PARTIAL

DIFFERENTIAL EQUATIONS

(by integral transformations)

Question 1
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation for $\hat{\varphi}(k, y)$, where $\hat{\varphi}(k, y)$ is the Fourier transform of $\varphi(x, y)$ with respect to x.

Question 2
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$
- $\varphi(x, 0)= \begin{cases}\frac{1}{2} & |x|<1 \\ 0 & |x|>1\end{cases}$

Use Fourier transforms to show that

$$
\varphi(x, y)=\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{k} \mathrm{e}^{-k y} \sin k \cos k x d k
$$

and hence deduce the value of $\varphi(\pm 1,0)$.
\square
, $\varphi(\pm 1,0)=\frac{1}{4}$

START BY TATING THE FOURGG TRANGFOEM OF THE P.D.E IN x

Question 3
The function $\psi=\psi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\psi(x, 0)=\delta(x)$
- $\psi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\psi(x, y)=\frac{1}{\pi}\left(\frac{y}{x^{2}+y^{2}}\right)
$$

\square , proof

Saminc latacts givation	
$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0$	
- $\psi\left(x_{0}\right)=\delta(x)$ - $\psi(x, y) \rightarrow 0 A \sqrt{x^{2}+y^{2}} \rightarrow \infty$	

$\Rightarrow F\left[\frac{\partial^{2} \psi}{\partial x^{2}}\right]+F\left[\frac{\partial^{2} \psi}{\partial y^{2}}\right]=F[0]$ $\Rightarrow(i k)^{2} \hat{\psi}(k y)+\frac{\partial^{2}}{\partial y^{2}}[\hat{\psi}(k, y)]=0$ $\Rightarrow \frac{\partial^{2} \hat{\psi}}{\partial y^{2}}-k^{2} \hat{\psi}=0 \quad, \hat{\psi}=\hat{\psi}(k, y)$

 whus TiAT $B(x)=0$
$\Rightarrow \hat{\psi}(k, y)=A(t) e^{-(k) y}$ N(xTT WE TALE THE Fuverte TeAnsfoem of Tit Conorton $\psi(x, 0)$ - $\delta(x)$ $\begin{aligned} \psi\left(\lambda_{0}\right)=\delta(x) \Rightarrow \hat{\psi}\left(k_{0}\right)=\mp(\delta(x)) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \delta(()) e^{-i k x} d \psi \\ & =\frac{1}{\sqrt{2 \pi}} \times e^{-i k x o}=\frac{1}{\sqrt{\pi}}\end{aligned}$

Question 4
The function $u=u(x, t)$ satisfies the partial differential equation

$$
\frac{\partial u}{\partial t}+\frac{1}{3} \frac{\partial^{3} u}{\partial x^{3}}=0
$$

It is further given that

- $u(x, 0)=\delta(x)$
- $u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
u(x, t)=\frac{1}{t^{\frac{1}{3}}} \mathrm{Ai}\left(\frac{x}{t^{\frac{1}{3}}}\right)
$$

where the $\operatorname{Ai}(x)$ is the Airy function, defined as

Question 5
The function $\Phi=\Phi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\Phi(x, 0)=\delta(x)$
- $\Phi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to find the solution of the above partial differential equation and hence show that

$$
\delta(x)=\lim _{\alpha \rightarrow 0}\left[\frac{1}{\pi \alpha}\left(1+\frac{y^{2}}{\alpha^{2}}\right)^{-1}\right]
$$

Question 6
The function $u=u(t, y)$ satisfies the partial differential equation

$$
\frac{\partial u}{\partial t}+y \frac{\partial u}{\partial y}=y, t \geq 0, y>0
$$

subject to the following conditions
i. $u(0, y)=1+y^{2}, y>0$
ii. $u(t, 0)=1, t \geq 0$

Use Laplace transforms in t to show that

$$
u(t, y)=1+y-y \mathrm{e}^{-t}+y^{2} \mathrm{e}^{-2 t}
$$

\square , proof

NEXT WE repy Tff pownared coupinas $u(t, 0)=1$
$\Rightarrow u\left(t_{p}\right)=1$ $\Rightarrow \bar{u}\left(s_{0}\right)=\frac{1}{\delta}$

$$
\begin{aligned}
\rightarrow \frac{1}{y}=\frac{1}{s}+\frac{1}{3+2} \times 0^{2}+\frac{1}{3(x+5)^{2}} \times 0 & +A(5) \times 0^{-5} \\
& \times \frac{1}{o^{2}} \rightarrow \infty
\end{aligned}
$$

$$
\therefore \bar{u}(s, y)=\frac{1}{s}+\frac{1}{\delta+2} y^{2}+\frac{1}{\frac{s}{s}(s+1)} y
$$

INUREting By partiat fractions a insesenon
$\bar{u}(s, y)=\frac{1}{s}+\frac{1}{s+2} y^{2}+\left(\frac{1}{s}-\frac{1}{s+1}\right) y$ $\bar{u}(f, y)=\frac{1}{\$}(1+y)+\frac{1}{y+2} y^{2}-\frac{1}{\$+1} y$
$u(t, y)=1+y+e^{-2 t} y^{2}-e^{-t} y$
$\Rightarrow \frac{\partial}{\partial y}\left[\bar{u} y^{s}\right]=y^{s}\left(\frac{1}{y}+y+\frac{1}{s}\right)$
// + Repureno

Created by T. Madas

Question 7
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $x \geq 0$ and $y \geq 0$.

It is further given that

- $\varphi(x, 0)=\frac{1}{1+x^{2}}$
- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$
- $\frac{\partial}{\partial x}[\varphi(x, 0)]=0$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that
\square

Question 8
The function $z=z(x, t)$ satisfies the partial differential equation

$$
\frac{\partial u}{\partial x}=2 \frac{\partial z}{\partial t}+z, \quad x \geq 0, \quad t \geq 0
$$

subject to the following conditions
i. $z(x, 0)=6 \mathrm{e}^{-3 x}, x>0$.
ii. $z(x, t)$, is bounded for all $x \geq 0$ and $t \geq 0$.

Find the solution of partial differential equation by using Laplace transforms.
\square

$$
z(x, t)=6 \mathrm{e}^{-(3 x+2 t)}
$$

\square
\square

- taking lnacuce teanaseems of the P.D.E W.RT t
$\Rightarrow \mathcal{L}\left[\frac{\partial z}{\partial x}\right]=\mathcal{L}\left[2 \frac{\partial z}{\partial t}\right]+\mathcal{L}[z]$
$\Rightarrow \frac{\partial}{\partial x} \bar{z}=2\left[\bar{s} \bar{z}-z\left(x_{0}\right)\right]+\vec{z}$
$\Rightarrow \frac{\partial \vec{z}}{\partial x}=2 \dot{\bar{s}} \hat{z}-12 e^{-3 x}+\bar{z}$
$\Rightarrow \frac{\partial \bar{z}}{\partial x}-(2 \bar{x}+1) \bar{z}=-12 e^{-3 x}$

- Htwle we वRTATN
$\Rightarrow \frac{\partial}{\partial x}\left[\bar{z} e^{-\left(x x^{2}+1\right) x}\right]=-12 e^{-3 x} e^{-(2 x+1) x}$
$\Rightarrow \frac{\partial}{\partial x}\left[\hat{z} e^{-(2 s+1) x}\right]=-12 e^{-(2 s+4) x}$
$\Rightarrow \quad \bar{z} e^{-2(x+1) x}=\int-12 e^{-(22 s+4) x} d x$

$$
\Rightarrow z e^{-2(s+1) x}=\frac{12}{2 s+4} e^{-(s)+4) x}+A(s)
$$

Created by T. Madas

Question 9

$$
\theta(x)=8 \sin (2 \pi x), 0 \leq x \leq 1
$$

The above equation represents the temperature distribution $\theta^{\circ} \mathrm{C}$, maintained along the 1 m length of a thin rod.

At time $t=0$, the temperature θ is suddenly dropped to $\theta=0^{\circ} \mathrm{C}$ at both the ends of the rod at $x=0$, and at $x=1$, and the source which was previously maintaining the temperature distribution is removed.

The new temperature distribution along the $\operatorname{rod} \theta(x, t)$, satisfies the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial \theta}{\partial t}, \quad 0 \leq x \leq 1, \quad t \geq 0
$$

Use Laplace transforms to determine an expression for $\theta(x, t)$.
\square $\theta(x, t)=8 \mathrm{e}^{-4 \pi^{2} t} \sin (2 \pi x)$

Created by T. Madas

Question 10
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the semi-infinite region of the $x-y$ plane for which $y \geq 0$.

It is further given that

$$
\begin{aligned}
& \varphi(x, 0)=f(x) \\
& \varphi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty
\end{aligned}
$$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\varphi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(x-u)}{u^{2}+y^{2}} d u
$$

, proof

Question 11
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the semi-infinite region of the $x-y$ plane for which $y \geq 0$.

It is further given that for a given function $f=f(x)$

- $\frac{\partial}{\partial y}[\varphi(x, 0)]=\frac{\partial}{\partial x}[f(x)]$
- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

Created by T. Madas

Question 12
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0, \quad-\infty<x<\infty, y \geq 0 .
$$

It is further given that

$$
\varphi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty
$$

- $\varphi(x, 0)=\mathrm{H}(x)$, the Heaviside function.

Use Fourier transforms to show that

$$
\varphi(x, y)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{y}\right)
$$

You may assume that

$$
\mathcal{F}[\mathrm{H}(x)]=\frac{1}{\sqrt{2 \pi}}\left[\pi \delta(k)+\frac{1}{\mathrm{i} k}\right]
$$

Question 13
The temperature $\theta(x, t)$ in a semi-infinite thin rod satisfies the heat equation

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{\partial \theta}{\partial t}, \quad x \geq 0, \quad t \geq 0
$$

The initial temperature of the rod is $0^{\circ} \mathrm{C}$, and for $t>0$ the endpoint at $x=0$ is maintained at $T^{\circ} \mathrm{C}$.

Assuming the rod is insulated along its length, use Laplace transforms to find an expression for $\theta(x, t)$.

You may assume that

- $\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-\sqrt{s}}}{s}\right]=\operatorname{erfc}\left(\frac{1}{2 \sqrt{t}}\right)$
- $\mathcal{L}^{-1}[\bar{f}(k s)]=\frac{1}{k} f\left(\frac{t}{k}\right)$, where k is a constant.

$$
\theta(x, t)=\frac{2 T}{\sqrt{\pi}} \int_{\frac{x}{2 \alpha \sqrt{t}}}^{\infty} \mathrm{e}^{-u^{2}} d u=T \operatorname{erfc}\left(\frac{x}{2 \alpha \sqrt{t}}\right)
$$

\square

- TALMNG THE LTACACC TRANSGORM of THE P.D.E, W.R.T t
$\Rightarrow \mathcal{L}\left[\frac{\partial^{2} \theta}{\partial x^{2}}\right]=\frac{1}{\alpha^{2}} \mathcal{L}\left[\frac{\partial \theta}{\partial t}\right]$
$\Rightarrow \frac{\partial}{\partial x^{2}}\left[\alpha[\theta]=\frac{1}{\alpha^{2}}[\delta \alpha[\theta]-\theta(x(0)]\right.$
$\Rightarrow \frac{\partial \bar{\theta}}{\partial \alpha^{2}}=\frac{S}{\alpha^{2}} \bar{\theta}$

$\Rightarrow \bar{\theta}(x, y)=A(s) e^{\frac{1}{x} x}+B(\bar{y}) e^{-\frac{x}{x} x}$
- As sourton othunt Be ingrownors $A n x \rightarrow \infty, A(x)=0, \sin C E$
$\Rightarrow \quad \bar{\theta}\left(x_{j} \beta\right)=B(\beta) e^{-\frac{\sqrt{s}}{\alpha} x} \quad \begin{aligned} & \bar{\theta}\left(x_{1}, \beta\right) \text { CANNor AHSO BG on } \\ & \text { As } x \rightarrow \infty\end{aligned}$
 $\theta(0, t)=T$
$d[\theta(a, t]=d[T]$ $\bar{\theta}(0, s)=\frac{T}{\lessgtr}$
Hhace If $x=0$
$\theta(p ; s)=B(t) e^{\theta}$
$\Rightarrow \vec{\theta}(x, s)=\frac{T}{s} e^{\frac{-\sqrt{s} x}{x}}$

Created by T. Madas

Question 14

The function $u=u(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad-\infty<x<\infty, \quad 0<y<1
$$

It is further given that

- $u(x, 0)=0$
- $u(x, 1)=f(x)$
where $f(-x)=f(x)$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$
a) Use Fourier transforms to show that

$$
u(x, y)=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{\hat{f}(k) \cos k x \sinh k y}{\sinh k} d k, \hat{f}(k)=\mathcal{F}[f(x)] .
$$

b) Given that $f(x)=\delta(x)$ show further that

$$
u(x, y)=\frac{\sin \pi y}{2[\cosh \pi x+\cos \pi y]}
$$

You may assume without proof

$$
\int_{0}^{\infty} \frac{\cos A u \sinh B u}{\sinh C u} d u=\frac{\pi}{2 C}\left[\frac{\sin (B \pi / C)}{\cosh (A \pi / C)+\cos (B \pi / C)}\right], 0 \leq B<C
$$

Question 15
The function $\psi=\psi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

$$
\begin{aligned}
& \text { - } \psi(x, 0)=f(x) \\
& \text { - } \psi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty
\end{aligned}
$$

c) Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\psi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(u)}{(x-u)^{2}+y^{2}} d u
$$

d) Evaluate the above integral for ...
i. $\quad . \quad f(x)=1$.
ii. $\ldots f(x)=\operatorname{sgn} x$
iii. ... $f(x)=\mathrm{H}(x)$
commenting further whether these answers are consistent.

$$
\psi(x, y)=1, \psi(x, y)=\frac{2}{\pi} \arctan \left(\frac{x}{y}\right), \psi(x, y)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{y}\right)
$$

Question 16
The function $u=u(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $x \geq 0$ and $y \geq 0$.

It is further given that

- $u(0, y)=0$

$$
\begin{aligned}
& \text { - } u(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
& \text { - } u(x, 0)=f(x), f(0)=0, f(x) \rightarrow 0 \text { as } x \rightarrow \infty
\end{aligned}
$$

Use Fourier transforms to show that

$$
u(x, y)=\frac{y}{\pi} \int_{0}^{\infty} f(w)\left[\frac{1}{y^{2}+(x-w)^{2}}-\frac{1}{y^{2}+(x+w)^{2}}\right] d w
$$

Created by T. Madas

(9) $u(x, y)=\frac{1}{\pi} \int_{0}^{\infty} f(w)\left[\frac{y}{y^{2}+\left((-w)^{2}\right.}-\frac{y}{y^{2}+(x+w)^{2}}\right] d w$
$u(x, y)=\frac{y}{\pi} \int_{0}^{\infty} f(w)\left[\frac{1}{y^{2}+(x-w)^{2}}-\frac{1}{y^{2}+(x+m)^{2}}\right]$

Created by T. Madas

Question 17
The function $\theta=\theta(x, t)$ satisfies the heat equation in one spatial dimension,

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\sigma^{2}} \frac{\partial \theta}{\partial t}, \quad-\infty<x<\infty, t \geq 0
$$

where σ is a positive constant.

Given further that $\theta(x, 0)=f(x)$, use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\theta(x, t)=\frac{1}{2 \sigma \sqrt{\pi t}} \int_{-\infty}^{\infty} f(x-u) \exp \left(\frac{u^{2}}{4 t \sigma^{2}}\right) d u
$$

Created by T. Madas

Question 18

The function $T=T(x, t)$ satisfies the heat equation in one spatial dimension,

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\sigma} \frac{\partial \theta}{\partial t}, \quad x \geq 0, t \geq 0
$$

where σ is a positive constant.

It is further given that

- $\quad T(x, 0)=f(x)$
- $T(0, t)=0$
- $T(x, t) \rightarrow 0$ as $x \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
T(x, t)=\frac{1}{\sqrt{4 \pi \sigma t}} \int_{-\infty}^{\infty} f(u) \exp \left[\frac{(x-u)^{2}}{4 t \sigma}\right] d u
$$

You may assume that $\mathcal{F}\left[\mathrm{e}^{a x^{2}}\right]=\frac{1}{\sqrt{2 a}} \mathrm{e}^{\frac{k^{2}}{4 a}}$.

Question 19
The one dimensional heat equation for the temperature, $T(x, t)$, satisfies

$$
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{\sigma} \frac{\partial T}{\partial t}, t \geq 0
$$

where t is the time, x is a spatial dimension and σ is a positive constant.

The temperature $T(x, t)$ is subject to the following conditions.
i. $\quad \lim _{x \rightarrow \infty}[T(x, t)]=0$
ii. $T(0, t)=1$
iii. $T(x, 0)=0$
a) Use Laplace transforms to show that

$$
\mathcal{L}[T(x, t)]=\bar{T}(x, s)=\frac{1}{s} \exp \left[-\sqrt{\frac{s}{\sigma}} x\right]
$$

b) Use contour integration on the Laplace transformed temperature gradient $\frac{\partial}{\partial x}[\bar{T}(x, s)]$ to show further that

$$
T(x, t)=1-\operatorname{erf}\left[\frac{x}{\sqrt{4 \sigma t}}\right] .
$$

You may assume without proof that

- $\int_{0}^{\infty} \mathrm{e}^{-a x^{2}} \cos k x d x=\sqrt{\frac{\pi}{4 a}} \exp \left[-\frac{k^{2}}{4 a}\right]$
- $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-\xi^{2}} d \xi$

\square , proof
[solution overleaf]

Created by T. Madas

