x+t} G(\zeta) d \zeta
$$

$$
\text { for }-\infty<x<\infty, t \geq 0
$$

It is further given further that

$$
f(x)=0 \quad \text { and } \quad g(x)=\left\{\begin{array}{cc}
1-x^{2} & |x| \leq 1 \\
0 & |x|>1
\end{array}\right.
$$

b) Use the result of part (a) with the method of characteristics to determine expressions for

$$
u(x, t), \quad \text { for } t=\frac{1}{2}, 1, \frac{3}{2} .
$$



Question 13
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions

$$
z(x, 0)=F(x) \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=G(x)
$$

a) Derive D'Alembert's solution

$$
z(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} G(\xi) d \xi
$$

$$
\text { for }-\infty<x<\infty, t \geq 0 \text {. }
$$

It is further given further that

$$
F(x)=0 \quad \text { and } \quad G(x)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

b) Use the result of part (a) with the method of characteristics to determine expressions for

$$
z(x, t), \quad \text { for } t=\frac{1}{2 c}, \quad t=\frac{1}{c} \quad \text { and } t=\frac{3}{2 c}
$$

c) Sketch the wave profiles for $t=\frac{n}{2 c}, n=0,1,2,3$.

Created by T. Madas


Question 14
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{4} \frac{\partial^{2} z}{\partial t^{2}}
$$

subject to the initial conditions

$$
z(x, 0)=\mathrm{e}^{-x^{2}},-\infty<x<\infty \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=0
$$

a) Determine the solution of this wave equation.
b) Sketch the wave profiles for $t=i, i=0,1,2,3$.

You may use without proof the standard D'Alembert's solution for the wave equation.
$\square$ $z(x, t)=\frac{1}{2} \mathrm{e}^{-(x-2 t)^{2}}+\frac{1}{2} \mathrm{e}^{-(x+2 t)^{2}}$


Question 15
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the initial conditions.

$$
z(x, 0)=\left\{\begin{array}{cl}
1-|x| & |x| \leq 1 \\
0 & |x|>1
\end{array} \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=0 .\right.
$$

a) Display the values of $z(x, t)$ in the regions of an $(x, t)$ plane diagram.
b) Sketch the wave profiles for $t=0, t=\frac{1}{2 c}, t=\frac{1}{c}$ and $t=\frac{3}{2 c}$.

You may use without proof the standard D'Alembert's solution for the wave equation.


Question 16
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{4} \frac{\partial^{2} z}{\partial t^{2}}
$$

subject to the initial conditions.

$$
z(x, 0)=0 \quad \text { and } \quad \frac{\partial z}{\partial t}(x, 0)=\left\{\begin{array}{cl}
4-x^{2} & |x| \leq 2 \\
0 & |x|>2
\end{array} .\right.
$$

a) Display the values of $z(x, t)$ in the regions of an $(x, t)$ plane diagram.
b) Determine expressions for $z\left(x, \frac{1}{2}\right)$ and $z\left(x, \frac{3}{2}\right)$.

You may use without proof the standard D'Alembert's solution for the wave equation.


WAYE EQUATION

$$
\frac{\partial^{2} z}{\partial x^{2}} \Leftrightarrow \frac{1}{c^{2}} \frac{\partial^{2} z}{\partial^{2}}, z=\{(x, t)
$$

Question 1
It is given that $z=z(x, t)$ satisfies the wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

subject to the conditions

$$
z(x, 0)=F(x), \frac{\partial z}{\partial t}(x, 0)=G(x) \text { and } \quad z(0, t)=z(L, t)=0 .
$$

Derive the solution

$$
=z(L, t)=0 \text {. }
$$



$$
P_{n}=\frac{2}{L} \int_{0}^{L} F(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

and $\quad Q_{n}=\frac{2}{n \pi c} \int_{0}^{L} G(x) \sin \left(\frac{n \pi x}{L}\right) d x$
$\square$


Question 2
A taut string of length 20 units is fixed at its endpoints at $x=0$ and at $x=20$, and rests in a horizontal position along the $x$ axis. The midpoint of the string is pulled by a distance of 1 unit and released from rest.

If the vertical displacement of the string $u$ satisfies the standard wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

show that

$$
u(x, t)=\frac{8}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{1}{n^{2}} \sin \left(\frac{n \pi}{2}\right) \sin \left[\frac{n \pi x}{20}\right] \cos \left[\frac{n \pi t}{20}\right]\right]
$$



Question 3
Solve the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, c>0
$$

for $u=u(x, t), \quad 0 \leq x \leq \pi, t \geq 0$,
subject to the following boundary and initial conditions.

$$
u(0, t)=0, \quad u(\pi, t)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0, \quad u(x, 0)=3 \sin x .
$$

$$
u(x, t)=3 \sin x \cos c t
$$




- Apply condtion (1), ulat $=0$
$\Rightarrow 0=A[C \operatorname{coscq} t+D$ smpet $]$ $\rightarrow A=0$
$\qquad$
$u(x, t)=\left(C_{\operatorname{cosec} t}+D \sin \varphi t\right) \sin p x$
- Afay convition (4) $\frac{\partial u}{\partial t}\left(x_{0}\right)=0$
$\frac{\partial}{\partial t}=\left[-{ }_{p p} C \sin c t+D D_{p} \cos p t\right] \sin p x$ $0=D_{C p}(\sin p x)$ $D=0 \quad C \neq 0, p$ to $h(x, t)=C$ sinpe cosept

Question 4
Solve the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, c>0
$$

for $u=u(x, t), \quad 0 \leq x \leq 1, t \geq 0$,
subject to the following boundary and initial conditions.

$$
u(0, t)=0, \quad u(1, t)=0, \quad \frac{\partial u}{\partial t}(x, 0)=0, \quad u(x, 0)=\sin (5 \pi x)+2 \sin (7 \pi x)
$$

$\square$

$$
u(x, t)=\sin (5 \pi x) \cos (5 \pi c t)+2 \sin (7 \pi x) \cos (7 \pi c t)
$$



| - F $2 \times 0,3+2 \times-x^{2}$ |  |
| :---: | :---: |
|  |  <br>  <br>  |
| $\therefore$ IBte $=(4$ |  |
|  | $=u(1, t)$, w $P\left(x+P_{6}+P_{6}+0 / C\right.$ N) IN $x-50$ wh MCK southars of (I) is Also NOWDEO THERA |
|  |  |
|  | 家 |


|  |
| :---: |
| APPD $u\left(x_{0}\right)=\sin (5 \pi x)+2 \sin (7 \pi x)$ <br>  <br> $\rightarrow E_{\mathrm{s}}=1, E_{2}=2$ (Tr tor themen |
| $u(x, t)=1 \sin (5 \pi x) \cos (5 \pi t)+2 \sin (7 \pi) \cos (7 \pi c t)$ <br> $u\left(e_{0}+\right)=\sin 5 \pi x \cos 5 \pi t+2 \sin 7 \pi x \cos 7 \pi t$ |

Question 5
Solve the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

for $u=u(x, t), \quad 0 \leq x \leq 1, t \geq 0$,
subject to the following boundary and initial conditions.

1. $u(0, t)=0$.
2. $u(1, t)=0$.
3. $\frac{\partial u}{\partial t}(x, 0)=0$.
4. $u(x, 0)=\sin (\pi x)+3 \sin (2 \pi x)-\sin (5 \pi x)$.

$$
u(x, t)=\sin (5 \pi x) \cos (5 \pi c t)+2 \sin (7 \pi x) \cos (7 \pi c t)
$$

$\square$
$\square$

$$
u\left(x_{1} t\right)=X(y) T(t)=\left(A_{\operatorname{cospx} x}+B_{\operatorname{sinpx}}\right)\left(C_{\text {cosp }} x+D_{\text {supt }}\right)
$$

- Apey (condrton (1), u(0,t)=0
$A=0$
$\therefore u(x, t)=\operatorname{sinpx}\left(C_{\cos p(t)}+D \sin p t\right)$
 $\frac{\partial u}{\partial t}=\sin p 2\left[-C_{p} \sin p t+D_{p} \operatorname{cospt}\right]$
$D=\left(\sup p_{2}\right)\left(D_{p}\right)$
$D=0$
$\square$

$$
u(x, t)=C \sin p x \cos p t
$$

- Arry constion (2), $u(1, t)=0$
$0=C \sin p \operatorname{cosp} t$
$\qquad$
$u_{n}(2, t)=C_{n} \sin (n \pi x) \cos (n \pi t)$ $u(x+t)=\sum_{n=1}^{\infty}\left[C_{n} \sin (n+x) \cos (\ln \pi t)\right]$

Question 6
The vertical displacements, $u=u(x, t)$, of the oscillations of a taut flexible elastic string of length 0.5 m , fixed at its endpoints is governed by

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{25} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0 \leq x \leq 0.5, \quad t \geq 0
$$

Given further that the string is initially stationary, and $u(x, 0)=\frac{1}{10} \sin (20 \pi x)$, find a simplified expression for $u(x, t)$
$\square$ $u(x, t)=\frac{1}{10} \sin (20 \pi x) \cos (100 \pi t)$



Question 7
A taut string of length $L$ is fixed at its endpoints at $x=0$ and at $x=L$, and rests in a horizontal position along the $x$ axis. The midpoint of the string is pulled by a small distance $h$ and released from rest.

If the vertical displacement of the string $z$ satisfies the standard wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, c>0
$$

show that

$$
z(x, t)=\frac{8 h}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin \left[\frac{(2 n-1) \pi x}{L}\right] \cos \left[\frac{(2 n-1) \pi c t}{L}\right]\right]
$$

$\square$


We大t Diffencliate win raber of
$\Rightarrow \frac{\partial z}{\partial t}=\sum_{n=1}^{\infty}\left[\sin \frac{4 \pi z}{L}\left[-\frac{u \pi c}{L} D_{n} \sin \frac{n \pi c t}{L}+\frac{n \pi c_{1}}{L} E_{1} \cos \frac{n \pi c}{L}\right]\right]$

$\Rightarrow 0=\sum_{n=1}^{\infty}\left[\operatorname{sim} \frac{n \pi x}{L} \times E_{n} \frac{n \pi}{L}\right], \forall x$ $\Rightarrow E_{4}=0$
$\qquad$
Gintuy frey condition (3), $z(x, 0)=F(a), 0 \leq x \leq L$
$\Rightarrow \sum_{n=1}^{\infty}\left(D_{n} \sin \frac{n \pi x}{L}\right)=F(x)$
-
$\Rightarrow D_{1}=\frac{1}{4 / 2} \int_{0}^{L} F(x) \sin \frac{n \pi x}{L} d x$
$\Rightarrow D_{1}=\frac{2}{L} \int_{0}^{\frac{L}{2}} \frac{2 h}{L} x \sin \frac{n \pi x}{L} d x+\frac{2}{L} \int_{\frac{L}{2}}^{L}\left(\frac{2}{2}-\frac{z_{2}}{L}\right) \sin \frac{n \pi x}{L} d x$
$\Rightarrow D_{h}=\frac{4 h}{4 \pi}\left[\cos \frac{n \pi}{2}-\cos \pi \pi\right]+\frac{4 h}{L^{2}}\left[\frac{4^{2}}{L^{2} \pi^{2}} \sin \frac{n \pi}{2}-\frac{L^{2}}{\pi \pi^{2}} \cos \frac{\pi \pi}{2}+\frac{l^{2}}{2 \pi^{2}} \cos n \pi\right]$
 $\Rightarrow \underline{D_{n}=\frac{8 h}{4 \pi^{2}} \sin \frac{n \pi}{2}}$


Fintur we that + soution
$z\left((x, t)=\sum_{m=1}^{\infty}\left[\frac{8 h(-1)^{n+1}}{\pi^{2}(2 m-1)^{2}} \sin \left[\frac{(2 m-1) \pi x}{L}\right] \cos \left[\frac{(2 m-1) n t t}{L}\right]\right]\right.$ $z\left(x_{t} t\right)=\frac{8 h}{\pi^{2}} \sum_{m=1}^{\infty}\left[\frac{(-1)^{m+1}}{(2 m-1)^{2}} \operatorname{sm}\left[\frac{(2 m-1) \pi x}{L}\right] \cos \left[\frac{(2 m-1) \pi t}{L}\right]\right]$

## Created by T. Madas

## Question 8

A taut string as its fixed endpoints attached to the $x$ axis at $x=0$ and at $x=1$.

The vertical displacement of the string $u(x, t)$ satisfies a standard wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad|x| \leq 1, \quad t \geq 0,
$$

where $c$ is a positive constant.
At time $t=0$, while the string is undisturbed, it is given a transverse velocity of magnitude $\frac{1}{4} c x(1-x)$ along its length.

Show that

$$
u(x, t)=\frac{2}{\pi^{4}} \sum_{k=0}^{\infty}\left[\frac{\sin [(2 k+1) \pi x] \sin [(2 k+1) \pi c t]}{(2 k+1)^{4}}\right]
$$



Question 9
A taut string of length 2 units is fixed at its endpoints at $x= \pm 1$ and rests in a horizontal position along the $x$ axis.

At time $t=0$, while the string is undisturbed, it is given a small transverse velocity $1-x^{2}$ along its length. It is assumed that the displacement of the string

$$
u(x, t),|x| \leq 1, t \geq 0
$$

satisfies a standard wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial t^{2}}
$$

Show that

$$
u(x, t)=\frac{32}{\pi^{4}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{(2 n-1)^{4}} \cos \left[\frac{(2 n-1) \pi x}{2}\right] \sin [(2 n-1) \pi t]\right],
$$

and hence determine of the normal modes of the vibration of the string


Question 10
A taut string is fixed at its endpoints at $x=0$ and $x=L$. The string is vibrating in a resistive medium and its transverse displacement $u(x, t)$ from a horizontal position satisfies the modified wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}}\left[\frac{\partial^{2} u}{\partial t^{2}}+\lambda \frac{\partial u}{\partial t}\right], \quad 0 \leq x \leq L, \quad t \geq 0
$$

where $\lambda$ and $c$ are a positive constants.

Show that
where

$$
q_{n}=\frac{(n \pi c)^{2}}{L}-\frac{\lambda}{4}
$$

and $P_{n}$ and $\varphi_{n}$ are suitably defined constants.


## Created by T. Madas

## Question 11

A taut uniform string lies undisturbed along the $x$ axis.

One of its ends is fixed at $x=0$ while the other end at $x=L$ is attached to a light ring. The ring is free to slide along a smooth wire at right angles to the $x$ axis.

The vertical displacement of the string $z(x, t)$ satisfies the standard wave equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

The string is released from rest and its initial displacement is given by

$$
z(x, 0)=\frac{\varepsilon x}{L}, \quad 0 \leq x \leq L, \quad 0<\varepsilon \ll 1
$$

Determine an expression for $z(x, t)$, and hence state the periods of the normal modes of vibrations of the string.
[You may assume without proof the standard solution of the wave equation in variable separate form]
$z(x, t)=\sum_{n=1}^{\infty}\left\{\frac{8 \varepsilon(-1)^{n+1}}{\pi^{2}(2 n-1)^{2}} \sin \left[\frac{(2 n-1) \pi x}{2 L}\right] \cos \left[\frac{(2 n-1) \pi c t}{2 L}\right]\right\}, T_{n}=\frac{4 L}{(2 n-1) c}$

WAVE EQUATION

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad z=z(x, t)
$$

Use of Complex Numbers

Question 1
A semi infinite string $S_{1}$ of density $\rho_{1}$ lies along the $x$ axis for $x<0$ and another semi infinite string $S_{2}$ of density $\rho_{2}$ lie along the $x$ axis for $x>0$. The two strings are attached to particle $P$ of mass $m$, at $x=0$.

The mass of the two strings is negligible compared to that of $P$. The strings and the particle lie undisturbed in an infinite horizontal plane.

A small disturbance $z$ with equation

$$
z=\operatorname{Re}\left[A \mathrm{e}^{\mathrm{i}(n t-k x)}\right],
$$

is propagated from $x<0$ in the direction of $x$ increasing, where $n$ and $k$ are the frequency and wave number, respectively.

Show that the amplitude of reflected wave in the section for which $x<0$, is

$$
a \sqrt{\frac{T^{2}\left(k-k_{2}\right)+m^{2} n^{4}}{T^{2}\left(k+k_{2}\right)+m^{2} n^{4}}}
$$

and the amplitude of the transmitted wave in the section for which $x>0$ is


$$
\frac{2 k T a}{\sqrt{T^{2}\left(k+k_{2}\right)+m^{2} n^{4}}}
$$

where $T$ is the tension in the strings and $k_{2}=n \sqrt{\frac{\rho_{2}}{T}}$.

proof
[ solution overleaf ]


Created by T. Madas

Created by T. Madas
红


## Created by T. Madas

## Question 2

Two uniform strings, $S_{1}$ and $S_{2}$, are joined together at one end and the other two free ends are attached to two fixed points $2 L$ apart.
$S_{1}$ has length $L$ and density $\rho_{1}$ and lies along the $x$ axis for $x<0$.
$S_{2}$ has length $L$ and density $\rho_{2}$ and lies along the $x$ axis for $x>0$.

The combined string is taut and the tension is constant throughout.

Given that the combined string performs small amplitude transverse oscillations, show that

$$
c_{1} \tan \left(\frac{\omega L}{c_{1}}\right)+c_{2} \tan \left(\frac{\omega L}{c_{2}}\right)=0
$$

where $\frac{2 \pi}{\omega}$ is the period of the normal modes of vibration, and $c_{1}$ and $c_{2}$ are the respective wave speeds in $S_{1}$ and $S_{2}$.


MULTIDIMENSIONAL WAVE EQUATION
$\nabla^{2} z=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad z=z(x, y, t)$
$\nabla^{2} z=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}, \quad z=z(r, \theta, t)$

Question 1
The two dimensional wave equation for $u=u(x, y, t)$ in a rectangular cartesian region satisfies the following partial differential equation.

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right], 0 \leq x \leq a, 0 \leq y \leq b
$$

where $c$ is a positive constant.

It further given that $u=u(x, y, t)$ satisfies

$$
u(0, y, t)=u(a, y, t)=u(x, 0, t)=u(x, b, t)=0 .
$$

Use separation of variables to show that

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left[\left[A_{n m} \cos \left(\lambda_{n m} t\right)+B_{n m} \sin \left(\lambda_{n m} t\right)\right] \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\right]
$$

where $A_{n m}, B_{n m}$ and $\lambda_{n m}$ are constants.

 $\Longrightarrow u(x, y, t)=X(x) Y(y) T(t)$

 $\Rightarrow \frac{1}{C^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=\frac{x^{\prime}(x)}{x(x)}+\frac{y^{\prime}(4)}{y(t)}$
 - WE exper ferodiciy in The Soutans, so boobing at bie lifs we niffo $\frac{T_{(t)}^{x}}{T(t)}=-c^{2} p^{2}$
$T(t)=\alpha \operatorname{cosp} p+b \operatorname{sincp} t$
. Htwee $Y(y)=A \cos \phi y+B \sin d y$

- colucering the the sochens $u(x, y, t)=[\operatorname{rcoscpt}+h \sin \phi t][D \cos v x+C \sin v 2][A \cos q y+R \operatorname{con} d y]$
- Next arpegina sont conidians - $u(0, y, t)=0 \Rightarrow D=0$ - $U(x, 0, t)=0 \Rightarrow A=0$
- trssorb saut of The consthoris \& SIupuay $u(x, y t)=\sin \gamma x \sin \phi y[r \cos c p t+b \sin c t]$
- Afty tife Next 2 conertanons - $u(a, y, t)=0 \Rightarrow \sin a v \sin d y[\alpha \operatorname{cosccp}+b \sin c p t]=0$ $\Rightarrow$ (for kll $y d t$ ) $\Rightarrow v=\frac{b \pi}{a}$
- $u(x, b t)=0 \Rightarrow \operatorname{siv} v x \sin \phi b[\alpha \cos \varphi t+b \sin \varphi t]=0$ $\Rightarrow q b=m \pi, m=0,1,2,3, \ldots$ $\Rightarrow q=\frac{m \pi}{b}$
ONEXT RELATE

Question 2
The vertical displacement $z=z(r, \theta, t)$ of a two dimensional standing wave in plane polar coordinates, satisfies the following partial differential equation.

$$
\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

where $c$ is a positive constant.

Use separation of variables to show that the general solution of the above equation can be written as

$$
z(r, \theta, t)=[\alpha \cos \lambda c t+\beta \sin \lambda c t]\left[\sum_{n=0}^{\infty} C_{n} \sin n \theta+D_{n} \cos n \theta\right]\left[\sum_{n=0}^{\infty} A_{n} J_{n}(\lambda r)+B_{n} Y_{n}(\lambda r)\right]
$$

where $\alpha, \beta, A_{n}, B_{n}, C_{n}$ and $D_{n}$ are constants.



- Retoprana to the luts of the frenoos SAAGE $\Rightarrow r^{2} \frac{R^{\prime \prime}(r)}{R(r)}+r^{R^{\prime}(r)} \frac{R^{\prime}(r)}{R(r)}+\lambda_{r^{2}}^{2}-\eta^{2}, \quad n=0,1,2,3, \ldots$ $\Rightarrow r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\left(\lambda^{2} r^{2}-r^{2}\right) R(\sigma)=0$ LH $x=\lambda r \Leftrightarrow r=\frac{x}{\lambda}$ so $R(r)$ Becouts $R\left(\frac{x}{x}\right)$ $\frac{d x}{d r}=\lambda$ or As tw onfentor $\frac{d}{d r}=\frac{d}{d i} \frac{d x}{d r}=2 \frac{d}{d x}$ HWNG $\frac{d^{2}}{d i^{2}}=\frac{d}{d r}\left(\frac{d}{d r}\right)=\lambda \frac{d}{d x}\left(\lambda \frac{d}{d x}\right)=\lambda^{2} \frac{d^{2}}{d d^{2}}$ in ctage wores $R^{\prime}(r)=\frac{d R(r)}{d r}=\lambda \frac{d}{d x}[R(x)]=\lambda \frac{d R}{d x}$
$R^{\prime}(T)=\frac{d^{2}}{d r}(R(r)]=\lambda^{2} \frac{d^{2}}{d}[R(x)]=\lambda \frac{d^{2} R}{d r}$ $\Rightarrow\left(\frac{x^{2}}{\lambda} \lambda^{2} \lambda \frac{d d^{2} R(x)}{d x^{2}}+\left(\frac{x}{d}\right) \lambda \frac{d R(x)}{d x}+\left(x^{2}-y^{2}\right) R(x)=0\right.$ $x^{2} \frac{d^{2} R(x)}{d x^{2}}+x \frac{d R}{d x}+\left(x^{2}-r^{2}\right) R(x)=0$ 1.E Btssec's fquation $R_{n}(x)=A_{n} J_{n}(x)+B_{4} Y_{1}(x)$
$R_{n}(r)=A_{n} J_{n}(d r)+B_{4} Y_{4}(d r)$ $R G=\sum_{n=1}^{\infty}\left[A_{1} T_{1}\left(A_{0}\right)+B_{1} X_{1}(a r r]\right.$



Question 3
The vertical displacement $z=z(r, \theta, t)$ of a circular drum-skin, secured on a circular rim of radius $a$, satisfies the wave equation in standard plane polar coordinates

$$
\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}} \text {. }
$$

where $c$ is a positive constant.
The drum-skin is displaced from its equilibrium position and released from rest.
Use separation of variables to show that general solution of the above equation is

$$
z(r, \theta, t)=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty}\left[\left[J_{n}\left(\frac{r \lambda_{n, m}}{a}\right)\right]\left[\cos \left(\frac{c t \lambda_{n, m}}{a}\right)\right]\left[C_{n, m} \sin n \theta+D_{n, m} \cos n \theta\right]\right]
$$

where $C_{n, m}$ and $D_{n, m}$ are constants, and $\lambda_{n, m}$ denotes the $m^{\text {th }}$ zero of $J_{n}(x)$.
[solution overleaf]

Created by T. Madas

Created by T. Madas

