HEAT EQUATION $\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad \theta=\theta(x, t)$

Question 1
A thin rod of length 2 m has temperature $z=20^{\circ} \mathrm{C}$ throughout its length.
At time $t=0$, the temperature z is suddenly dropped to $z=0^{\circ} \mathrm{C}$ at both its ends at $x=0$, and at $x=2$.

The temperature distribution along the rod $z(x, t)$, satisfies the standard heat equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial t}, \quad 0 \leq x \leq 2, \quad t \geq 0
$$

Assuming the rod is insulated along its length, determine an expression for $z(x, t)$.
[You must derive the standard solution of the heat equation in variable separate form]
,$z(x, t)=\sum_{n=1}^{\infty}\left\{\frac{80}{\pi(2 n-1)} \exp \left[-\frac{\pi^{2}(2 n-1)^{2} t}{4}\right] \sin \left[\frac{(2 n-1) \pi x}{2}\right]\right\}$

Question 2
At time $t<0$, a long thin rod of length l has temperature distribution $\theta(x)$ given by

$$
\theta(x)=x l-x^{2} .
$$

At time $t=0$ the temperature is suddenly dropped to $0^{\circ} \mathrm{C}$ at both ends of the rod, and maintained at $0^{\circ} \mathrm{C}$ for $t \geq 0$.

The temperature distribution along the $\operatorname{rod} \theta(x, t)$ satisfies the standard heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq l, \quad t \geq 0
$$

where α is a positive constant.

Assuming the rod is insulated along its length, determine an expression for $\theta(x, t)$ and hence show that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}=\frac{\pi^{3}}{32}
$$

[You must derive the standard solution of the heat equation in variable separate form]

$$
\theta(x, t)=\sum_{n=1}^{\infty}\left\{\frac{8 l^{2}}{(2 n-1)^{3} \pi^{3}} \exp \left[-\frac{\alpha^{2} \pi^{2}(2 n-1)^{2} t}{l^{2}}\right] \sin \left[\frac{(2 n-1) \pi x}{l}\right]\right\}
$$

Created by T. Madas

Question 3

The temperature distribution $\theta(x, t)$ along a thin bar of length 2 m satisfies the partial differential equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{9} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq 2, \quad t \geq 0
$$

Initially the bar has a linear temperature distribution, with temperature $0^{\circ} \mathrm{C}$ at one end of the bar where $x=0 \mathrm{~m}$, and temperature $50^{\circ} \mathrm{C}$ at the other end where $x=2 \mathrm{~m}$.

At time $t=0$ the temperature is suddenly dropped to $0^{\circ} \mathrm{C}$ at both ends of the rod, and maintained at $0^{\circ} \mathrm{C}$ for $t \geq 0$.

Assuming the rod is insulated along its length, determine an expression for $\theta(x, t)$ and hence show that
[You must derive the standard solution of the heat equation in variable separate form]

$$
\theta(x, t)=\frac{100}{\pi} \sum_{n=1}^{\infty}\left\{\frac{(-1)^{n+1}}{n} \exp \left[-\frac{9 n^{2} \pi^{2} t}{4}\right] \sin \left[\frac{n \pi x}{2}\right]\right\}
$$

Created by T. Madas

Question 4
The temperature $\Theta(x, t)$ satisfies the one dimensional heat equation

$$
\frac{\partial^{2} \Theta}{\partial x^{2}}=4 \frac{\partial \Theta}{\partial t}
$$

where x is a spatial coordinate and t is time, with $t \geq 0$.

For $t<0$, two thin rods, of lengths 3π and π, have temperatures $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. At time $t=0$ the two rods are joined end to end into a single rod of length 4π.

The rods are made of the same material, have perfect thermal contact and are insulated along their length.

Determine an expression for $\Theta(x, t), t \geq 0$.
[You must derive the standard solution of the heat equation in variable separate form]

$$
\Theta(x, t)=25-\frac{200}{\pi} \sum_{n=1}^{\infty}\left[\frac{1}{n} \mathrm{e}^{-\frac{1}{4} n^{2} t} \sin \left(\frac{3}{4} n \pi\right) \cos \left(\frac{1}{4} n x\right)\right]
$$

Question 5
Solve the heat equation for $u=u(x, t)$

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}, \quad 0 \leq x \leq 5, \quad t \geq 0
$$

subject to the conditions

$$
u(0, t)=0, \quad u(5, t)=0 \quad \text { and } \quad u(x, 0)=\sin \pi x-37 \sin \left(\frac{1}{5} \pi x\right)+6 \sin \left(\frac{9}{5} \pi x\right)
$$

[You must derive the standard solution of the heat equation in variable separate form]

$$
u(x, t)=-37 \mathrm{e}^{-\frac{1}{25} \pi^{2} c^{2} t} \sin \left(\frac{1}{5} \pi x\right)+\mathrm{e}^{-\pi^{2} c^{2} t} \sin (\pi x)+6 \mathrm{e}^{-\frac{81}{25} \pi^{2} c^{2} t} \sin \left(\frac{9}{5} \pi x\right)
$$

\square

Question 6
A long thin rod of length L has temperature $\theta=0$ throughout its length.

At time $t=0$ the temperature is suddenly raised to T_{1} at both ends of the rod, at $x=0$ and at $x=L$.

Both ends of the rod are maintained at temperature T_{1} for $t \geq 0$.

The temperature distribution along the $\operatorname{rod} \theta(x, t)$ satisfies the standard heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

where α is a positive constant.

Assuming the rod is insulated along its length, determine an expression for $\theta(x, t)$.
[You must derive the standard solution of the heat equation in variable separate form]

$$
\theta(x, t)=T_{1}\left[1-\frac{4}{\pi} \sum_{n=1}^{\infty}\left\{\frac{1}{(2 n-1)} \exp \left[-\frac{\alpha^{2} \pi^{2}(2 n-1)^{2} t}{L^{2}}\right] \sin \left[\frac{(2 n-1) \pi x}{L}\right]\right\}\right]
$$

- Sowing the tifat equation By sepellion of unerabes trod
LEt $\cdot \theta(x, t)=X(x) T(t)$
$\frac{\partial \partial \theta}{\partial x^{2}}\left(x_{1} t\right)=X_{(x)}^{\prime \prime} T(t)$
$\frac{\partial \theta}{\partial x}(x, t)=X(x) T^{\prime}(t)$
- Sugstut inio the P. D.E
$\begin{aligned} \frac{\partial \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t} & \Rightarrow X^{\prime \prime}(x) T(t)=\frac{1}{\alpha^{2}} X^{\prime}(x) T^{\prime}(t) \\ & \Rightarrow \frac{X^{\prime}(x)}{X(x)}=\frac{1}{\alpha^{2}} \frac{T^{\prime}(t)}{T(t)}=\lambda \end{aligned}$
- If $\lambda=0$ $\left.\begin{array}{rl} X^{\prime \prime}(t)=0 \Rightarrow X(t)=A x+B \\ T^{\prime}(t)=0 \Rightarrow T(t)=C \end{array}\right\} \Rightarrow \begin{aligned} & \theta(x t)=(A+B) \times C \\ & \theta(x t)=A x+B \end{aligned}$
1. 5 stmor fow wither mimt Desmancy - If $\lambda>0$, say p^{2}
$\Rightarrow \frac{X^{\prime \prime}(x)}{X(z)}=p^{2} \quad \& \quad \Rightarrow \frac{1}{x^{2}} \frac{T^{\prime}(t)}{T(t)}=p^{2}$
$\Rightarrow X^{\prime \prime}(x)=p^{2} X^{\prime}(x) \quad \Rightarrow T^{\prime}(t)=\alpha^{2} p^{2} T(t)$
$\Rightarrow X(x)=A e^{p x}+B e^{-p x} \quad \Rightarrow T(t)=C e^{2 p^{2} t}$

Question 7
A long thin rod of length L has temperature $\theta=T_{1}$ throughout its length.

At time $t=0$ the temperature is suddenly raised to T_{2} at one of its ends at $x=0$, and is maintained at T_{2} for $t \geq 0$.

The temperature distribution along the $\operatorname{rod} \theta(x, t)$, satisfies the standard heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

where α is a positive constant.

Assuming the rod is insulated along its length, determine an expression for $\theta(x, t)$.
[You must derive the standard solution of the heat equation in variable separate form]

$$
\theta(x, t)=T_{2}+\frac{4\left(T_{1}-T 2\right)}{\pi} \sum_{n=1}^{\infty}\left\{\frac{1}{(2 n-1)} \exp \left[-\frac{\alpha^{2} \pi^{2}(2 n-1)^{2} t}{4 L^{2}}\right] \sin \left[\frac{(2 n-1) \pi x}{2 L}\right]\right\}
$$

Question 8
The temperature $u(x, t)$ satisfies the one dimensional heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{9} \frac{\partial u}{\partial t}, t \geq 0,0 \leq x \leq 2
$$

where x is a spatial coordinate and t is time.

It is further given that

$$
u(0, t)=0, \quad u(2, t)=8, \quad u(x, 0)=2 x^{2}
$$

Determine an expression for $u(x, t)$.
$\square, u(x, t)=4 x-\sum_{k=0}^{\infty}\left[\left[\frac{64}{(2 k+1)^{3} \pi^{3}}\right] \exp \left[-\frac{9(2 k+1)^{2} t}{4}\right] \sin \left[\frac{(2 k+1) \pi x}{2}\right]\right]$

$\begin{aligned} & \text { WTO THE P.D.E } \\ & \begin{aligned} u\left(x_{1} t\right)=X(x) T(t) & \left.\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=X_{(x)}^{\prime}\right) T(t) \\ & \left.\Rightarrow \frac{\partial u}{\partial t}=X(x) T_{(t)}^{\prime}\right) \end{aligned} \\ & \end{aligned}$	
	of The RD whel BF + unfre functan in Snct The TEuploatueg AT $x=0$ a at $x=$? is MHIN(ANH) AT 0 \& aT 8 Respetavey

Question 9
The temperature $u(x, t)$ in a thin rod of length π satisfies the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}, \quad 0 \leq x \leq \pi, \quad t \geq 0
$$

where c is a positive constant.

The initial temperature distribution of the rod is

$$
u(x, 0)=\frac{1}{2} \cos (4 x), 0 \leq x \leq \pi
$$

For $t \geq 0$, heat is allowed to flow freely along the rod, with the rod including its endpoints insulated.

Show that

$$
u(x, t)=\frac{1}{2} \mathrm{e}^{-16 c^{2} t} \cos 4 x
$$

[You must derive the standard solution of the heat equation in variable separate form]

Question 10
The temperature $\theta(x, t)$ in a thin rod of length L satisfies the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

The initial temperature distribution is

$$
\theta(x, 0)=\left\{\begin{array}{cl}
\frac{\theta_{0} x}{L} & 0 \leq x<\frac{L}{2} \\
0 & \frac{L}{2}<x \leq L
\end{array}\right.
$$

where θ_{0} is a constant.

The endpoints of the rod are maintained at zero temperature for $t \geq 0$.
a) Assuming the rod is insulated along its length, find an expression for $\theta(x, t)$.
b) By considering the initial temperature at $x=\frac{L}{2}$, show that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

[You must derive the standard solution of the heat equation in variable separate form]

$$
\theta(x, t)=\frac{\theta_{0}}{\pi^{2}} \sum_{n=1}^{\infty}\left\{\frac{1}{n^{2}}\left[2 \sin \left(\frac{n \pi}{2}\right)-n \pi \cos \left(\frac{n \pi}{2}\right)\right] \exp \left[-\frac{n^{2} \pi^{2} t}{L^{2}}\right] \sin \left[\frac{n \pi x}{L}\right]\right\}
$$

[solution overleaf]

$x<0$ say $a=2 p^{2}$	
$\frac{x^{\prime}(x)}{x(2)}=-p^{2}$	$\frac{T(t)}{T(t)}=-p^{2}$
$X^{\prime \prime}(x)=-p^{2} X^{(a)}$	$T^{\prime}(t)=-p^{2} T(t)$
$X(x)=4 \operatorname{cosp} x+\sin p x$	$T(t)=6 e^{-P^{2} t}$
Absistang conatools	$\underbrace{\text { Pt }}(\underbrace{\text { (tosp }+\operatorname{Ranpx})} \underbrace{(I I)}$
$\text { (a) } t \rightarrow \infty \quad \theta \rightarrow 0$	Tha II PREFGC So We Do 价)
Wit requile it solution in x, intiat probuces o twace ie it Tht GuDPGMTD of THE ROD	
Somaper Latmons	intiat conimial
$\begin{array}{ll} \theta(0, t)=0 \\ \theta(1, t)=0 & \text { (2) } \end{array} \quad(3) \theta(x, 0)= \begin{cases}\frac{\theta x}{L} & 0 \leq x<L / 2 \\ 0 & \frac{1}{2}<x \leqslant L\end{cases}$	
$\therefore \theta(x+t)=B e^{-p t} \sup x$	

\square
$\frac{A+B C(2)}{O=B}$
APPCY (B)
$\theta(x, 0)$ $B_{h}=\frac{1}{5 / 2}$
$B_{4}=\frac{2}{L} \int_{0}^{\frac{1}{2}} \frac{\theta_{0} x}{L} \sin \left(\frac{n \pi x}{L}\right) d x \quad\left(\right.$ (1ort $\left.\theta\left(x_{0}\right)=0 \quad F Q L \frac{1}{2} L<x \leqslant L\right)$ $B_{4}=\frac{2 \theta_{0}}{L^{2}} \int_{0}^{\frac{1}{2}} x \sin \left(\frac{4 \pi t}{L}\right) d$
 $B_{\eta}=\frac{2 Q_{0}}{L^{2}}\left\{\left[\frac{L x}{n \pi} \cos \frac{n \pi x}{L}\right]_{\frac{1}{2}}^{0}+\left[\frac{12}{L^{2} \pi} \sin \frac{n \pi x}{L}\right]_{0}^{\frac{1}{2}}\right\}$ $B_{y}=\frac{2 \theta_{0}}{L^{2}}\left[0-\frac{L^{2}}{2 \pi} \cos \left(\frac{n \pi}{2}\right)+\frac{L^{2}}{4^{2} \pi^{2}} \sin \frac{n \pi}{2}-0\right\}$ $B_{4}=\theta_{0}\left[\frac{2}{n^{2} \pi^{2}} \sin \frac{n \pi}{2}-\frac{1}{n \pi} \cos \frac{n \pi}{2}\right]$ $B_{1}=\frac{\theta_{0}}{n_{2}^{2} \pi^{2}}\left[2 \sin \frac{n \pi}{z}-n \pi \cos \frac{n \pi}{2}\right]$

$\therefore \theta(\underline{x}$	

$\sum \frac{\theta_{0}}{n^{2} \pi^{2}}\left[2 \sin \frac{n \pi}{2}-n \pi \cos \frac{n \pi}{2}\right] \sin \frac{n \pi}{2}$
\square
$\sum_{n=1}^{n=1}$
\qquad $=\sum_{k=1}^{\infty} \frac{2 \theta_{0}}{(2 m-1)^{2} \pi^{2}} \leftarrow 1,3,5,2 \ldots \quad 2 m-1$
 Anteatatis $\frac{\theta_{0}}{4}$ $\therefore \sum_{m=1}^{\infty} \frac{2 \theta_{0}}{T^{2}\left((2 m-1)^{2}\right.}=\frac{\theta_{0}}{4}$ $\frac{2 \theta_{0}}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\theta_{0}}{4}$ $\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{T^{2}}{8}$

Question 11
The temperature $\theta(x, t)$ in a long thin rod of length L satisfies the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

where α is a positive constant.

The initial temperature distribution of the rod is

$$
\theta(x, 0)=\sin \left(\frac{\pi x}{L}\right), 0 \leq x \leq L
$$

For $t \geq 0$, heat is allowed to flow freely with the endpoints of the rod insulated.

Show that

$$
\theta(x, t)=\frac{2}{\pi}-\frac{4}{\pi}<_{n=1}^{\infty}\left[\frac{\exp \left(-\frac{4 \alpha^{2} n^{2} \pi^{2} t}{L^{2}}\right) \cos \left(\frac{2 m \pi x}{L}\right)}{4 n^{2}-1}\right]
$$

[You must derive the standard solution of the heat equation in variable separate form]

Question 12
A long thin $\operatorname{rod} A B$, of length L, has constant temperature $\theta=0$ throughout its length. Another long thin rod $C D$, also of length L, has constant temperature $\theta=100$ throughout its length.

At time $t=0$ the temperature the ends B and C are brought into full contact, while the ends A and D are maintained at respective temperatures $\theta=0$ and $\theta=100$.

Show that, for $t \geq 0$, the temperature $\theta(t)$ of the point where the two rods are joined satisfies

Question 13
The one dimensional heat equation is given by

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

where α is a positive constant, known as the thermal diffusivity.
a) Obtain a general solution of the above equation by trying a solution in variable separable form.

A long thin rod $A B$, of length $2 L$, has its endpoints, at $x=0$ and $x=2 L$, maintained at constant temperature $\theta=0$ and its midpoint is maintained at temperature $\theta=100$, until a steady temperature distribution $\Theta(x)$ is reached throughout its length.
b) Show that

$$
\Theta(x)= \begin{cases}\frac{100}{L} x & 0 \leq x<L \\ \frac{100}{L}(2 L-x) & L<x \leq 2 L\end{cases}
$$

c) Prove that

$$
\int_{L}^{2 L} \Theta(x) \sin \left(\frac{n \pi x}{2 L}\right) d x=(-1)^{n+1} \int_{0}^{L} \Theta(x) \sin \left(\frac{n \pi x}{2 L}\right) d x
$$

At $t=0$, the heat source which was maintaining the midpoint of the rod at $\theta=100$ is removed, but its endpoints are still maintained at $\theta=0$. The rod is insulated throughout its length and allowed to cool.
d) Show that for $t \geq 0$, the temperature $\theta(t)$ of the midpoint of the rod satisfies

$$
\frac{800}{\pi^{2}} \sum_{n=0}^{\infty}\left[\frac{1}{(2 n+1)^{2}} \exp \left[-\frac{\alpha^{2} \pi^{2}(2 n+1)^{2} t}{4 L^{2}}\right]\right]
$$

$\square \rightarrow+$

HEAT EQUATION $\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}=\frac{1}{\alpha^{2}} \frac{\partial \theta}{\partial t}, \quad \theta=\theta(x, y, t)$

Two Dimensional

Question 1
The temperature distribution, $\theta(x, y, t)$, on a square plate satisfies the equation

$$
\nabla^{2} \theta=\frac{1}{\alpha^{2}} \frac{\partial z}{\partial t}, \quad 0 \leq x \leq L, \quad 0 \leq y \leq L, \quad t \geq 0 .
$$

Find a general solution for $\theta(x, y, t)$, which is periodic in x and in y.

Define any constants used.

$$
\theta(x, y, t)=\mathrm{e}^{-p^{2} \alpha^{2} t}[A \cos q x+B \sin q x][C \cos k y+D \sin k y], \quad p^{2}=q^{2}+k^{2}
$$

\square

HEAT EQUATION
Miscellaneous Questions

Question 1
The smooth function $u=u(x, t)$ satisfies the diffusion equation

$$
\frac{\partial^{2} u}{d x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u}{\partial t}
$$

where α is a positive constant.

Show by differentiation that $u(x, t)=A \operatorname{erf}\left(\frac{x}{2 \alpha \sqrt{t}}\right)$, where A is a non zero constant, satisfies the diffusion equation.

You may assume that

$$
\begin{aligned}
& \bullet \operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} \mathrm{e}^{-\xi} d \xi \\
& \bullet \frac{d}{d w}\left[\int_{0}^{w} f(z) d z\right]=f(w)
\end{aligned}
$$

Question 2
The function $u=u(x, t)$ satisfies the equation

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{d x^{2}}-2 u=0
$$

subject to the conditions

$$
u(0, t)=0, \quad u(1, t)=0 \quad \text { and } \quad u(x, 0)=1 .
$$

Use the substitution $u(x, t)=\mathrm{e}^{k t} w(x, t)$, with a suitable value for the constant k, to find a simplified expression for $u(x, t)$.

$$
u(x, t)=\frac{2 \mathrm{e}^{2 t}}{\pi} \sum_{n=1}^{\infty}\left[\frac{\exp \left[-(2 n-1)^{2} \pi^{2} t\right] \sin [(2 n-1) \pi x]}{2 n-1}\right]
$$

