LAPLACE'S

Question 1
The temperature distribution, $T(x, y)$, in a rectangular plate for which $0 \leq x \leq 2$ and $0 \leq y \leq 1$, satisfies Laplace's Equation

$$
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=0
$$

The edges of the rectangular plate are maintained at the following temperatures

- $T(x, 0)=0, x \in[0,2]$
- $T(x, 1)=0, x \in[0,2]$
- $T(0, y)=0, \quad y \in[0,1]$
- $T(2, y)=30 \sin (8 \pi y), \quad y \in[0,1]$.

Determine the temperature distribution of the plate
[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

$$
T(x, y)=\frac{80 \sinh (8 \pi x) \sin (8 \pi y)}{\sinh 16 \pi}
$$

$\lambda(a)=A \cosh p x^{2}+8 \sinh p 2$

\qquad $T(x, y)=\left(A_{\operatorname{coshn} p x}+B \sinh p x\right)(\cos p y+D \sin p y)$

- Appy comotrans.
- $T(y, 0)=0 \Rightarrow A(C \cos x y+D \sin p y)=0 \Rightarrow A=0$
- $T\left(x_{1} 0\right)=0 \Rightarrow C(A \cos$ p $x+B \sin p x)=0 \Rightarrow c=0$ Detusect consitivis ut astions
$T(x, y)=B \operatorname{sunh} p x \sin p y$
- $T\left(x_{1}\right)=0 \Rightarrow B \operatorname{sunhpx} \sin p=0$ \qquad
$\Rightarrow \quad \sin p=0 \quad n=1,23, \ldots$

Created by T. Madas

Question 2

The function $\varphi=\varphi(x, y)$ satisfies Laplace's Equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0,
$$

where $0 \leq x \leq \pi$ and $y>0$.

Determine an expression for $\varphi(x, y)$, given further that

- $\varphi(x, 0)=3, x \in[0, \pi]$
- $\varphi(0, y)=0, \quad y \in[0, \infty)$
- $\lim _{y \rightarrow \infty}[\varphi(x, y)]=0, \quad x \in[0, \pi]$
- $\varphi(\pi, y)=0, \quad y \in[0, \infty)$.
[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

$$
\varphi(x, y)=\frac{12}{\pi} \sum_{n=1}^{\infty} \frac{\exp [-y(2 n-1)] \sin [x(2 n-1)]}{(2 n-1)^{3}}
$$

Question 3
The function $\varphi=\varphi(x, y)$ satisfies Laplace's Equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

where $0 \leq x \leq a$ and $0 \leq y \leq b$, with a and b positive constants.

Determine an expression for $\varphi(x, y)$, given further that

- $\varphi(x, 0)=0, x \in[0, a]$
- $\varphi(x, b)=0, x \in[0, a]$
- $\varphi(0, y)=0, y \in[0, b]$
- $\varphi(a, y)=b y-y^{2}, \quad y \in[0, b]$.
[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

Created by T. Madas

Question 4

The function $u=u(x, y)$ satisfies Laplace's Equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0 \leq x \leq 2,0 \leq y \leq 1
$$

Determine an expression for $u=u(x, y)$, given further that

$$
u(0, y)=0, \quad u(2, y)=0, \quad u(x, 0)=0, \quad u(x, 1)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
2-x & 1 \leq x \leq 2
\end{array}\right.
$$

$\square \sum_{n=1}^{\infty} u(x, y)=\sum_{n}^{\infty}\left[\frac{8 \sin \left(\frac{1}{2} n \pi\right)}{n^{2} \pi^{2} \sinh \left(\frac{1}{2} n \pi\right)} \sin \left(\frac{1}{2} n \pi x\right) \sinh \left(\frac{1}{2} n \pi y\right)\right]$

Question 5
A square plate of unit length has three of its sides kept at temperature $0^{\circ} \mathrm{C}$, while the fourth side is kept at temperature $50^{\circ} \mathrm{C}$.

In a steady state the temperature, $\theta(x, y)$ satisfies Laplace's Equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=0
$$

Solve the equation and hence show that

$$
\theta\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{100}{\pi} \sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}}{(2 n+1) \cosh \left[(2 n+1) \frac{\pi}{2}\right]}\right\}
$$

[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

 By $(1): O=A(C \cosh p y+D \operatorname{sinhpy}) \rightarrow A=0$ Atisosing - B. wao $C_{a} D$
$(\theta(x, y)=\sin ^{\sin x}(\operatorname{coshh}^{2}+\underbrace{\sinh p y})^{2}$
By (8): $\quad 0=\operatorname{simp}($ Coshpy + Dsupy $) \quad \Rightarrow \quad P=n \pi n=1,2,3,1$ $\left\{\theta(x, g)=\sum_{n=1}^{\infty} \sin (n \pi x)\left[c^{c_{4}} \operatorname{csi}(n \pi y)+D_{1} \sin (4 n \pi y)\right]\right\}$ $\begin{aligned} & 8 y(3) \\ &=\sum_{n=1}^{\infty} \sin (n+2) \\ & C_{n}\end{aligned}$ $\left\{\theta(x, y)=\sum_{n=1}^{\infty} D_{n} \sin (n \pi x) \sinh n \pi y\right\}$ B) (4) $50=\sum_{n=1}^{\infty} D_{1}$ sunta suinh vit \qquad

Question 6
The function $\varphi=\varphi(x, y)$ satisfies Laplace's Equation

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in a rectangular region where $0 \leq x \leq 3$ and $0 \leq y \leq 2$. It is further given that

- $\varphi(x, 0)=0, x \in[0,3]$
- $\varphi(x, 2)=0, x \in[0,3]$
- $\varphi(0, y)=0, \quad y \in[0,2]$

$$
\cdot \varphi(3, y)=\left\{\begin{array}{cc}
y & y \in[0,1] \\
2-y & y \in(1,2]
\end{array}\right.
$$

Solve the equation and hence show that

$$
\varphi\left(\frac{3}{2}, 1\right)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\operatorname{sech}\left[\frac{3 \pi}{4}(2 n-1)\right]}{(2 n-1)^{2}}
$$

[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

Question 7
The temperature $\theta=\theta(x, y)$ for a steady two-dimensional heat flow in the semiinfinite region for which $y \geq 0$ satisfies Laplace's Equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=0
$$

subject to the boundary conditions

- $\frac{\partial \theta}{\partial x}(0, y)=0, \quad y \in[0, \infty)$
- $\frac{\partial \theta}{\partial x}(L, y)=0, \quad y \in[L, \infty)$
- $\lim _{y \rightarrow \infty}[\theta(x, y)] \leq|M|, M \in \mathbb{R}, \quad x \in(-\infty, \infty), y \in[x, \infty)$
- $\theta(x, 0)=\frac{x(L-x)}{L^{2}}, \quad x \in(-\infty, \infty), \quad f(-x)=f(x), \quad f(x)=f(x+2 L)$

Solve the equation and hence show that

3

$$
\theta\left(\frac{1}{2} L, y\right)=\frac{1}{6}-\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n} \exp \left[-\frac{2 n \pi y}{L}\right]}{n^{2}}
$$

[You must derive the standard Cartesian solution of Laplace's equation in variable separate form]

Created by T. Madas

Created by T. Madas

Question 1

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0 .
$$

The above partial differential equation is Laplace's equation in a two dimensional Cartesian system of coordinates.

Show clearly that Laplace's equation in the standard two dimensional Polar system of coordinates is given by

$$
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=0 .
$$

Question 2
In a two dimensional universe the gravitational Φ would satisfy the two dimensional Laplace's equation

$$
\nabla^{2} \Phi=0
$$

Find a general circularly symmetric solution for Φ.

Question 3
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

a) Derive the general solution of the above equation, in variable separable form.
b) Hence find a specific solution subject to the conditions
i. $\quad \Phi(0, \theta)=0$
ii. $\Phi(r, \theta)$ is finite for $0 \leq r \leq a$ and for all θ.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right],
$$

$$
\Phi(r, \theta)=\frac{r}{a} \sin \theta
$$

Question 4
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

a) Derive the general solution of the above equation, in variable separable form.
b) Hence find a specific solution subject to the conditions
i. $\quad \Phi(0, \theta)=0$
ii. $\Phi(1, \theta)=2 \cos \theta$.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right] \text {, }
$$

$\Phi(r, \theta)=2 r \cos \theta$

Question 5

The steady state temperature distribution $\Phi=\Phi(r, \theta)$ in a circular thin metal disc of radius 1, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

Given further that $\Phi(1, \theta)=\sin 2 \theta$, determine a simplified expression for $\Phi(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

Created by T. Madas

Question 6

The steady state temperature distribution $\Phi=\Phi(r, \theta)$ in a circular thin metal disc of radius 1, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

Given further that

$$
2 \Phi(1, \theta)+\frac{\partial \Phi}{\partial r}(1, \theta)=100-2 \cos 2 \theta
$$

determine a simplified expression for $\Phi(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

Question 7
The steady state temperature distribution $u=u(r, \theta)$ in a circular thin metal disc of radius a, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

The top half of the circumference of the disc, $0 \leq \theta \leq \pi$, is maintained at $100^{\circ} \mathrm{C}$, and the bottom half of the circumference of the disc, $\pi<\theta<2 \pi$, is maintained at $0^{\circ} \mathrm{C}$.

Determine a simplified expression for $u(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

$$
u(r, \theta)=50+\frac{200}{\pi} \sum_{n=1}^{\infty}\left[\frac{\sin n \theta}{n}\left(\frac{r}{a}\right)^{n}\right]
$$

\square

Question 8
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{1}=\Phi_{1}(r, \theta)$ and $\Phi_{2}=\Phi_{2}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{1}=0,1<r<2 \\
& \nabla^{2} \Phi_{2}=0, r \geq 2 .
\end{aligned}
$$

It is further given that

$$
\Phi_{1}(1, \theta)=0, \quad \Phi_{1}(2, \theta)=1, \quad \Phi_{2}(2, \theta)=1 \quad \text { and } \quad \lim _{r \rightarrow \infty}\left[\Phi_{2}(r, \theta)-r \cos \theta\right]=1 .
$$

b) Determine expressions for Φ_{1} and Φ_{2}.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right] \text {, }
$$

$$
\Phi_{1}(r, \theta)=\frac{\ln r}{\ln 2}, \Phi_{2}(r, \theta)=1+r \cos \theta-\frac{4}{r} \cos \theta
$$

[solution overleaf]

Created by T. Madas

Question 9

The steady state temperature distribution $u=u(r, \theta)$ in a thin metal disc in the shape of a circular sector of radius 1, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

It is further given that $u(r, 0)=u\left(r, \frac{1}{2} \pi\right)=0$ and $\frac{\partial u}{\partial r}(\theta, 1)=\theta$.

Determine a simplified expression for $u(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

Created by T. Madas

Question 10

The steady state temperature distribution $u=u(r, \theta)$ in a circular thin metal disc of radius 1, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

It is further given that $u(1, \theta)=\left\{\begin{array}{cc}\theta & -\frac{1}{2} \pi<\theta<\frac{1}{2} \pi \\ 0 & \text { otherwise }\end{array}\right.$
Determine a simplified expression for $u(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

$$
u(r, \theta)=\sum_{n=1}^{\infty}\left[\left[\frac{1}{n} \cos \left(\frac{1}{2} n \pi\right)+\frac{2}{\pi n^{2}} \sin \left(\frac{1}{2} n \pi\right)\right] r^{n} \sin n \theta\right]
$$

Question 11

The steady state temperature distribution $u=u(r, \theta)$ in a circular thin metal disc of radius 1, satisfies Laplace's Equation in plane polar coordinates

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

It is further given that $u(1, \theta)=\left\{\begin{array}{c}\pi-\theta \\ 0\end{array}\right.$ $0 \leq \theta \leq \pi$ otherwise

Determine a simplified expression for $u(r, \theta)$.
[You are expected to derive the general solution of the partial equation in variable separate form]

Question 12
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{1}=\Phi_{1}(r, \theta)$ and $\Phi_{2}=\Phi_{2}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{1}=0,0<r<1 \\
& \nabla^{2} \Phi_{2}=0, r \geq 1
\end{aligned}
$$

It is further given that

- $\left|\Phi_{1}(0, \theta)\right| \leq M, M \in \mathbb{R}$.
- $\lim _{r \rightarrow \infty}\left[\Phi_{2}(r, \theta)-r \cos \theta\right]=0$.
- $\quad \Phi_{1}(1, \theta)=\Phi_{2}(1, \theta)$.
- $\frac{\partial \Phi_{1}}{\partial r}(1, \theta)+3 \frac{\partial \Phi_{2}}{\partial r}(1, \theta)=0$.
b) Determine expressions for Φ_{1} and Φ_{2}.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right],
$$

$$
\Phi_{1}(r, \theta)=3 r \cos \theta, \Phi_{2}(r, \theta)=r \cos \theta+\frac{2}{r} \cos \theta
$$

Created by T. Madas

Question 13
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{1}=\Phi_{1}(r, \theta)$ and $\Phi_{2}=\Phi_{2}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{1}=0, r>1 \\
& \nabla^{2} \Phi_{2}=0,0<r<1 .
\end{aligned}
$$

It is further given that

- $\lim _{r \rightarrow \infty}\left[\Phi_{1}(r, \theta)-r \cos \theta\right]=2$.
- $\Phi_{1}(1, \theta)=\Phi_{2}(1, \theta)$.
- $1+\frac{\partial \Phi_{1}}{\partial r}(1, \theta)=\frac{\partial \Phi_{2}}{\partial r}(1, \theta)$.
- $\lim _{r \rightarrow 0}\left[r \Phi_{2}(r, \theta)-\cos \theta\right]=0$.
b) Determine expressions for Φ_{1} and Φ_{2}.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right]
$$

\square $\Phi_{1}(r, \theta)=2+\left(r+\frac{1}{r}\right) \cos \theta, \Phi_{2}(r, \theta)=2+\ln r+\left(r+\frac{1}{r}\right) \cos \theta$

Question 14
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{0}=\Phi_{0}(r, \theta)$ and $\Phi_{1}=\Phi_{1}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{0}=0, r>1 \\
& \nabla^{2} \Phi_{1}=0,0 \leq r<1 .
\end{aligned}
$$

It is further given that

- $\lim _{r \rightarrow \infty}\left[\Phi_{0}(r, \theta)-2 r \cos \theta\right]=0$.
- $\lim _{r \rightarrow 0}\left[r \Phi_{1}(r, \theta)\right]=0$
- $\Phi_{0}(1, \theta)+\Phi_{1}(1, \theta)=3$.
- $\frac{\partial \Phi_{0}}{\partial r}(1, \theta)=3 \frac{\partial \Phi_{1}}{\partial r}(1, \theta)$.
b) Determine expressions for Φ_{1} and Φ_{2}.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right],
$$

$$
\Phi_{0}(r, \theta)=\left(2 r-\frac{4}{r}\right) \cos \theta, \Phi_{1}(r, \theta)=3+2 r \cos \theta
$$

Question 15
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0 .
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{0}=\Phi_{0}(r, \theta)$ and $\Phi_{1}=\Phi_{1}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{0}=0, r>1 \\
& \nabla^{2} \Phi_{1}=0,0 \leq r \leq 1 .
\end{aligned}
$$

It is further given that

- $\lim _{r \rightarrow \infty}\left[\Phi_{0}(r, \theta)-r \cos \theta\right]=0$.
- $\Phi_{1}(0, \theta) \leq M, M \in \mathbb{R}$.
- $2 \Phi_{0}(1, \theta)+\Phi_{1}(1, \theta)=2 \pi$.
- $\frac{\partial \Phi_{0}}{\partial r}(1, \theta)=\frac{\partial \Phi_{1}}{\partial r}(1, \theta)$.
b) Determine expressions for Φ_{0} and Φ_{1}.

$$
\Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right] \text {, }
$$

$$
\Phi_{0}(r, \theta)=\left(r-\frac{3}{r}\right) \cos \theta, \Phi_{1}(r, \theta)=2 \pi+4 r \cos \theta
$$

Question 16
The function $\Phi=\Phi(r, \theta)$ satisfies Laplace's Equation in plane polar coordinates

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

a) Derive the general solution of the above equation, in variable separable form.

The functions $\Phi_{1}=\Phi_{1}(r, \theta), \Phi_{2}=\Phi_{2}(r, \theta)$ and $\Phi_{3}=\Phi_{3}(r, \theta)$ satisfy

$$
\begin{aligned}
& \nabla^{2} \Phi_{1}=0, r>2 \\
& \nabla^{2} \Phi_{2}=0,1<r<2 \\
& \nabla^{2} \Phi_{3}=0,0<r<1 .
\end{aligned}
$$

It is further given that

- $\lim _{r \rightarrow \infty}\left[\Phi_{1}(r, \theta)-r \cos \theta\right]=0$.
- $\frac{\partial \Phi_{1}}{\partial r}(2, \theta)=\frac{\partial \Phi_{2}}{\partial r}(2, \theta)=2 \cos \theta$.
- $\Phi_{2}(1, \theta)=\Phi_{3}(1, \theta)=\cos \theta$.
- $\lim _{r \rightarrow 0}\left[r \frac{\partial \Phi_{3}}{\partial r}(r, \theta)\right]=1$.
b) Determine expressions for Φ_{1}, Φ_{2} and Φ_{3}.

$$
\begin{aligned}
& \text { (} \Phi(r, \theta)=A+B \ln r+\sum_{n=1}^{\infty}\left[\left(C_{n} r^{n}+D_{n} r^{-n}\right) \cos n \theta+\left(E_{n} r^{n}+F_{n} r^{-n}\right) \sin n \theta\right], \\
& \Phi_{1}(r, \theta)=r \cos \theta-\frac{4}{r} \cos \theta, \Phi_{2}(r, \theta)=\frac{1}{5}\left(9 r-\frac{4}{r}\right) \cos \theta, \Phi_{3}(r, \theta)=\ln r+r \cos \theta
\end{aligned}
$$

Hace THA RNinerect soution is

$\Phi\left(r_{r} \theta\right)=t+B \ln r+\sum_{n=1}^{\infty}\left[G_{n}^{n} \cos \theta+D_{n} \overrightarrow{\cos \theta} \theta+E_{1}^{n}{ }^{n} \sin \theta+F_{1} r^{n} \sin \theta \theta\right]$
 canmast to ne Anewn

teneq covertion os $r \rightarrow \infty \quad \Phi(r, i \theta) \rightarrow r \cos \theta$ Hance $\begin{aligned} & A=B=0 \\ & \begin{array}{l}E_{n}=0 \\ C_{1}=1\end{array}, C_{n}=0 \quad n \geqslant 2\end{aligned}$ $\Phi_{1}\left(r_{0} \theta\right)=r \cos \theta+\sum_{n=1}^{\infty}\left[D_{r} r^{r} \cos \theta+F_{n} r^{r} \sin \theta \theta\right]$
Differarifle w.er r And they $\frac{\partial b_{1}}{\partial r}=\underline{2 \cos \theta} 4 r r-2$
$\frac{\partial \Phi_{1}}{\partial r}(r, \theta)=\cos \theta-\sum_{n=1}^{\infty}\left[n D_{n}+r_{10} \cos \theta \theta+n F_{n} r^{2} \sin \theta\right]$

Created by T. Madas

LAPLACE'S EQUATION

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0, \quad \Phi=\Phi(r, \theta, z)
$$

Three Dimensional in Cylindrical Polars

Question 1
The potential function $V=V(r, \theta, z)$ satisfies Laplace's equation in cylindrical polar coordinates, shown below.

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Use separation of variables to show that the radial part of the general solution of Laplace's equation in cylindrical polar coordinates, satisfies Bessel's equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0, n=0,1,2,3, \ldots
$$

- DiOLDE THE \{PuATON \&y $R(r) \theta(\theta) Z(z)$ \& RGAROANOE As foums
$\frac{R^{\prime \prime}(r)}{R(r)}+\frac{1}{r} \frac{R^{\prime}(r)}{R(r)}+\frac{1}{r^{2}} \frac{\theta^{\prime \prime}(\theta)}{\theta(\theta)}=-\frac{z^{\prime \prime}(z)}{z(z)}$

 AT THF Uों:
$\rightarrow R^{\prime \prime}(\mathrm{r})+\frac{R^{\prime}(r)}{2(r)}+\frac{1}{r^{2}} \frac{\theta^{\prime}(\theta)}{\theta^{\prime}}=k$
$\rightarrow \frac{R^{\prime \prime}(r)}{R(r)}+\frac{1}{r} \frac{R^{\prime}(r)}{R(r)}+\frac{1}{r^{2}} \frac{\theta^{\prime \prime}(\theta)}{\theta(\theta)}=k$
$\Rightarrow r^{2} \frac{R^{\prime \prime}(r)}{R(r)}+r \frac{R^{\prime}(r)}{R(r)}+\frac{\theta^{\prime}(\theta)}{\theta(\theta)}=k r^{2}$
$\Rightarrow r^{2} \frac{R^{\prime}(r)}{R(r)}+r \frac{R^{\prime}(r)}{R(r)}+k t^{2}=-\frac{\theta^{\prime}(t)}{\theta(0)}$

(IA) θ, so woking at THF Minvis of The RHS, we PI α A

$-\frac{\theta(\theta)}{\theta(\theta)}=p^{2}$
$\theta(\theta)=-p^{2} \theta(\theta)$
$\theta(\theta)=C \sin p \theta+D \operatorname{cosp} \theta$

- wolk Thar $P=0$ is $0, k$ \& π Prapucts $\theta(\theta)=A \theta+B$,

$\theta_{M}(\theta)=C_{4} \sin n \theta+D_{n} \cos n \theta$
$\theta(\theta)=\sum_{n=0}^{\infty}\left[C_{4} \sin n \theta+D_{1} \cos n \theta\right]$

$\Rightarrow r^{2} \frac{R^{\prime \prime}(r)}{R(r)}+\frac{r R^{\prime}(r)}{R(r)}+k r^{2}=n^{2} \quad n=0,1,2,3, \ldots$ $\Rightarrow r^{2} R^{\prime}(r)+r Q^{\prime}(r)+k r^{2} R(r)=h^{2} R(r)$ $\Rightarrow r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\left(k r^{2}-r^{2}\right) R(r)=0$ (whthat woks Mre istssel) quation)

