PARTIAL DIFFERENTIAL

EQUATIONS

Question 1
The smooth function $f=f(x, y)$ satisfies

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}
$$

Find the general solution of the above partial differential equation by using the transformation equations

Question 2
The smooth function $z=z(x, y)$ satisfies

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x y
$$

Find the general solution of the above partial differential equation by using the transformation equations
$z(x, y)=\frac{1}{4}\left(x^{2}+y^{2}\right)+f\left(x^{2}-y^{2}\right)$

Question 3
The smooth function $z=z(x, y)$ satisfies

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=6(x+y)^{2} z^{2}
$$

Find the general solution of the above partial differential equation by using the transformation equations

Question 4
The smooth function $z=z(x, y)$ satisfies

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1
$$

Find the general solution of the above partial differential equation by using the transformation equations

$$
x=u^{2}+v^{2} \quad \text { and } \quad y=u^{2}-v^{2}
$$

\square

$$
z(x, y)=\frac{1}{2}(x+y)+f(\sqrt{x-y})
$$

	$\left.\begin{array}{l} x+y=2 u^{2} \\ x-y=2 v^{2} \end{array}\right\} \rightarrow$
	$\left.\begin{array}{l} u^{2}=\frac{1}{2} x+\frac{1}{2} y \\ v^{2}=\frac{2}{2}=-\frac{1}{2} y \end{array}\right\} \rightarrow$
Susasturit Wh THf P. P. E.	
$\Rightarrow \frac{2 z}{2 x}=2 u$	

\square

Question 5

$$
(x+y) \frac{\partial z}{\partial x}+(y-x) \frac{\partial z}{\partial y}=0
$$

Transform the above partial differential equation using the equations

$$
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=0
$$

Created by T. Madas

Question 6

The function z depends on x and y so that

$$
z=f(u, v), \quad u=x-2 \sqrt{y} \quad \text { and } \quad v=x+2 \sqrt{y}
$$

Show that the partial differential equation

$$
2 \frac{\partial^{2} z}{\partial x^{2}}-2 y \frac{\partial^{2} z}{\partial y^{2}}-\frac{\partial z}{\partial y}=0
$$

can be simplified to

$$
\frac{\partial^{2} z}{\partial u \partial v}=0
$$

Created by T. Madas

Question 7

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

The above partial differential equation is Laplace's equation in a two dimensional Cartesian system of coordinates.

Show clearly that Laplace's equation in the standard two dimensional Polar system of coordinates is given by

$$
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=0 .
$$

Question 1
It is given that $z=F(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial y}+2 y z=x y^{3}
$$

Determine a general solution of the above partial differential equation.FIRST ORDER P.D.E.s
(by linear transformations)

$$
A \frac{\partial z}{\partial x}+B \frac{\partial z}{\partial y}+C z=G(x, y), \quad z=z(x, y)
$$

Question 1
It is given that $\psi=\psi(x, y)$ satisfies the partial differential equation

$$
3 \frac{\partial \psi}{\partial x}-4 \frac{\partial \psi}{\partial y}=x^{2}
$$

Use the transformation equations

$$
\xi=A x+B y \quad \text { and } \quad \eta=C x+D y, \quad A D-B C \neq 0
$$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.
\square , $\psi(x, y)=\frac{1}{9} x^{3}+f(4 x+3 y)$

Question 2
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=z
$$

Use the transformation equations

$$
u=a x+b y \quad \text { and } \quad v=c x+d y, \quad a d-b c \neq 0
$$

in order to determine a general solution of the above partial differential equation, showing further that this general solution is independent of the choice of values of the constants of a, b, c and d.

Question 3
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}+z=x
$$

Use the transformation equations

$$
\xi=A x+B y \quad \text { and } \quad \eta=C x+D y, \quad A D-B C \neq 0
$$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.

Question 4
It is given that $\varphi=\varphi(x, y)$ satisfies the partial differential equation

$$
\frac{\partial \varphi}{\partial x}-\frac{\partial \varphi}{\partial y}=\sin x+\cos y
$$

Use the transformation equations

$$
u=a x+b y \quad \text { and } \quad v=c x+d y, \quad a d-b c \neq 0
$$

with suitable values of a, b, c and d, in order to determine a general solution of the above partial differential equation.

$$
\varphi(x, y)=F(x+y)-\cos x-\sin y
$$

$u=a x+b y \quad a d-b c \neq 0$ $v=c x+d y \quad$$\quad$ $\frac{z^{2}}{2 x}=c \quad \frac{z^{2}}{\partial u}=d$ SUB NND THE D.DE $(a-b) \frac{b}{\partial x}+(c-c) \frac{3}{\partial x}=\sin x+\cos y$ - buora of $\frac{12}{\partial 0}$ oy $\left.\begin{array}{l}a=1 \\ b=0 \\ c=1 \\ d=1\end{array}\right\} \Rightarrow\left\{\begin{array}{l}u=a \\ v=x+y\end{array}\right\}$	- Thus $\frac{\partial \phi}{\partial u}=\sin u+\cos (v-u)$ $\phi(u, v)=-\cos u-\sin (v-u)+f(v)$ Thus $\phi(x, y)=-\cos x-\sin y+t(x+y)$ $\phi(y, y)=f(a t y)-\cos x-\operatorname{syn} y$

Question 5
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}-2 z+4 y^{2}-22 y+4 x+13=0
$$

Use the transformation equations

$$
u=a x+b y \quad \text { and } \quad v=c x+d y, \quad a d-b c \neq 0
$$

with suitable values of a, b, c and d, in order to determine a general solution of the above partial differential equation.

$$
z=2 y^{2}+2 x-5 y+\mathrm{e}^{2 x} f(3 x-y)
$$

\square
\square

Question 6
It is given that $\varphi=\varphi(x, y)$ satisfies the partial differential equation

$$
2 \frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}+6 \varphi=37 \sin y
$$

Use the transformation equations

$$
u=A x+B y \quad \text { and } \quad v=C x+D y, \quad A D-B C \neq 0
$$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.

$$
\varphi(x, y)=6 \sin y-\cos y+\mathrm{e}^{-3 x} f(x-2 y)=6 \sin y-\cos y+\mathrm{e}^{-6 y} g(x-2 y)
$$

Question 7
It is given that $\varphi=\varphi(x, y, z)$ satisfies the partial differential equation

$$
\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}+\frac{\partial \varphi}{\partial z}=\varphi
$$

Use the transformation equations
$u=a_{1} x+b_{1} y+c_{1} z, \quad v=a_{2} x+b_{2} y+c_{2} z$ and $\quad w=a_{3} x+b_{3} y+c_{3} z$,
where $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \neq 0$,
in order to determine a general solution of the above partial differential equation.

$$
\varphi(x, y, z)=f[x-y, y-z] \mathrm{e}^{x}
$$

12

FIRST ORDER P.D.E.S
(by transformations)

$$
\begin{aligned}
& A(x, y) \frac{\partial z}{\partial x}+B(x, y) \frac{\partial z}{\partial y}+C(x, y) z=G(x, y) \\
& z=z(x, y)
\end{aligned}
$$

Question 1
It is given that $\psi=f(x, y)$ satisfies the partial differential equation

$$
x^{2} \frac{\partial \psi}{\partial x}-x y \frac{\partial \psi}{\partial y}+y \psi=0
$$

Use the transformation equations

$$
u=u(x, y) \quad \text { and } \quad v=v(x, y)
$$

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

Question 2
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x \frac{\partial z}{\partial x}-7 y \frac{\partial z}{\partial y}=5 x^{2} y
$$

Use the transformation equations

$$
u=u(x, y) \quad \text { and } \quad v=v(x, y),
$$

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

Created by T. Madas

Question 3

It is given that $\varphi=\varphi(x, y)$ satisfies the partial differential equation

$$
2 \frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}+6 \varphi=37 \sin y .
$$

Use the transformation equations

$$
u=u(x, y) \quad \text { and } \quad v=v(x, y),
$$

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

$$
\varphi(x, y)=6 \sin y-\cos y+\mathrm{e}^{-3 x} f(x-2 y)=6 \sin y-\cos y+\mathrm{e}^{-6 y} g(x-2 y)
$$

Question 4
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x y \frac{\partial z}{\partial x}-x^{2} \frac{\partial z}{\partial y}+y z=3 x^{2} y
$$

Use the transformation equations

$$
u=u(x, y) \quad \text { and } \quad v=v(x, y),
$$

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

FIRST ORDER P.D.E.s
(by Lagrange's method)

$$
P(x, y, z) \frac{\partial z}{\partial x}+Q(x, y, z) \frac{\partial z}{\partial y}=R(x, y, z), z=z(x, y)
$$

Question 1
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=\cos (x+y)
$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

Question 2
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}+z=x
$$

Use Lagrange's method to determine the general solution of the above partial differential equation.

Question 3
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x \frac{\partial z}{\partial x}=y \frac{\partial z}{\partial y}
$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

Question 4
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}=6 z
$$

Use Lagrange's method to show that the general solution of the above partial differential equation can be written as

$$
z(x, y)=\mathrm{e}^{6 x} g(3 x-y)
$$

where g is an arbitrary function of $3 x-y$.

Question 5
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=z^{2}
$$

(
Use Lagrange's method to determine the general solution of the above partial differential equation.

Question 6
It is given that $\varphi=\varphi(x, y)$ satisfies the partial differential equation

$$
\frac{\partial \varphi}{\partial x} \sec x+\frac{\partial \varphi}{\partial y}=\cot y
$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

Question 7
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x} \sec x+\frac{\partial z}{\partial y}=\cos y
$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

Question 8
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial y}=\tanh (x+y) .
$$

Use Lagrange's method to determine the general solution of the above partial differential equation.

Question 9
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\begin{equation*}
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}+x^{2}+y^{2}=0 \tag{sis}
\end{equation*}
$$

Use Lagrange's method to determine the general solution of the above partial differential equation.

Question 10
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
z \frac{\partial z}{\partial x}+z \frac{\partial z}{\partial y}=y-x
$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

Question 11
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
(y-x) \frac{\partial z}{\partial x}+(y+x) \frac{\partial z}{\partial y}=\frac{x^{2}+y^{2}}{z}
$$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.

$$
z^{2}=y^{2}-x^{2}+f\left[2 y^{2}-(x+y)^{2}\right]
$$

\square

Question 12
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x(y-z) \frac{\partial z}{\partial x}+y(z-x) \frac{\partial z}{\partial y}=z(x-y)
$$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.
$x+y+z=f(x y z)$ or $\quad x y z=g(x+y+z)$
$P(x, y, z) \quad Q(x, y, z) \quad R(x, y, z)$

 $\frac{d x+d y+d z}{(x y-x z)+(y z-g z)+(z x-z y)}=\frac{d x}{x y-x z} \leftarrow$ te in fix Any of THe $\frac{d x+d y+d z}{0}=\frac{d x}{x y-x z}$
To Pe "LeANHNCFDL' THE RATO MOTT BL \div
$\Rightarrow x$

- Neto marifer renifmonitip
$\rightarrow \frac{y d x+x d y}{y(y y-x z)+x(y z-y x)}=\frac{d x}{z x-z y}\left\{\begin{array}{l}\Rightarrow \frac{x y}{x y}=\frac{d z}{-} \\ \Rightarrow \frac{d x}{x}+\frac{d y}{y}=\frac{d z}{-z}\end{array}\right.$
$\rightarrow \frac{y d x+x d y}{x y^{2}-x y z+x y z-x^{2} y}=\frac{d z}{z(x-y)}\{\rightarrow \ln x+\ln y=-\ln z+D$
$\Rightarrow \frac{y d x+x d y}{x y(y-x)}=\frac{d z}{z(x-y)}\left\{\begin{array}{cc}\Rightarrow \ln (x y)=\ln \left(\frac{E}{z}\right) \\ x y z=E\end{array}\right.$
a. Th|E $\left.\begin{array}{rl}u(x, y, z) & =x y+2 \\ v(x, y, z) & =x y z\end{array}\right\} \Rightarrow \operatorname{cav}(x, x)$ sounta) is $F(u, v)=0$ l.E $u=f(v) \triangleq g=g(u)$ $\rightarrow 21 y+z-f(x y z)$

Question 13
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x\left(y^{2}-z^{2}\right) \frac{\partial z}{\partial x}+y\left(z^{2}-x^{2}\right) \frac{\partial z}{\partial y}=z\left(x^{2}-y^{2}\right)
$$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.

$$
x y z=f\left(x^{2}+y^{2}+z^{2}\right) \text { or } x^{2}+y^{2}+z^{2}=g(x y z)
$$

\square

Question 14
The surface S has Cartesian equation

$$
z=f(x, y)
$$

The tangent plane at any point on S passes through the point $(0,0,-1)$.
a) Show that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}-z=1
$$

b) Hence find the general expression for an equation for S.

8
FIRST ORDER P.D.E.s
(Boundary Value Problems)

$$
P(x, y, z) \frac{\partial z}{\partial x}+Q(x, y, z) \frac{\partial z}{\partial y}=R(x, y, z), \quad z=z(x, y)
$$

Question 1

$$
\frac{\partial z}{\partial x}+\frac{1}{2} \frac{\partial z}{\partial t}=\cos x
$$

Solve the above partial differential equation given that $z=z(x, t)$ and further satisfies the initial condition $z(x, 0)=0$.

$$
z(x, y)=\sin x-\sin (x-2 t)
$$

Question 2
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=2 z(x+y)
$$

a) Use the transformation equations

$$
u=x+y \text { and } v=x-y
$$

to find a general solution for the above partial differential equation.
b) Given further that when $z(x, y)=x^{2}$ at $x+y=1$, find the value of $z(1,0)$.
\square $z(x, y)=g(x-y) \mathrm{e}^{\frac{1}{2}(x+y)^{2}}, z(1,0)=1$

b) xapyivis tite boundney conation
$u=x+y$
PEELUATIUGS BY THE QTHNN ROLE
wition $x+y=1 \quad z(x, y)=x^{2}$
$\Rightarrow z(x, y)=f(x-y) e^{\frac{z}{z}(x+y)^{2}}$
$\Rightarrow x^{2}=f[x-(1-x)] e^{\frac{1}{2}(1)^{2}}$
$\Rightarrow x^{2}=f(2 x-1) e^{\frac{1}{2}}$

- Now Let $w=2 x-1 \Leftrightarrow x=\frac{1}{2}(w+1)$
$\Rightarrow \frac{1}{4}(x+1)^{2}=f(x) e^{\frac{1}{2}}$
$\Rightarrow f(x)=t e^{-\frac{1}{2}}(w+1)^{2}$
$\Rightarrow f(x-y)=\frac{1}{4} e^{-\frac{1}{2}}(x-y+1)^{2}$
- Hence THe speafic soution is
$Z(x, y)=\frac{1}{4}(x-y+1)^{2} e^{-\frac{1}{2}} \times e^{\frac{1}{2}(x+y)^{2}}$
$\therefore z(1,0)=\frac{1}{4}(1-0+1)^{2} e^{\frac{1}{2}} \times e^{\frac{1}{2}(1+0)^{2}}$
$z(1,0)=e^{-\frac{1}{2}} e^{\frac{1}{2}}$
$z(1,0)=1$

Created by T. Madas

Question 3

It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
2 \frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}=z
$$

Given further that $z=y$ at $x=1$ for all y, find the solution of the above partial differential equation.

Question 4
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=z
$$

Given further that $z(x, 0)=\cos x$, find the solution of the above partial differential equation.

Created by T. Madas

Question 5

The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}+z^{2}=0
$$

The plane with equation $z=1$ meets S on the curve with equation $x y=x+y$.

Find a Cartesian equation of S, in the form $z=f(x, y)$.

Question 6
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}+x y=0
$$

S contains the curve with equation

$$
x y=1, z=x, \forall x
$$

Find a Cartesian equation of S, in the form $z=f(x, y)$.
\square
$z(x, y)=\frac{x}{y}-x y+1$

Question 7
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
\left(x^{2}+1\right) \frac{\partial z}{\partial x}+2 x y \frac{\partial z}{\partial y}-x y=0
$$

S contains the curve with equation

$$
z(x, 1)=\left(x^{2}+1\right)^{2}, \frac{1}{2} \leq x \leq \frac{2}{3} .
$$

Find a Cartesian equation of S, in the form $z^{2}=f(x, y)$.

$$
z^{2}=\frac{y^{5}}{\left(x^{2}+1\right)^{4}}
$$

\square
\square

Question 8
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=2 z(x+y)
$$

Given further that when $z(x, y)=x^{2}$ at $x+y=1$, find the solution of the above partial differential equation.

$$
z(x, y)=\frac{1}{4}(x-y+1)^{2} \exp \left[\frac{1}{2}(x+y+1)(x+y-1)\right]
$$

\square

Question 9
It is given that $z=z(x, t)$ satisfies the partial differential equation

$$
\mathrm{e}^{x} \frac{\partial z}{\partial x}+\frac{\partial z}{\partial t}=0, \quad z(x, 0)=\tanh x
$$

Find the solution of the above partial differential equation, in the form $z=f(x, t)$.

Question 10
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
z \frac{\partial z}{\partial x}-z \frac{\partial z}{\partial t}=y-x, \quad z(1, y)=y^{2} .
$$

Find the solution of the above partial differential equation, in the form $z^{2}=f(x, y)$.

$$
z^{2}=2 x y+(x+y-1)^{4}-2(x+y-1)
$$

Question 11
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
x \frac{\partial z}{\partial x}-3 y \frac{\partial z}{\partial y}=x^{2} y
$$

a) Use the transformation equations

$$
\xi(x, y)=\ln x \quad \text { and } \quad \eta(x, y)=\ln y
$$

to transform the above partial differential equation into one with constant coefficients.
b) Given further that $z(1, y)=y$, find a Cartesian equation of S, giving the answer in the form $z=f(x, y)$.

$$
\frac{\partial z}{\partial x}-3 \frac{\partial z}{\partial y}=\mathrm{e}^{2 \xi+\eta}, z(x, y)=2 x^{3} y+x^{2} y
$$

Question 12
It is given that $u=u(x, y)$ satisfies the partial differential equation

$$
3 y^{2} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}-x y^{2} u=0
$$

It is further given that when $x=y+y^{3}, u(x)=x \mathrm{e}^{\frac{1}{6} x^{2}}$.

Find a simplified expression for $u=u(x, y)$, in the form $u(x, y)=f(x, y) \mathrm{e}^{\frac{1}{6} x^{2}}$, where f is a function to be determined.

$$
u(x, y)=\left[\left(y^{3}-x\right)+\left(y^{3}-x\right)^{3}\right] \mathrm{e}^{\frac{1}{6} x^{2}}
$$

Question 13
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
2 \frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}=z
$$

It is further given that

$$
z(x, 0)=\tan 3 x, 0 \leq x \leq 1
$$

Find a Cartesian equation of S, in the form $z=f(x, y)$, further describing the relation of S to the $x-y$ plane.

$$
z(x, y)=\frac{1}{6}\left(5 \mathrm{e}^{x}+1\right) \tan (3 x-y), \quad 3 x-3 \leq y \leq 3 x
$$

Question 14
The function f, with equation $z=f(x, y)$, satisfies the partial differential equation

$$
(y-z) \frac{\partial z}{\partial x}+(z-x) \frac{\partial z}{\partial y}=x-y
$$

It is further given that

$$
f(x, y)=0 \text {, when } y=2 x \text {. }
$$

Find a Cartesian equation of f, giving the answer in the form $z=f(x, y)$.

$$
z(x, y)=-x-y+\frac{3}{5} \sqrt{5 x^{2}+5 y^{2}+5 z^{2}}
$$

\square

Question 15
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}=x y
$$

The plane with equation $z=1$ intersects S along the curve with equation

$$
y=2 x^{2},-1<x<1
$$

Determine a Cartesian equation of S, giving the answer in the form $z^{2}=f(x, y)$, sketching the projection of S on the $x-y$ plane.

$$
z(x, y)=x y+1-\frac{y^{3}}{4 x^{3}}
$$

\square

Created by T. Madas

Question 16

The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
y z \frac{\partial z}{\partial x}-x z \frac{\partial z}{\partial y}=x y .
$$

a) Find a general solution of the partial differential equation.

The plane with equation $y=0$ intersects S along the curve with equation

$$
z=\sin x, 1<x<2 .
$$

b) Find a Cartesian equation of S, giving the answer in the form $z^{2}=f(x, y)$, sketching the projection of S on the $x-y$ plane.
c) Show that the characteristic curves of the partial differential equation are the intersections of the families of two circular cylinders.

$$
z(x, y)=\frac{x}{y}-x y+1
$$

Question 17
It is given that $z=z(x, t)$ satisfies the partial differential equation

$$
x \frac{\partial z}{\partial x}+(t-1) \frac{\partial z}{\partial t}=0
$$

It is further given that

$$
z(x, 0)=\left\{\begin{array}{cc}
1-x^{2} & |x|<1 \\
0 & |x| \geq 1
\end{array}\right.
$$

Solve the above partial differential equation, and hence evaluate $z\left(\frac{1}{6}, \frac{1}{3}\right)$ and $z\left(3, \frac{1}{3}\right)$.

$$
z\left(\frac{1}{6}, \frac{1}{3}\right)=\frac{15}{16}, z\left(3, \frac{1}{3}\right)=0
$$

Question 18
The surface S, with equation $z=z(x, y)$, satisfies the partial differential equation

$$
2 \frac{\partial z}{\partial x}+3 \frac{\partial z}{\partial y}=z
$$

It is further given that the plane with equation $x=1$ meets S along the straight line with equation $z=y,-1 \leq y \leq 1$.

Find a Cartesian equation of S, in the form $z=f(x, y)$, further describing the relation of S to the $x-y$ plane.

$$
z(x, y)=\frac{1}{2}(3-3 x+2 y) \mathrm{e}^{\frac{1}{2}(x-1)}, \quad \frac{3}{2} x-\frac{5}{2} \leq y \leq \frac{3}{2} x-\frac{1}{2}
$$

Question 19
The surface S, with equation $z=z(x, y)$, is orthogonal to the sphere with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=2 x
$$

It is further given that S passes through the plane with equation $y=x$ at $z=\frac{1}{2}$.

$$
z(x, 0)=\tan 3 x, 0 \leq x \leq 1
$$

Find a Cartesian equation of S, in the form $z=f(x, y)$.

$$
z(x, y)=\frac{1}{2}(1+y-x)
$$

SECOND ORDER P.D.E.S

$$
P \frac{\partial^{2} z}{\partial x^{2}}+Q \frac{\partial^{2} z}{\partial x \partial y}+Q \frac{\partial^{2} z}{\partial y^{2}}=0, \quad z=z(x, y)
$$

Question 1
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=0 .
$$

$$
z=f(x+y)+g(2 x+y)
$$

Find a general solution of the above partial differential equation.

Question 2
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}
$$

Find a general solution of the above partial differential equation.

$$
z=f(y+x)+g(y-x)
$$

Question 3
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0
$$

Find a general solution of the above partial differential equation.

$$
z=f(2 x+y)+x g(2 x+y)
$$

Question 4
It is given that $z=z(x, t)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}+15 \frac{\partial^{2} z}{\partial t^{2}}=8 \frac{\partial^{2} z}{\partial x \partial t}
$$

Find a general solution of the above partial differential equation.

Question 5
It is given that $\varphi=\varphi(x, y)$ satisfies the partial differential equation

$$
\nabla^{2} \varphi=2 \frac{\partial^{2} \varphi}{\partial x \partial y}
$$

Find a general solution of the above partial differential equation.

$$
z=f(x+y)+x g(x+y)
$$

Question 6
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=2 \mathrm{e}^{x-y}
$$

Find a general solution of the above partial differential equation.

Question 7
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=48\left(x^{2}+y^{2}\right) .
$$

Find a general solution of the above partial differential equation.

$$
z(x, y)=f(2 x+y)+x g(2 x+y)+4 x^{4}+y^{4}
$$

$\left\{\frac{\partial^{2}}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=48\left(x^{2}+y^{2}\right)\right\}$

- Auxlutiy grution
$(m-2)^{2}=0$
$m_{1}=2$ (rfeatio)
\therefore Gouplmataey fuction: $z(x y)=f(2 x+y)+x g(2 x+y)$
(1) Be facturar instciat $z=\sum_{1=1}^{4} \sum_{m=1}^{4} z^{n} y^{n}$

$\frac{\partial \frac{z}{z}}{\partial a^{2}}=12 A \cdot x^{2}$

Question 8
It is given that $z=z(x, y)$ satisfies the partial differential equation

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=0
$$

Find a general solution of the above partial differential equation.

$$
z(x, y)=f\left(\frac{y}{x}\right)+x f\left(\frac{y}{x}\right)
$$

