PARTIAL TERENT TERENT TION PAK, DIFFERŁI EQUATIONS A LYCEB MARIASMAN LYCEB MARIASM T. I.Y.C.B. Madasmalls.com I.Y.C.B. Madase

TRANSFORMAL TRANSFORMAL Indianalis Contracts C ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

Question 1

The smooth function f = f(x, y) satisfies

 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}.$

Find the general solution of the above partial differential equation by using the

Question 2

ths.com

I.F.G.B.

The smooth function z = z(x, y) satisfies

ISMATHS.COM

10

I.I.C.p

I.C.B. Madasmanna

 $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = xy.$

Find the general solution of the above partial differential equation by using the transformation equations

 $u = x^2 + y^2$ and $v = x^2 - y^2$

I.C.B.

nn

 $z(\overline{x, y}) = \frac{1}{4}(x^2 + y^2) + f(x^2 - y^2)$

$ \begin{cases} y \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = y \\ y = y^2 - y^2 \end{cases} $
$ \begin{array}{rcl} & & & & & & \\ \hline g_{\overline{z}} & & & & & \\ g_{\overline{z}} & & & & \\ \hline g_{\overline{z}} & & \\$
See No. We P.D.E $G\left[2\lambda_{\frac{2N}{2}}^{\frac{2N}{2}} + 2\lambda_{\frac{2N}{2}}^{\frac{2N}{2}}\right] + \lambda \left[2\beta_{\frac{2N}{2}}^{\frac{2N}{2}} - 2\beta_{\frac{2N}{2}}^{\frac{2N}{2}}\right] = 2\beta$ $2\Omega\left[2\lambda_{\frac{2N}{2}}^{\frac{2N}{2}} + \frac{2N}{2N} + \frac{2N}{2N} - \frac{2N}{2N}\right] = 2\beta$
$4 \frac{22}{2\alpha} = 1$ $\frac{2\alpha}{\alpha} = \frac{1}{4}$
$ \begin{split} \Xi &= \frac{1}{2} (x_1^2 H_3^2) + \frac{1}{2} (x_2^2 - R_3^2) \end{split} $

ths.com

I.V.C.B. Mada

The Com

3

Question 3

The smooth function z = z(x, y) satisfies

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 6(x+y)^2 z^2$$

Find the general solution of the above partial differential equation by using the transformation equations 13

$$\boldsymbol{\xi} = x + y \text{ and } \boldsymbol{\eta} = x - y.$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3 - f(x - y)}$$

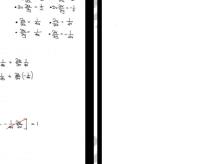
$$(\boldsymbol{y}, \boldsymbol{y}) = -\frac{1}{(x + y)^3$$

Question 4

F.G.B.

E.B.

The smooth function z = z(x, y) satisfies


 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1.$

Find the general solution of the above partial differential equation by using the transformation equations

 $x = u^2 + v^2$ and $y = u^2 - v^2$.

 $z(x, y) = \frac{1}{2}(x+y) + f(\sqrt{x-y})$ SOWING BY _DREET INTREATION $Z(u_1v) = u^2 + f(v)$ 2= 42+12 } y= 42-12] $2u^2$ $2v^2$ \rightarrow NIC & SUBTRACTION $\mathcal{L}(x_{ij}) = \left(\frac{1}{2}x + \frac{1}{2}y\right) + \left(\sqrt{\frac{1}{2}x - \frac{1}{2}y}\right)$ $Z(x_y) = f(x_{y_y}) + f(\overline{x_{y_y}})$ · 2v 3v $\cdot 2 \sqrt{\frac{2 V}{2 y}} = -\frac{1}{2}$ • = + = + 24 ge ga + ge ge 95 : = 22 1 + 22 1

$$\begin{split} & \overset{\mathcal{B}}{\mathfrak{B}} = \overset{\mathcal{B}}{\mathfrak{B}} \overset{\mathcal{B}}{\mathfrak{B}} + \overset{\mathcal{B}}{\mathfrak{B}} \overset{\mathcal{B}}{\mathfrak{B}} = \overset{\mathcal{B}}{\mathfrak{B}} \overset{\mathcal{A}}{\mathfrak{A}} + \overset{\mathcal{B}}{\mathfrak{B}} (\cdot \overset{\mathcal{A}}{\mathfrak{A}}) \\ & \overset{\mathsf{Meanurit has the } \mathfrak{p} \cdot \mathfrak{p} \cdot \mathfrak{p} \cdot \mathfrak{p} :}{\overset{\mathcal{B}}{\mathfrak{B}}} + \overset{\mathcal{B}}{\mathfrak{B}} = \mathfrak{l} \end{split}$$

i G.B.

Question 5

I.C.B.

I.V.G.B.

 $(x+y)\frac{\partial z}{\partial x} + (y-x)\frac{\partial z}{\partial y} = 0.$

Transform the above partial differential equation using the equations

 $u = \frac{1}{2} \ln \left(x^2 + y^2 \right)$ and $v = \arctan \left(\frac{y}{x} \right)$.

CUNTRUGA KOTTAWAS AND HE WORD SHUTAWARD LATENCE
$u = \frac{1}{2} h(z^2 + y^2)$ $v = \arctan\left(\frac{b}{2}\right)$
• $\frac{\partial u}{\partial x} = \frac{1}{2} \times \frac{1}{x^2 + y^2} \times 2x = \frac{x}{x^2 + y^2}$
· 20 = 2+42
$\bullet \frac{\partial x}{\partial t} = \frac{1}{\left(\frac{\partial x}{\partial t}\right)^2} \times \left(\frac{x}{\partial}\right) = -\frac{\left(1 + \frac{\partial x}{\partial t}\right)x}{\partial t} = -\frac{x_t + \partial x}{\partial t}$
$\cdot \frac{\mathcal{G}_{1}}{\mathcal{G}_{1}} = \frac{1 + \frac{ \mathcal{G}_{1} ^{2}}{ \mathcal{G}_{1} ^{2}} \times \frac{\mathcal{I}}{ \mathcal{I} } = \frac{(1 + \frac{\mathcal{G}_{1}}{\mathcal{G}_{1}})^{2}}{1} = \frac{\mathcal{I} + \frac{\mathcal{I}}{\mathcal{G}_{1}}}{1} = \frac{\mathcal{I}_{1} + \mathcal{I}_{2}}{\mathcal{I}}$
NEXT GET GEPLESIONS FOR 2=2(4,1) 4 y=y(4,1)
• $\Delta t = \ln(2^{2}+q^{2})$ • $d = \ln(2^{2}+q^{2})$ • $d^{2} = x^{2}+q^{2}$ $q^{2} = x^{2}+q^{2}+q^{2}$ $q^{2} = x^{2}+q^{$
→ y = atom → y = (@ ^k (m)) <u>=mv</u> → y = @ ^k smv]

The Com

 $\frac{\partial z}{\partial u}$

 $\frac{\partial z}{\partial v} = 0$

1

$\Rightarrow e^{ik}(conv+conv) \left[\frac{3u}{2u} \frac{c_{0i}}{c_{0i}} - \frac{3u}{2v} \frac{c_{0i}}{c_{0i}} \right] + e^{ik}(conv-conv) \left[\frac{3u}{2u} \frac{c_{0i}}{c_{0i}} + \frac{3u}{2v} \frac{c_{0i}}{c_{0i}} \right] = 0$

= [vasi錄+ Vran 錄](vasi-vraz)+[vran 錄-vasi錄](vasi vasi

I.F.G.B.

mada

- $\implies \frac{2}{24}(bdy + ganage) \frac{2}{24}(banage + ganage) + \frac{2}{24}(and ganage + gan$
 -) 윷글 (catv+sulv) 윷 (sulv+sulv) 글= - 글= = 0
 - x x 0

Created by T. Madas

R.

Question 6

The function z depends on x and y so that

$$z = f(u, v), \quad u = x - 2\sqrt{y} \text{ and } v = x + 2\sqrt{y}.$$

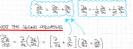
Show that the partial differential equation

$$2\frac{\partial^2 z}{\partial x^2} - 2y\frac{\partial^2 z}{\partial y^2} - \frac{\partial z}{\partial y} = 0,$$

=0.

can be simplified to

F.C.B.


I.G.p.

6		
Mar by APEMEINS AU H+ € VIO TH+ Govb) 70.05 • U= π24g • V= π24g	toone we are	RACTING
$ \begin{array}{c} \partial u = 1 & \partial v = 1 \\ \partial x = 1 & \partial x = 1 \\ \partial u = -y^{\frac{1}{2}} & \partial x = y^{\frac{1}{2}} \end{array} $	22=4+V a= 1/2+1/2V	44g = v-u 16y = (v-u)² y = t6(v-u)²
8 · 28 ·	gan = F Gan =	$f_{\mu} = -\frac{1}{8}(v-u)$

 ∂^2

диди

outer our	al rule most overs	C TURINICOGY	
<u>35</u> =	ga gy + gy gy gy + gy gy	$=\frac{\partial^{n}}{\partial F} \times I + \frac{\partial^{n}}{\partial F} \times I = \frac{\partial^{n}}{\partial F} +$	(B)
	왕왕+왕원	$= \frac{2\pi}{26} \left(-\hat{\alpha}_{\vec{j}} \right) + \frac{2\pi}{26} \left(\hat{\alpha}_{\vec{j}} \right) = -$	98 au + 92 au

$$\begin{split} & \sum_{k=1}^{2} - \frac{1}{2} \sqrt{m_k} \left[- \left[- \frac{1}{2} \sqrt{m_k} - \frac{1}{2} \sqrt{m_k} \right] + \frac{1}{2} \sqrt{m_k} + \frac{1}{2} \sqrt$$

- 1 i i i i		
М	ANYLY THE ONER SCOND INFUNATION - OPERATOR FORM TO ANON MISSING	
	CHAIN RULE AND ADDOCT	
	$\frac{\partial^2 g}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial x} \right) = \begin{bmatrix} -\frac{1}{2} \frac{\partial}{\partial x} + -\frac{1}{2} \frac{\partial}{\partial x} \end{bmatrix} \left(-\frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial x} \right)$	
	$\left[\underbrace{\mathfrak{S}}_{\mathfrak{S}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{S}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{S}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{S}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} - \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} - \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} \underbrace{\mathfrak{s}}^{\mathfrak{s}} - \underbrace{\mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}}_{\mathfrak{s}}^{\mathfrak{s}} + \mathfrak{s}}$	
	= - 42 [24 24 24 - 42 22 - 1 24 24 + 4 232]	
	$+ \frac{1}{24} \left[\frac{1}{24} \frac{23}{8} \frac{23}{8} - \frac{1}{24} \frac{23}{8} \frac{24}{8} - \frac{1}{24} \frac{23}{8} \frac{23}{8} \frac{2}{8} + \frac{1}{24} \frac{23}{8} \frac{23}{8} \right]$	
	TIDY AND REORDARING	
	$\frac{\partial 2}{\partial y^2} = -\frac{1}{2y^2} \frac{\partial}{\partial x} \frac{\partial a}{\partial x} + \frac{1}{y} \frac{\partial x}{\partial x^2} + \frac{1}{2y^2} \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} - \frac{1}{y} \frac{\partial^2 a}{\partial x^2}$	
	$\frac{1}{2j^*} \frac{\partial}{\partial x} \frac{\partial a}{\partial x} + \frac{1}{2} \frac{\partial^2 a}{\partial x^*} - \frac{1}{2j^*} \frac{\partial a}{\partial y} \frac{\partial a^*}{\partial x} - \frac{1}{2} \frac{\partial^2 a}{\partial x \partial y}$	
	$ \begin{cases} \frac{\partial y_2}{\partial x_1} = \frac{1}{2} \frac{1}{2} \begin{bmatrix} -\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_1} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x_1} + \frac{1}{2} \frac{\partial u}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x_1} + \frac{1}{2} \begin{bmatrix} \frac{\partial u}{\partial x_2} + \frac{\partial u}{\partial x_2} \end{bmatrix} - \frac{1}{2} \frac{\partial u}{\partial x_1} \end{bmatrix} $	
	NEXT SUBSTITUT THESE BRIDE WSD THE P.D.E.	
	5 ar + 51 ar - ar = 0	
	$ \begin{array}{c} 2 \left[\frac{2}{2} + 2\frac{2}{2} + \frac{2}{2} \\ -\frac{2}{3} \left[\frac{1}{3} \left(\frac{2}{2} + \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} + \frac{2}{3} \right) - \frac{2}{3} \frac{2}{3} \\ -\frac{2}{3} \left[\frac{1}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} + \frac{2}{3} \right) - \frac{2}{3} \frac{2}{3} \\ -\frac{2}{3} \left[\frac{1}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \frac{2}{8} + \frac{1}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} + \frac{2}{3} \left(\frac{2}{3} - \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \left(\frac{2}{3} + \frac{2}{3} \right) \frac{2}{3} \\ -\frac{2}{3} \left(\frac{2}{3} + $	
	- Etres + the set] - Etres + the set]	
		-

202.01

2

, proof

2,	0 T/A	
1		
3	- 2歳++読+2発-は儒+劉陽-如風-劉麗-2義-二義++発 + しき-は	3v =0
	$8\frac{\partial^{2}_{\mathcal{L}}}{\partial u_{\mathcal{V}}} + \frac{1}{\mathcal{G}}\left(\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u}\right)\frac{\partial^{2}_{\mathcal{L}}}{\partial u} - \frac{1}{\mathcal{G}}\left(\frac{\partial u}{\partial u} - \frac{\partial u}{\partial v}\right)\frac{\partial^{2}_{\mathcal{L}}}{\partial u} + \frac{1}{\mathcal{G}}\left(\frac{\partial u}{\partial u} - \frac{\partial u}{\partial v}\right) = 0$	
-	$8\frac{2}{2}$ + $\frac{1}{2}(\frac{2}{2}-\frac{2}{2})(\frac{2}{2}-\frac{2}{2})$ + $\frac{1}{2}(\frac{2}{2}-\frac{2}{2})$	
2en	VENING TO THE FETT SERVE INFRIMATIVES OBTINATED AT THE VIEY BEGINNING	
	$\beta \frac{3\gamma}{35} + \frac{7}{7} \left[-\frac{1}{9} + \frac{1}{9} - \frac{1}{2} + \frac{1}{9} + \frac{1}{9} \right] \left(\frac{3\gamma}{35} - \frac{3\gamma}{35} \right) + \frac{1}{7} \left(\frac{3\gamma}{35} - \frac{3\gamma}{35} \right) = 0$	
=	$8\frac{2}{2}\frac{2}{2}\frac{1}{2}+\frac{1}{2}(\frac{1}{2}u-\frac{1}{2}v)(\frac{2}{2}u-\frac{2}{2}v)+\frac{1}{2}(\frac{2}{2}u-\frac{2}{2}v)=0$	
	8義、-坂(いし)(葉-第)+坂(楽-祭)=0	
=>	8蒜、	
3	8 3 - the (2 - 5) + the (2 - 3) = 0	
->	စစ္ဖိုင္တဲ့ ဆ	

Question 7

1

 $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$

The above partial differential equation is Laplace's equation in a two dimensional Cartesian system of coordinates.

Show clearly that Laplace's equation in the standard two dimensional Polar system of coordinates is given by

> $\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2}$ $= \cos^2 \theta \cdot \frac{\partial \phi}{\partial r^2} - \cos^2 \theta \cdot \frac{\partial \phi}{\partial r^2} - \frac{1}{r^2} \cdot \frac{\partial \phi}{\partial r} + \frac{1}{r} \cdot \frac{\partial^2 \phi}{\partial r^2} - \frac{1}{r} \cdot \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial$ $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ $\int \frac{d^2 G}{z \theta G} dM \mathcal{Q}_{+} + \frac{d G}{\partial G} \theta \mathcal{L}(\omega) \int \frac{\partial \mathcal{H} \mathcal{L}}{z \eta} +$ $\frac{d\mathcal{K}}{d\omega d} \frac{\partial \omega due}{r} = -\frac{4\mathcal{L}}{\mathcal{K}} \frac{\partial ue}{r} + \frac{d\mathcal{K}}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} = -\frac{d\mathcal{K}}{\mathcal{K}} \frac{\partial ue}{d\omega} - \frac{d\mathcal{K}}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} = -\frac{d\mathcal{K}}{r} \frac{\partial \omega}{d\omega} + \frac{d\mathcal{K}}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} = -\frac{d\mathcal{K}}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} \frac{\partial ue}{r} = -\frac{d\mathcal{K}}{r} \frac{\partial ue}{r} \frac{\partial ue$ • 32 = 34 35 + 34 30 $+ \frac{360}{r^2} \frac{\partial^2 \psi}{\partial \theta} + \frac{340}{r^2} \frac{\partial^2 \psi}{\partial \theta} + \frac{340}{r^2} \frac{\partial^2 \psi}{\partial \theta}$ = 34 30 + 34 33 $= \frac{1}{2} \frac{\partial^2 b}{\partial x^2} + \frac{\partial a^2 b}{\partial x^2} + \frac{\partial a^2 b}{\partial \theta^2} + \frac{\partial a \partial a \partial u}{\partial x^2} \frac{\partial b}{\partial \theta} - \frac{2 u \partial b u}{\partial x^2} \frac{\partial b}{\partial \theta} + \frac{2 u^2 b}{\partial x^2} \frac{\partial b}{\partial x^2} + \frac{2 u^2 b}{\partial$ $\frac{\partial \mathcal{F}}{\partial \phi} = -\frac{\partial \mathcal{L}}{\partial \phi} \left(\frac{(3_{i}d_{i})_{i}}{\pi} \right) + \frac{\partial \phi}{\partial \phi} \left(-\frac{3_{i}}{n} * \frac{1}{i} + \frac{3_{i}}{n} \right) = -\frac{(3_{i}+d_{i})_{i}}{3_{i}} \frac{\partial \mathcal{L}}{\partial \phi} - \left(\frac{3_{i}}{n} \times \frac{3_{i}+d_{i}}{n} \right) \frac{\partial \phi}{\partial \phi} \right)$ $= \log_{10} \frac{3\mu_{7}}{34} + \frac{3\mu_{10}}{26} \frac{3\mu_{7}}{2} + \frac{4\mu_{10}}{26} \frac{3\mu_{7}}{26} + \frac{4\mu_{10}}{26} \frac{3\mu_{10}}{26} + \frac{2\mu_{10}}{26} \frac{3\mu_{10}}{26} + \frac{2\mu_{10}}{26} \frac{3\mu_{10}}{26} + \frac{3\mu_{10}}{26} \frac{3\mu_{10}}{26}$ $\frac{2}{(2^2+q_0^2)^2}\frac{24}{\theta r} = -\frac{q_0}{2^2+q_0^2}\frac{24}{\theta \theta} = -\frac{r\cos\theta}{r}\frac{24r}{\theta r} = -\frac{r\sin\theta}{r^2}\frac{26}{\theta \theta}$ $\frac{\partial b}{\partial b} = \cosh \frac{\partial b}{\partial b} - \frac{\gamma}{2002} \frac{\partial b}{\partial b} \quad \text{or 4 orienter } \begin{bmatrix} \frac{\partial}{\partial t} = \cosh \frac{\partial}{\partial t} - \frac{\sin b}{2} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} = \cosh \frac{\partial}{\partial t} - \frac{\sin b}{2} \frac{\partial}{\partial t} \end{bmatrix}$ $\frac{\partial q_{2}}{\partial 2} = \frac{\partial q}{\partial y} \left(\frac{\partial q}{\partial y} \right) = \left(2M\theta \frac{\partial}{\partial r} + \frac{c}{r} \frac{\partial q u}{\partial y} \right) \left(\frac{\partial q}{\partial r} + \frac{c}{r} \frac{\partial q}{\partial \theta} \right)$ $\frac{\partial f}{\partial t^k} = \frac{\partial e}{\partial t^k} \left(\frac{(\mathcal{I}_t + \delta_t^k)}{\theta} \right) + \frac{\partial \Phi}{\partial t^k} \left(\frac{\tau}{\tau} \times \frac{1 + \frac{\partial \sigma}{d\tau}}{\theta} \right) = \frac{(\mathcal{I}_t + \delta_t^k)}{\theta} \frac{1}{2 + \delta_t^k} + \frac{\partial \Phi}{\partial t^k} \left(\frac{\tau}{\tau} \frac{\tau_{t+d_t}}{\tau^k} \right)$ $\left(\frac{\partial \mathcal{E}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) = \left(\frac{\partial \mathcal{E}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) = \left(\frac{\partial \mathcal{E}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) + \left(\frac{\partial \mathcal{E}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right)\right) = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) + \left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right)\right) = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\left(\frac{\partial \mathcal{L}}{\partial \mathcal{E}}\right) = \left(\frac{\partial \mathcal{L}}{\partial \mathcal{$ $= \frac{1}{(y^2+y^2)^2} \frac{\partial \phi}{\partial r} + \frac{1}{y^2+y^2} \frac{\partial \phi}{\partial r} = \frac{r\sin\theta}{r} \frac{\partial \phi}{\partial r} + \frac{r\cos\theta}{r^2} \frac{\partial \phi}{\partial r}$ $\left(\frac{46}{66}G_{10}\right)_{s} = \left(\frac{46}{7}G_{10}\right)_{s} = \left(\frac{4}{7}G_{10}\right)_{s} = \left$ $\begin{bmatrix} \frac{2}{36} \frac{9}{7} + \frac{2}{76} \frac{9}{102} = \frac{6}{26} \end{bmatrix} \quad \text{software its so} \quad \frac{45}{96} \frac{9}{7} + \frac{46}{76} \frac{9}{102} = \frac{46}{16} \frac{9}{102} = \frac{46}{16} \frac{9}{102} = \frac{4}{16} \frac{6}{102} \frac{9}{102} = \frac{4}{16} \frac{6}{102} \frac{9}{102} \frac{9}{102} = \frac{4}{16} \frac{6}{102} \frac{9}{102} \frac$ $\left[\frac{\partial \phi}{\partial \phi} \theta_{M2} + \frac{\partial \phi}{\partial \phi} \theta_{M2} + \left[\frac{\partial \phi}{\partial \phi} + \frac{\partial \phi}{\partial \phi$ + 000 -200 3+ +000 324 • $\frac{\mathcal{H}_{\mathcal{F}}}{\mathcal{H}^{\Phi}} = \frac{\mathcal{H}}{\mathcal{F}} \left(\frac{\mathcal{H}}{\mathcal{H}^{\Phi}} \right) = \left(\log_{\mathcal{H}} \frac{\mathcal{H}}{\mathcal{H}} - \frac{\mathcal{L}}{\mathcal{H}^{\Phi}} \frac{\mathcal{H}}{\mathcal{H}} \right) \left(\exp_{\mathcal{H}} \frac{\mathcal{H}}{\mathcal{H}} - \frac{\mathcal{H}}{\mathcal{H}^{\Phi}} \frac{\mathcal{H}}{\mathcal{H}^{\Phi}} \right)$ = $\frac{1}{2} \frac{1}{2} \frac{$ $= \frac{1}{2} \left(\frac{\partial \phi}{\partial t} \frac{\partial f}{\partial t} - \frac{\partial \phi}{\partial t} \frac{\partial f}{\partial t} - \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial f}{\partial t} \frac{\partial \phi}{\partial t} - \frac{\partial \phi}{\partial t} \right) = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} = \frac{\partial \phi}$ $=\frac{1}{2}\left(\frac{\partial \xi}{\partial \xi}\frac{\partial u}{\partial t}\right)\frac{\xi}{\partial t}\frac{\partial u}{\partial t}+\frac{1}{2}\left(\frac{\partial u}{\partial t}\right)\frac{\xi}{\partial t}\frac{\partial u}{\partial t}-\frac{1}{2}\left(\frac{\partial \xi}{\partial t}\frac{1}{t}\right)\frac{\xi}{\partial t}\frac{\partial u}{\partial t}\frac{\partial u}{\partial t}\frac{\partial u}{\partial t}=\frac{1}{2}\left(\frac{\partial u}{\partial t}\frac{1}{t}\right)\frac{\xi}{\partial t}\frac{\partial u}{\partial t}\frac{\partial u}{\partial t}$ $-\frac{48}{595}\frac{9}{54}+\frac{46}{96}\frac{9}{57}+\frac{46}{57}$ $Suff \frac{3^2 b}{3 r^2} + \frac{(cr^2 b}{r^2} \frac{3^2 b}{3 \theta^2} + \frac{2Suff bac}{r} \frac{9^2 b}{3 \theta^2 0} - \frac{2tabout}{r} \frac{3 b}{3 \theta} + \frac{tac}{r} \frac{3 b}{3 r} \frac{1}{r}$ PRODUCT BUL = $3h_0^2 \frac{3h_2}{24} + \frac{6h_2^2}{12} \frac{3h_2}{24} + \frac{3h_2^2}{24} \frac{3h_2}{24} - \frac{h_2^2}{24} \frac{3h_2}{24} + \frac{h_2^2}{24} \frac{3h_2}{24}$ 35 = mgo 35 + 213 35 + 213 35 + 213 35 + 213 35 + 213 35 + 213 35 $\frac{32}{76} = \frac{1}{2} \frac{3}{16} \frac{3}{7} \frac{3}{16} \frac{3}{7} \frac{3}{16} \frac$ ADDIN $\frac{\partial \lambda^2}{\partial t_0} + \frac{\partial \mu^2}{\partial t_0} = (\cos \partial t \sin \partial t \frac{\partial \eta^2}{\partial t_0} + \frac{1}{t_0} (\sin \partial t \sin \partial t \frac{\partial \eta^2}{\partial t_0} + \frac{1}{t_0} (\cos \partial t \sin \partial t \frac{\partial \eta^2}{\partial t_0}) \frac{\partial \eta^2}{\partial t_0}$ ∇^2 $= \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$ $\frac{\partial^2}{\partial x} + \frac{\partial y}{\partial y} \equiv \frac{\partial r^2}{\partial x} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial}{\partial \theta^2}$

proof

FIRST ORDER P.D.L $\frac{\partial z}{\partial x} = F(x, y, z) \text{ or } \frac{\partial z}{\partial y} = G(x, y, z) \text{ for } z = z(x, y)$

T. Y. G.B. MARASMANIS.COM I.Y. G.B. Maras

Question 1

ŀG.B.

. F.G.B.

It is given that z = F(x, y) satisfies the partial differential equation

 $\frac{\partial z}{\partial y} + 2yz = xy^3.$

Determine a general solution of the above partial differential equation.

 $x(y^2-1)+e^{-y^2}$ IS -1 WHAR FILST ORDER P.D.E WITH ONLY ONE PARTIAL DERWATTLE PRESENT WE OAN JUST SOME IT AS AN O.D.E WHERE THE OTHER INDERCORDENT WARABLE IS TRATED AS A CONSTANT (2 HOLE) $I.F. = e^{\int 2y \, dy} = e^{y^2}$ $\implies \frac{\partial}{\partial y} \left(z e^{y^2} \right) = y^3 e^{y^2}$ $\Rightarrow ze^{y^2} = \int zy^3 e^{y^2} dy$ $\implies ze^{y^2} = a \int y^2(ye^{y^2}) dy$ $\implies \overline{\epsilon} e^{y^2} = x \left[\frac{1}{2} y^2 e^{y^2} - \int y e^{y^2} dy \right]$ \implies $Ze^{y^2} = \Im \left[\frac{1}{2} y^2 e^{y^2} - \frac{1}{2} e^{y^2} + A(x) \right]$ $\implies ze^{y^2} = \frac{1}{2}xy^2e^{y^2} - \frac{1}{2}xe^{y^2} + B(z)$ $= \frac{1}{2} = \frac{1}{2}xy^2 - \frac{1}{2}x + B(x)e^{-y^2}$ $\Rightarrow \exists (x_{ij}) = \frac{1}{2}x(y^2-i) + B(z)e^{-y^2}$

F.C.P.

24

Created by T. Madas FIRST ORDER P.D.E.S (by linear transformations) -(r,y)**EXAMPLE 1** (by linear transformations, $A\frac{\partial z}{\partial x} + B\frac{\partial z}{\partial y} + Cz = G(x, y), \quad z = z(x, y)$

Question 1

It is given that $\psi = \psi(x, y)$ satisfies the partial differential equation

$$3\frac{\partial\psi}{\partial x} - 4\frac{\partial\psi}{\partial y} = x^2.$$

Use the transformation equations

 $\xi = Ax + By$ and $\eta = Cx + Dy$, $AD - BC \neq 0$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.

· · · · · · · · · · · · · · · · · · ·	Ch.	-90
$3\frac{\partial \psi}{\partial x} - 4\frac{\partial \psi}{\partial y} = a^2$		THE PDE NOW TEANSFORMS
ASING THE TRANSPORMUTIONS GW(N)		$\implies z \frac{\Im \hat{z}}{\Im \hat{o}} = \hat{z}_{\tau}$
$ \overline{g} = A_{a} + B_{y} \qquad \forall D - BC \neq 0 $ $ \eta = C_{a} + D_{y} $		$\Rightarrow \frac{\partial \psi}{\partial \xi} = \frac{1}{3}\xi^3$
$\frac{\partial g}{\partial x} = A \frac{\partial g}{\partial y} = B$		$\rightarrow \psi(\xi_1 \eta) = \frac{1}{\eta} \xi^3 + \zeta \eta$
3월 =C - 3월 = D		Philosing The Transformations
BY THE CHAIN RIVE		$\Rightarrow q^{i}(x_{ij}) = \frac{1}{2}x^{2} + \frac{1}{2}(4x_{i}x_{j})$
$\frac{\partial a}{\partial x} = \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} + \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} = \frac{\partial a}{\partial x}$		
$\implies 3\left[4\frac{3\xi}{3\xi} + C\frac{3\psi}{3\eta}\right] - 4\left[8\frac{3\psi}{3\xi} + C\frac{3\psi}{3\eta}\right] = 4\left[8\frac{3\psi}{3\xi} + C\frac{3\psi}{3\eta}\right]$	1 24] = 12	
$\implies (3A - 4B)\frac{\partial \psi}{\partial \xi} + (3C - 4D)\frac{\partial \psi}{\partial \xi} =$		
"KNOCK OFF" 342, FUETHER SIMPLIFYING		
$\begin{array}{ccc} A=1 & B=0 \\ C=4 & D=3 \end{array} \begin{array}{c} & \longrightarrow & \overline{3}=\infty \\ & & \gamma = 4\lambda + 3y \end{array}$		
0.02		

 $\psi(x,y) = \frac{1}{9}x^3 + f(4x+3y)$

Question 2

It is given that z = z(x, y) satisfies the partial differential equation

 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z \; .$

Use the transformation equations

u = ax + by and v = cx + dy, $ad - bc \neq 0$

in order to determine a general solution of the above partial differential equation, showing further that this general solution is independent of the choice of values of the constants of a, b, c and d.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\begin{aligned} & \left\{ \begin{array}{l} & \left\{ \begin{array}{l} & \left\{ x_{i} \right\}, \left\{ x_$	$\begin{array}{c} \textbf{0} \textbf{Low, use C} \Pi_{1}^{1} \textbf{Gorm} \\ \mathbb{Z} = \left\{ \boldsymbol{U}_{1} \right\}_{2}^{1} \textbf{m}_{2}^{1} \text{ d} \\ \mathbb{Z} = \left\{ \boldsymbol{U}_{1} \right\}_{2}^{1} \textbf{m}_{2}^{1} \text{ d} \\ \mathbb{Z} = \left\{ \boldsymbol{U}_{1} \right\}_{2}^{1} \textbf{m}_{2}^{1} \text{ d} \\ \mathbb{W}_{1} \textbf{Mos } \text{ m}_{2} \text{ d} \\ \mathbb{W}_{1} \textbf{Mos } \text{ m}_{2} \text{ d} \\ \mathbb{W}_{1} \textbf{Mos } \text{m}_{2}^{1} \text{ d} \\ \mathbb{W}_{1}^{1} \textbf{Mos } \mathbb{W}_{2}^{1} \text{ d} \\ \mathbb{W}_{2}^{1} \textbf{Mos } \mathbb{W}_{2}^{1} \text{ d} \\ \mathbb{W}_{2}^{1} \text{ d} \\ \mathbb{W}_{2}^{1} \textbf{Mos } \mathbb{W}_{2}^{1} \text{ d} \\ \mathbb{W}_{2}^{1} \textbf{Mos } \mathbb{W}_{2}^{1} \text{ d} \\ \mathbb{W}_{2}^{1} $
SO THE TIDE BEGUNES	∴ Z = t(a-y)
$ \begin{array}{c} (\forall + k) \frac{\partial k}{\partial u} = \mathcal{Z} & \text{ while } & u = \alpha x + k y \\ \hline \underbrace{ \frac{\partial k}{\partial u} = -\frac{1}{\alpha H_0} \mathcal{Z} } & V = \Im x - \lambda y \\ \hline \underbrace{ \frac{\partial k}{\partial u} = -\frac{1}{\alpha H_0} \mathcal{Z} } & \\ \end{array} $	

 $z = e^x F(x - y) \quad \text{or}$

 $z = e^{y} G(x - y)$

e az + By

a, k, Y

(a+8)4

Question 3

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + z = x$$

Use the transformation equations

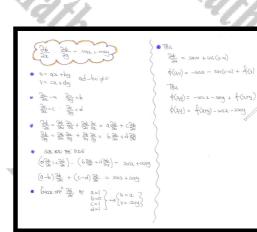
 $\xi = Ax + By$ and $\eta = Cx + Dy$, $AD - BC \neq 0$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.

 $z = x - 1 + e^{-x} f(x - y)$

Q2.	A Th	"Ch	
_	$+\frac{2z}{2y}+2=\alpha$, for $z=2(3)$) b to are 4 (widt tokeometrice) to "bace" are of the thema. Denote the	$ \Rightarrow 5e_{\underline{2}} = \frac{1}{2}e_{\underline{2}} - \int_{e_{\underline{2}}}^{e_{\underline{2}}} 2^{\underline{2}} \qquad $	
50	$\begin{array}{c} x & b & x \in Y while the charged method is back one of the form. Subject to the charged method is back on the form of the form of the charged method is back on the form of the charged method is back of the charged method is back on the form of the charged method is back of the charged method method method method is back of the charged method $	$\Rightarrow ze^{\frac{1}{5}} = \overline{z}e^{\frac{1}{5}} - e^{\frac{1}{5}} + A(q)$	2
	2 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	$ \Rightarrow \vec{e} = (\vec{x}, -1) + \sqrt{(x, -y)} e^{-\vec{x}} $ $ \Rightarrow \vec{e} = (\vec{x}, -1) + \frac{1}{\sqrt{(x, -y)}} e^{-\vec{x}} $	
• su	$g_{1} = g_{2} = g_{1} = g_{2} = g_{2$	$ \begin{cases} ch cK \\ c$	
The second se	with the constant π is constructed by the constant π is a set of the constant π is constant π is constant π in the constant π in the constant π is constant π in the constant π is constant π in the constant π is constant π in the constant π in the constant π is constant π in the constant π in the constant π is constant π in the constant π in the constant π is constant and the constant π in the constant π in the constant π is constant π in the constant π in the constant π in the constant π is constant π in the constant in the constan	$\begin{cases} : \frac{\partial e}{\partial x} = 1 + \int (\partial_x y) e^{-\lambda} - \int (\partial_x y) e^{\lambda} \\ \frac{\partial e}{\partial x} = - \int (\partial_x y) e^{\lambda} \\ \vdots \end{cases}$	
	$ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	$\begin{cases} 3B \text{ KO THE PLSE} \\ \frac{2a_{e}}{2a} + \frac{2a_{e}}{a_{f}} + 2 & \approx \left[\frac{1}{2} \int_{0}^{1} \frac{1}{a_{e}} - \int_{0}^{1} \frac{1}{a_{f}} \int_{0}^{1}$	
-46	NCE THE P.D.F. NOW SECOND		Ŀ.,
12.	$\frac{\partial \underline{e}}{\partial \xi} + \overline{e} \approx \overline{\xi} \qquad \text{unifor the status so unitarity.} \text{for } e_{\xi}$ $(.F = e_{\xi})^{(-)} \frac{d\xi}{d\xi} = e_{\xi}^{-\overline{\xi}}$		9
~Q2	$\xi_{\mathbf{a}} = \xi_{\mathbf{a}} \xi_{\mathbf{a}} = \xi_{\mathbf{a}} \xi_{\mathbf{a}}$	12.2.2	5
S.M.	Qa.	$ \begin{array}{c} \frac{3g}{2g} + \frac{3g}{2g} + 2 = 2, \\ \frac{3g}{2g} + \frac{3g}{2g} = 2, -2 \end{array} $	
	12 10	$ \begin{array}{c} (1, \frac{32}{2}, +(1, \frac{32}{2}, = \frac{1}{2}, \frac{3}{2}) \\ \uparrow \\ \hline \\ \hline$	
G. 3	S	(if the init is a compared to a to be a difference of the differe	
0	"On	$ \begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0
1 /r		$ \Rightarrow \underline{d}_{1}(\underline{a}\underline{c}) = \underline{z}\underline{a}^{*} $ $ \Rightarrow \underline{z}\underline{c}^{*} = \int \underline{z}\underline{c}^{*} $ $ \Rightarrow \underline{z}\underline{c}^{*} = \int \underline{z}\underline{c}^{*} - \underline{c}^{*} + \underline{c} $	
	n li	$e = \frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$	
	10 11	V(\$(y,z)=3(z=2+4) So 74+ (522), Sutra) (≠ 01= 1, D,E= 15 F(4,V)=0 1:E F(y=2, 3(z=2+1))=0	
? `		$\begin{array}{c} \underbrace{(\underline{0}_{n}^{0})}{\underline{0}} - \underline{\lambda} = \frac{1}{2} (2 - \alpha + i) \underbrace{\underline{o}}_{n}^{0} \underbrace{\mathbf{c}}_{n}^{0} \underbrace{(2 - \alpha + i)}_{n} = \underbrace{\underline{0}}_{n}^{0} \underbrace{(0 - \alpha)}_{\underline{0}} \\ 2 - \alpha + i = \underbrace{\underline{o}}_{n}^{0} \underbrace{(0 - \alpha)}_{\underline{0}} \\ \overline{z} = \underline{\alpha} - i + \underbrace{\underline{o}}_{n}^{0} \underbrace{(0 - \alpha)}_{\underline{0}} \end{array}$	
m	12.	'An '	
4201	Created by T. Madas	NON	19
18.8.65		7884	

Question 4


It is given that $\varphi = \varphi(x, y)$ satisfies the partial differential equation

$$\frac{\partial \varphi}{\partial x} - \frac{\partial \varphi}{\partial y} = \sin x + \cos y$$

Use the transformation equations

u = ax + by and v = cx + dy, $ad - bc \neq 0$

with suitable values of a, b, c and d, in order to determine a general solution of the above partial differential equation.

 $\varphi(x, y) = F(x+y) - \cos x - \sin y$

Question 5

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} - 2z + 4y^2 - 22y + 4x + 13 = 0$$

Use the transformation equations

u = ax + by and v = cx + dy, $ad - bc \neq 0$

with suitable values of a, b, c and d, in order to determine a general solution of the above partial differential equation.

 $\frac{\partial z}{\partial x} + 3 \frac{\partial z}{\partial y} - 2z + 4y^2 - zzy + 4x + 13 = 0$ · LET U= aa+by V= cout dy $\frac{\partial v}{\partial v} = c$ $\frac{\partial v}{\partial v} = d$ 3월 = 3월 3월 + 3월 3일 = a 3월 + c 3월 32 = 32 34 + 32 34 = b32 + d32 SUB INTO THE O.D.E. $a\frac{\partial \mathcal{L}}{\partial u} + C\frac{\partial \mathcal{L}}{\partial v} + 3b\frac{\partial \mathcal{L}}{\partial u} + 3d\frac{\partial \mathcal{L}}{\partial v} - 2\mathcal{Z} + \frac{Uq^2}{2} - 22g + \frac{d}{2}x + B = 0$ u=α V=3α_-y } ⇒ <u>V=3u-y</u> <u>y=3u-v</u> b=0 a=1 $\frac{\partial g_{i}}{\partial u} - \mathcal{D} = + \left[h \left(3 u \cdot v \right)^2 - 2 2 \left(3 u - v \right) + \left[h u_i + 1 \right] = 0$ $\frac{2\epsilon}{2\mu} - \lambda \epsilon = 22(3\mu - i) - 4(2\mu - i)^2 - 4\mu - 13$ BY INTERCATING FACTOR e^{j-z du} = e^{-2u} $\frac{2}{2\mu}\left(\Xi\bar{e}^{2\mu}\right) = 22\left(\underline{3}\mu-V\right)\bar{e}^{2\mu}-4\left(\underline{3}\mu-V\right)\bar{e}^{-2\mu}-\left(\underline{4}\mu-\underline{3}\right)\bar{e}^{-2\mu}$ $\frac{\partial}{\partial u}\left(\Xi e^{2t_{H}}\right) = e^{-2t_{H}}\left[6t_{H}-2t_{V}-4t_{V}^{2}+2t_{H}t_{V}-3t_{H}^{2}-4t_{H}-13\right]e^{-2t_{H}}$ $\frac{\partial}{\partial u} \left(2 e^{2u_{4}} \right) = e^{2u_{4}} \left[-36u^{2} + 62u + 24uv - 22v - 4u^{2} - 13 \right] e^{2u_{4}}$

 $z = 2y^{2} + 2x - 5y + e^{2x} f(3x - y)$

 $= 3 \underbrace{ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$

 $\Rightarrow \mathcal{Z} = \frac{1}{2} \left[\mathcal{Z} u^{2} - (2u - 2lu + 22u + b_{1}^{2} + l_{2}^{2}) + \frac{1}{2} \left[\mathcal{Z} u^{2} - 2l - 2l_{2}^{2} \right] + \mathcal{I} + \mathcal{H}(y) e^{2u} \right]$ $\Rightarrow \mathcal{Z} = (\mathcal{B}_{1}^{2} - 3u - l_{2}u + l_{1}v + 2u^{2} + \frac{1}{2} + \mathcal{B}_{1} - \frac{3}{2} - 0i + 9 + \mathcal{H}(y) e^{2u}$

 $\stackrel{\longrightarrow}{\rightarrow} z = 18u^2 + 2v^2 - 13u - 12uv + sv + A(v)e^{2u}$ $\stackrel{\longrightarrow}{\rightarrow} z = 18u^2 + 2(3u - y)^2 - 13u - 12u(3u - y) + 5(3u - y) + \frac{1}{2}(3u - y)e^{2u}.$

 $= 8a + 13a - y - 13a - 12a (3a - y) + 5(3a - y) + 4(3a - y)e^{-x}$ $= 8a^{2} + 18a^{2} - 12a + 2a^{2} - 13a - 36a^{2} + 12a + 15a - 5g + 4(3a - y)e^{2x}$

 $\Rightarrow 2 = 3y^2 + 2x - 5y + f(3x - y)e^{2x}$

Question 6

It is given that $\varphi = \varphi(x, y)$ satisfies the partial differential equation

$$2\frac{\partial\varphi}{\partial x} + \frac{\partial\varphi}{\partial y} + 6\varphi = 37\sin y$$

Use the transformation equations

$$u = Ax + By$$
 and $v = Cx + Dy$, $AD - BC \neq 0$

with suitable values of A, B, C and D, in order to determine a general solution of the above partial differential equation.

901	420	20
$\varphi(x,y)$ =	$=6\sin y - \cos y + e^{-3x} f(x-2y)$	$=6\sin y - \cos y + e^{-6y} g(x-2y)$
6. 10	2. 91h	"The
0.0	$\left(2\frac{34}{3x}+\frac{34}{3y}+6\varphi=3\cos y\right)$	(Possu - Qsuu) + G(Psuu + Qosu) = 37smu (P + 6Q) cosu + (eP-Q) smu = 37smu
"COL	• Let $u = A_{\infty} + B_{y}$ $(A_{D-BC} \neq 0)$ $\frac{\partial u}{\partial x} = A$ $\frac{\partial u}{\partial y} = b$ $v = C_{\infty} + D_{y}$ $\frac{\partial v}{\partial x} = C$ $\frac{\partial u}{\partial y} = b$	$\begin{array}{c} c = c \\ c = c \\$
^c n	• $\frac{\partial t}{\partial x} = \frac{\partial t}{\partial y} \frac{\partial t}{\partial x} + \frac{\partial t}{\partial y} \frac{\partial t}{\partial x} = A \frac{\partial t}{\partial x} + C \frac{\partial t}{\partial y} + C \frac{\partial t}{\partial y} + \frac{\partial t}{\partial y} + B \frac{\partial t}{\partial y} + D \frac{\partial t}{\partial y} + D \frac{\partial t}{\partial y}$	
×	SUB WIDO THE P.D.E	$\therefore \mathbb{P} : \mathbb{T} \Rightarrow \varphi = \operatorname{GSM}_{4} - \operatorname{Cosu}$ $\operatorname{General_scatter} : \varphi(u_{1}v) = f(v) e^{-G_{4}} + \operatorname{GSM}_{4} - \operatorname{Cosu}$
	$2\left[A\frac{34}{2}+C\frac{34}{2}+\left[B\frac{34}{2}+D\frac{34}{2}\right]+6\phi = 37 \text{ sing}\right]$ $(2A+B)\frac{34}{2}+(2C+D)\frac{34}{2}+6\phi = 37.8mg$	$\phi(x_{ij}) = f(x_{ij})e^{\Theta_{ij}} + \zeta_{SIMU} - \zeta_{ij}$
1 1 L	WE MAY PLOS THE CONTINUTS SO THAT ME "KNOCK OFF" ONE OF THE PARTIAL DEDUCTIONS AND THE SAME TIME WALL THE CONTINUES OF THE	$\phi(x_{ij}) = \frac{f(z-z_{ij})e^{i\phi} + 6x_{ij}y - cosy}{2}$
×	0142-14 SHARE AS ROSING E.G. Ca-1 19 A=0 D=2 19 B=1	$e^{(\mathbf{x},\mathbf{y})} = f(\mathbf{x} - \mathbf{y}) e^{-\mathbf{x} + \mathbf{x}} \times e^{-\mathbf{x}} + \mathbf{x} + \mathbf{x} + \mathbf{y} - \mathbf{x} + \mathbf{x} + \mathbf{y} + \mathbf{x} + \mathbf{x} + \mathbf{y} + \mathbf{x} + \mathbf{x} + \mathbf{y} + \mathbf{y} + \mathbf{x} + \mathbf{y} + \mathbf{y} + \mathbf{x} + \mathbf{y} + \mathbf{y} + \mathbf{y} + \mathbf{x} + \mathbf{y} +$
\mathcal{O}_{i}	So $u = y$ v = -2 + 2y y = y y = u y = u y = u y = u y = u	$\phi(2yy) = g(2-3y)e^{-3z} + 6zny - cozy$
20	· THE P.D.E NON SURVISIS TO	
0	$\frac{\partial \phi}{\partial a} + G \phi = 37 gmu$	s and s and s and s and s
To be	GRIEL TO SOLUE BY CF + P.T tox Equation	
(h)	A+6-0 A=-6 Ser = 2 Party - Garry Ser = 2 Party - Garry	
12.	$C \in \mathbb{R} \varphi(n_0) = f(0) = e^{-p_0} \qquad \qquad \qquad \nabla B \ln p_0 B \in \mathbb{N} \in \mathbb{N}$	
	ST 87.	ST 11 1
do		-42
L. 102		9.0
	7. dr.	
D_{λ} \forall	dro (n	· · · · · · ·
		0 971
10 m	10	in the
~// h		
10	CO.	125 61
	Cn.	
· · · · · · · · · · · · · · · · · · ·		
	A	
k to the second		
S		
		- Soll Y.
/ Y.	40 41	
いろ		()
~~/~		
<u> </u>	- A	<i>o</i>
	< <u>n</u> _	70 k l
n.		n v
V.9	Created by T. Mada	IS
NP'	×2.	100
-42	Sec. 1	·U2
-9.6		- do.

Question 7

It is given that $\varphi = \varphi(x, y, z)$ satisfies the partial differential equation

$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} = \varphi.$$

Use the transformation equations

$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} = \varphi.$$

Use the transformation equations
 $u = a_1 x + b_1 y + c_1 z$, $v = a_2 x + b_2 y + c_2 z$ and $w = a_3 x + b_3 y + c_3 z$,

 b_1 c_1 a_1 where $\neq 0$, a_{2} b_{2} c_2 a_3 b_2 C_3

Ĉ,

C.P.

in order to determine a general solution of the above partial differential equation.

$\begin{array}{c} (d_{1}+2d_{1}+2d_{2}=d_{1}) & \text{Re} \ d_{2} + (Q_{1}+2d_{2}) \\ (d_{2}+2d_{2}+2d_{2}+2d_{2}=d_{1}) & \text{Re} \ d_{2} + (Q_{1}+2) \\ (d_{2}+2d_{2}+2d_{2}+2d_{2}) & \text{Re} \ d_{2} + (Q_{1}+2d_{2}) \\ (d_{2}+2d_{2}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.0%/	$\begin{array}{l} u = x \\ v = g - 2 \\ w = x - g \end{array}$	-g_s_u,u-s]}, ∕∕
$ \begin{array}{c} \overset{\partial \mathcal{M}}{\Rightarrow} = \varphi \\ & \text{substatises} \\ \left[\varphi (q_i q_{ij}) = \frac{1}{2} (q_{ij} q_{ij})_{\mathbb{R}^d} \right] \end{array} $	ξ			

 $\varphi(x, y, z) = f[x - y, y - z]e^{x}$

C.P.

na

madasn.

Question 1

It is given that $\psi = f(x, y)$ satisfies the partial differential equation

$$x^2 \frac{\partial \psi}{\partial x} - xy \frac{\partial \psi}{\partial y} + y \psi = 0$$

Use the transformation equations

u = u(x, y) and v = v(x, y),

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

 $\psi(x,y) = \mathrm{e}^{\frac{y}{2x}} g(xy)$

$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\$
• The start $\frac{d_{12}}{d_{21}} = \frac{g(y_{22})}{d_{21}} = -\frac{g_{22}}{2^2} = -\frac{g_{22}}{2}$ $\Rightarrow \int \frac{1}{3} \frac{d_{21}}{d_{21}} = -\frac{1}{3} \frac{d_{22}}{d_{21}}$ $\Rightarrow \int \frac{1}{3} \frac{d_{21}}{d_{21}} = -\frac{1}{3} \frac{d_{22}}{d_{22}}$ $\Rightarrow \int h(g_{21}) = -h(g_{21}) + C$ $\Rightarrow h($
$ \begin{array}{l} \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} + \frac{\partial \widehat{A}}{\partial \widehat{A}} = \widehat{A} - \frac{\partial \widehat{A}}{\partial \widehat{A}} = \widehat{A} - \frac{\partial \widehat{A}}{\partial \widehat{A}} \\ \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} = \widehat{A} - \frac{\partial \widehat{A}}{\partial \widehat{A}} + 1 = \frac{\partial \widehat{A}}{\partial \widehat{A}} = - \frac{\partial \widehat{A}}{\partial \widehat{A}} \\ \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} = - \frac{\partial \widehat{A}}{\partial \widehat{A}} + 1 = - \frac{\partial \widehat{A}}{\partial \widehat{A}} = - \frac{\partial \widehat{A}}{\partial \widehat{A}} = - \frac{\partial \widehat{A}}{\partial \widehat{A}} = \frac{\partial \widehat{A}}{\partial \widehat{A}} =$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{cases} \frac{1}{r}h & \partial h = \left[-\frac{h}{rh} & \partial h \\ h_{2}\frac{\partial h}{\partial h} & = -rh \\ h_{2}\frac{\partial h}{\partial h} + \frac{h}{rh}h_{0} = 0 \\ -\frac{h}{rh}h_{1}\frac{h}{rh}h_{0} = 0 \end{cases}$
$\begin{split} & \psi_{1} = e_{\frac{2}{2}y_{1}} + f(u) \\ & \psi_{2} = e_{\frac{2}{2}y_{2}} + f(u) \\ & \psi_{1} = e_{\frac{2}{2}y_{1}} + f(u) \\ & \psi_{1} = e_{\frac{2}{2}y_{1} $

Question 2

It is given that z = z(x, y) satisfies the partial differential equation

$$x\frac{\partial z}{\partial x} - 7y\frac{\partial z}{\partial y} = 5x^2y.$$

Use the transformation equations

u = u(x, y) and v = v(x, y),

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

 $-yx^2$ $z(x,y) = f\left(yx^7\right)$

$\begin{array}{c} 2 \frac{\partial g}{\partial x} - 7 g \frac{\partial g}{\partial y} + 0 z = 5 \frac{\partial}{\partial y} \\ \end{array}$ $\begin{array}{c} 4 \left(a_{1} g \right) B \left(a_{1} g \right) C \left(a_{2} g \right) G \left(a_{2} g \right) \end{array}$	
• RELY $\frac{d_{12}}{d_{12}} = \frac{B(Q_{12})}{A(Q_{22})} = -\frac{T_{12}}{A}$ $\Rightarrow \int \frac{1}{2} \frac{1}{2} \frac{1}{2} = \int -\frac{T}{2} \frac{1}{A}$ $\Rightarrow h(y) = -T(y) + C$ $\Rightarrow h(y) + h(x) = C$ $\Rightarrow h(y) + h(x) = C$ $\Rightarrow h(y) + C$ $\Rightarrow h(y) = C$	$\begin{split} & L \in U\left(L(\mathbf{A}_{i}^{1}) = \frac{\mathbf{A}_{i}^{-1}}{2} \right) \\ & P(\mathbf{A}_{i}^{1} + U(\mathbf{P}_{i}^{1} supp_{i}^{1} function^{1}(posts(supp_{i}^{1} supp_{i}^{1}) supp_{i}^{1} supp_{i$
• Solution: Note that $\left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{$	~~~

Question 3

It is given that $\varphi = \varphi(x, y)$ satisfies the partial differential equation

$$2\frac{\partial\varphi}{\partial x} + \frac{\partial\varphi}{\partial y} + 6\varphi = 37\sin y$$

Use the transformation equations

$$u = u(x, y)$$
 and $v = v(x, y)$,

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

0		
$\varphi(x, y) = 6 \operatorname{si}$	$n y - \cos y + e^{-3x} f(x - 2y)$	$=6\sin y - \cos y + e^{-6y} g(x-2y)$
12	. 972	~ (h.
46 @m 39 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$= \frac{B(\Delta y)}{L(q)} = \frac{1}{2}$ $= \frac{1}{2} \Delta x + C$ $= \frac{1}{2} \Delta x + C$ $= \frac{1}{2} \Delta x + C$ $= 2 = contaut$ $= \frac{1}{2} \Delta y + \frac{1}$	$\begin{split} & = \frac{2}{1} \frac{e_{y}}{e_{y}} O_{y} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{2}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{2}{2} \frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_{z} \left(\frac{e_{x}}{e_{y}} \right) - \frac{1}{2} \left[\frac{1}{2} \frac{e_{y}}{e_{y}} O_$
и С 2 С С С С С С С С С С С С С С С С С С	$\begin{array}{c} + 3\varphi = \frac{3}{4} sany \\ + 3\varphi = \frac{3}{2} san(\frac{v_{ab}}{2}) \\ + 3\varphi = \frac{3}{2} san(\frac{v_{ab}}{2}) \\ \frac{1}{2} e^{2s} = \frac{3}{2} e^{2s} an(\frac{v_{ab}}{2}) \\ \frac{1}{2} e^{2s} = \frac{1}{2} e^{2s} an(\frac{v_{ab}}{2}) \\ \frac{1}{2} e^{2s} an(\frac{v_{ab}}{2}) \\ \frac{1}{2} e^{2s} an(\frac{v_{ab}$	$ \begin{split} & \frac{1}{2} e^{2i} = \frac{3i}{2k} \left[e^{2i} \sin\left(\frac{i}{2k}\right) - \frac{2i}{kk} e^{ii} \cos\left(\frac{i}{2k}\right) - \frac{2i}{kk} e^{ii} \cos\left(\frac{i}{2k}\right) \right] + \frac{1}{k} \left(i_{k} \right) \\ & \frac{1}{2} e^{2i} = e^{2i} \left[\left(\sin\left(\frac{i}{k}\right) - \cos\left(\frac{i}{2k}\right) - \frac{2i}{kk} e^{ii} \cos\left(\frac{i}{2k}\right) \right] + \frac{1}{k} \left(i_{k} \right) \\ & \frac{1}{2} e^{2i} = e^{ii} \cos\left(\frac{i}{k}\right) - \cos\left(\frac{i}{2k}\right) + \frac{2i}{k} \left(i_{k} \right) \\ & \frac{1}{2} e^{ii} \left(\sin\left(\frac{i}{k}\right) - \cos\left(\frac{i}{2k}\right) + \frac{2i}{k} \left(i_{k} \right) \right) \\ & \frac{1}{2} e^{ii} \left(i_{k} \right) - \frac{1}{kk} e^{ii} \left(i_{k} \right) \\ & \frac{1}{2} e^{ii} \left(i_{k} \right) - \frac{1}{kk} e^{ii} \left(i_{k} \right) \\ & \frac{1}{2} e^{ii} \left(i_{k} \right) - \frac{1}{kk} e^{ii} \left(i_{k} \right) \\ & \frac{1}{2} e^{ii} \left(i_{k} \right) - \frac{1}{kk} e^{ii} \left(i_{k} \right) \\ & \frac{1}{2} e^{ii} \left(i_{k} \right) \\ & \frac{1}{2}$
	$\begin{split} & \sum_{\substack{a \in \mathcal{A}, \\ a \in A$	$\begin{array}{l} \left(\begin{array}{c} \alpha x \mu - \varphi \alpha u u \right) + \mathcal{L} \left(\begin{array}{c} \alpha y \mu u + \varphi \varphi \alpha u \right) \equiv 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\varphi - \varphi u \right) + \mathcal{L} \left(\begin{array}{c} \varphi \alpha u \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + \mathcal{L} \left(\alpha z - \varphi \alpha z \right) = 57 \text{ con } \mu \\ \hline P + 27 \text{ con } \mu \\ \hline P + 27 \text{ con } \mu \\ \hline P + 27 \text{ con } \mu \\ \hline P +$
•	$\begin{array}{c} & \text{Let} u = A_{2} + B_{2} \\ & \forall = (a_{2} + B_{2}) (4b - B(\neq 0)) & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ \hline \\ \hline$
· · ·	$D = 2 \qquad B = 1$ $D = $	
2~1	Created by T. Mada	as

Question 4

C.t.

R,

It is given that z = z(x, y) satisfies the partial differential equation

$$xy\frac{\partial z}{\partial x} - x^2\frac{\partial z}{\partial y} + yz = 3x^2y$$

Use the transformation equations

u = u(x, y) and v = v(x, y),

for suitable functions u and v, in order to determine a general solution of the above partial differential equation.

 $f(x^2 + y^2)$ $z(x, y) = x^2$

ay ge -235 4(4y) B(4.4)

THERE ALL = B(ALL) = -22 = -3-LOCK FOR AN INSTRUCT FRANCE \Rightarrow ydy = -x.dx \Rightarrow $\frac{1}{2}y^2 = -\frac{1}{2}u^2 + Contract$ $e^{\int \frac{1}{V} du} = e^{\int_{V} u} = V$ THUS $\rightarrow \frac{\partial}{\partial v}(VZ) = 3V^2$ $ET \quad U(Ay) = x^2 + y^2 + y_{BD} \quad Prok +$ SMPLE . N ⇒ VZ= ∫ 3V² QV V(2, y), V(2, y)= 2 FOR INSTANCE \implies VZ = V³ + -f(u)• $u = \chi^2 + \mu^2$

 \Rightarrow $Z = v^2 + \frac{1}{v} \frac{1}{\sqrt{u}} (u)$ 32 = 32 32 + 35 34 = 24 32 $\therefore Z = \chi^2 + \frac{1}{x} - \left((\chi^2 + \eta^2) \right)$ S.B. WIN THE P.D.F. ⇒ 沔(22럂+왏)-2²(23흜)+92 = 333 · 249. + 343 - 24 또 + 42 = 3년

⇒ 34 <u>3</u>2 + 4= 323 $x_{22}^{26} + 2 = 3x^2$ SWITCH COMPLETELY INTO V 32 +2 = 3V2

32 + = = 3V

The Com

I.C.S.

'arns.co,

I.V.G.B. M.

FIRST ORDER P.D.E.s

(by Lagrange's method)

 $P(x, y, z)\frac{\partial z}{\partial x} + Q(x, y, z)\frac{\partial z}{\partial y} = R(x, y, z), \quad z = z(x, y)$ III I.Y.C.B. III2II3SIII2IIISCOIII I.Y.C.B. III2II3SII COM INCOMINATION IN A COMPANY OF A COMPANY O

T.Y.C.B. Madasmaths Com T.Y.C.B.

Question 1

ĈŖ.

i.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \cos(x+y)$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

 $z = \frac{1}{2}\sin(x+y) + f(y-x)$

張+q號=R

 $\alpha_{\perp} = \frac{dy}{dy} = \frac{d}{dx}$

Thus $u(x_1y_1z) = y - x$ $v(x_1y_1z) = z - \frac{1}{2}s$

Z = 12SM(Xty)+ f(y-

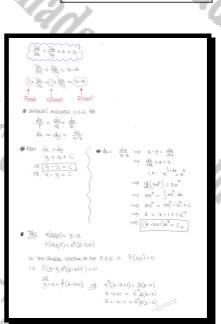
19-2=C1

 $\Rightarrow \frac{dx}{p} = \frac{dy}{q} = \frac{dz}{p}$

Ĉ.ŀ.

ろっ

Question 2


ĈŖ.

F.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + z = x \; .$$

Use Lagrange's method to determine the general solution of the above partial differential equation.

Ĉ.p.

ろっ

 $z = x - 1 + e^{-x} f(x - y)$

Question 3

E.B. Madasm

I.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

 $x\frac{\partial z}{\partial x} = y\frac{\partial z}{\partial y}$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

31 (ARDANCE 5 NA 取りないて、「「」の「「」 この」 うな」 - 生きご うな」 - 生きご うな」 - なうそこ うな」 - なうそこ うな」 - なうそこ うな」

 $\ln x = \ln \frac{A}{y}$ $\boxed{xy = C_2}$ $\text{Thys} \quad u(x_1y_1z) = 2$ $\forall (x_1y_1z) = x_1y$

2025

z = f(xy)

COM

17.202

ŀ.G.p.

 $\frac{dx}{dx} = \frac{dy}{-y} = \frac{dz}{\delta^2}$ NG dz = 0 $z = C_1$

Z = Alau

Created by T. Madas

2017

Question 4

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = 6z.$$

Use Lagrange's method to show that the general solution of the above partial differential equation can be written as

$$g(x,y) = e^{6x} g(3x-y),$$

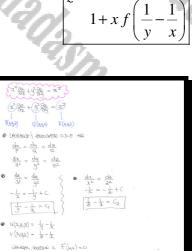
where g is an arbitrary function of 3x - y.

proof

LAGRANCE'S METHO
E 45500MTRO O.D.ES 4RE
$\frac{dx}{T} = \frac{dy}{3} = \frac{dz}{Gz}$
$\frac{1}{2} = \frac{3}{q\theta}$ $\theta \cdot \frac{1}{q\theta} = \frac{2\theta}{q\theta}$
$c = \frac{1}{2}y + c$ $6da = \frac{1}{2}da$
$\alpha = -9 + C$ Gov = $\ln 2 + C$
$x - y = c_1$ $(nz - c_1 = c_2)$
$ u(x_{[4]}z) = 3x - y $
\searrow \angle
CANTODO LA MARIAN
F(u,v)=0
$\Rightarrow \ln z - \omega z = f(3x-g)$
=> (mz = G2 + f(32-y)
=> == e (2x + f (3x - 3))
\Rightarrow $z = e^{\alpha} \times e^{f(\mathfrak{A},\mathfrak{B})}$

Question 5

F.G.B. M.


I.C.P.

It is given that z = z(x, y) satisfies the partial differential equation

2112

 $x^2\frac{\partial z}{\partial x} + y^2\frac{\partial z}{\partial y} = z^2.$

Use Lagrange's method to determine the general solution of the above partial differential equation.

z =

х

Z= 2 (+-2g(+-1)

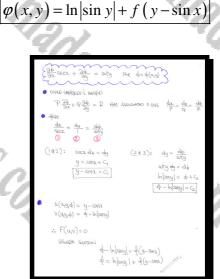
F.G.B.

mana

Created by T. Madas

2017

Question 6


. C.B.

i C.B.

It is given that $\varphi = \varphi(x, y)$ satisfies the partial differential equation

$$\frac{\partial \varphi}{\partial x} \sec x + \frac{\partial \varphi}{\partial y} = \cot y \,.$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

. RH

わっ

Question 7

ĈŖ.

i C.B.

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} \sec x + \frac{\partial z}{\partial y} = \cos y$$

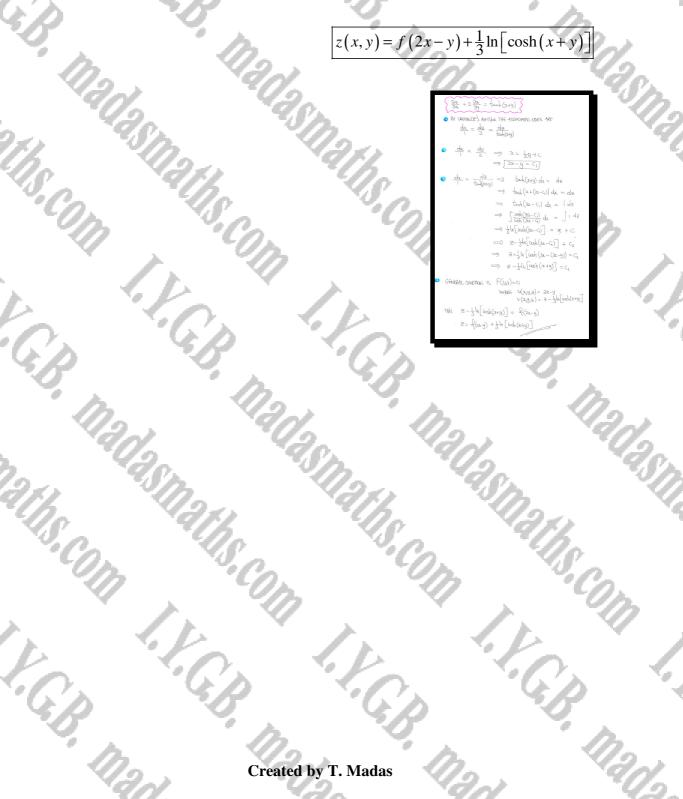
Use Lagrange's method, to determine the general solution of the above partial differential equation.

adasma

 $z(x, y) = \sin y + f(y - \sin x)$

Sing = C

f(y-sina)


Ĉ.Ŗ.

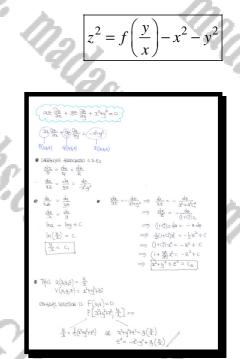
Question 8

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + 2\frac{\partial z}{\partial y} = \tanh(x+y)$$

Use Lagrange's method to determine the general solution of the above partial differential equation.

Question 9


K.G.B. Mal

I.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

 $xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} + x^2 + y^2 = 0.$

Use Lagrange's method to determine the general solution of the above partial differential equation.

200

Com

Mada

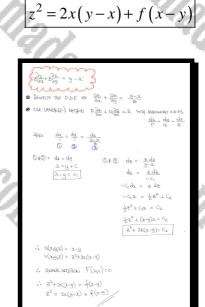
I.Y.G.B.

Created by T. Madas

2017

Question 10

ĈŖ.


i.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

$$z\frac{\partial z}{\partial x} + z\frac{\partial z}{\partial y} = y - x$$

Use Lagrange's method, to determine the general solution of the above partial differential equation.

21/201

Ĉ.ŀ.

Question 11

V.G.B. Mai

I.C.B.

It is given that z = z(x, y) satisfies the partial differential equation

 $(y-x)\frac{\partial z}{\partial x} + (y+x)\frac{\partial z}{\partial y} = \frac{x^2 + y^2}{z}.$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.

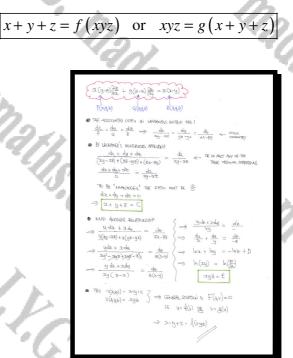
 $\frac{dw}{q} = 1$ = da $\begin{array}{c} \frac{dx}{y-x} = \frac{dy}{y+x} = \frac{z}{x^2+y^2} \end{array}$ $\frac{dx + dy}{(y-x) + (y+x)} = \frac{dy}{y+x}$ = = = $\frac{d(x+y)}{2y} = \frac{dy}{y+x}$ (+2) 16 49) = 2y dy = 2 dz 44a)2= 242-+ C $u(x_ly_lz) = 2y^2 - (y_lz)$ THE GRUGEAL SOUTION IS F(U,V)=0 V = f(u) = Vu = A(v) $i_{\mu} = 3e^{2} - y^{2} + e^{2} = -\frac{1}{2}(2y^{2} - (y+x))^{2}$ $Z^2 = y^2 - x^2 = -\int (2y^2 - (y+$

+f

 $2y^2 - (x+y)^2$

F.C.B.

Question 12


F.G.B. III

P.C.P.

It is given that z = z(x, y) satisfies the partial differential equation

 $x(y-z)\frac{\partial z}{\partial x} + y(z-x)\frac{\partial z}{\partial y} = z(x-y).$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.

E.P.

Question 13

Сŀ,

It is given that z = z(x, y) satisfies the partial differential equation

 $x(y^2-z^2)\frac{\partial z}{\partial x}+y(z^2-x^2)\frac{\partial z}{\partial y}=z(x^2-y^2).$

Use Lagrange's Multipliers method for derivatives, to find the general solution of the above partial differential equation.

$$xyz = f\left(x^{2} + y^{2} + z^{2}\right) \text{ or } x^{2} + y^{2} + z^{2} = g\left(xyz\right)$$

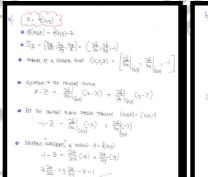
$$\left(x^{2} + y^{2} + z^{2} + z^{2}$$

Question 14

i.C.B.

K.C.

The surface S has Cartesian equation


 $z=f\left(x,y\right) .$

The tangent plane at any point on S passes through the point (0,0,-1).

a) Show that

 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} - z = 1.$

b) Hence find the general expression for an equation for S.

z = -1 + xG

х

 $\begin{array}{c} & 0 & 0 \in \mathrm{d}_{2} \mathrm{d}_{2} \mathrm{d}_{1} \mathrm{d}_{2} \mathrm{d}$

C.H.

asmaths.com

ISIN 3/18-COM I.Y.C. FIRST ORDER P.D.E.s

FIRST ORDER 1 Iboundary Value Problems $P(x,y,z)\frac{\partial z}{\partial x} + Q(x,y,z)\frac{\partial z}{\partial y} = R(x,y,z), z = z(x, ...)$, y, z) 6. In I. Y.G.B. Malasmalls.Com I.Y.G.B. Malasm TARGE MARINESTRATISCOM TARGE

Question 1

11₂₀₂

I.C.B.

The Com

Y.C.B. Madasm

aths com

I.C.B.

 $\frac{\partial z}{\partial x} + \frac{1}{2} \frac{\partial z}{\partial t} = \cos x \; .$

Solve the above partial differential equation given that z = z(x,t) and further satisfies the initial condition z(x,0) = 0.

madas,

$\overline{z(x,y)} = \sin x - \sin(x - 2t)$

The COL

3

$\frac{32}{9\alpha} + \frac{1}{2}\frac{32}{3t} = \cos \alpha$ SUBJECT TO $P = \frac{\partial z_1}{\partial x} + Q = \frac{\partial z_2}{\partial x} = R$

 $\frac{dx}{dt} = \frac{dy}{dt} = \frac{dy}{dt}$

 $\bigcirc \mathfrak{q} \otimes \Rightarrow d\mathfrak{x} = 2d\mathfrak{t}$ $\frac{sb}{200} = \chi b$, (b = 0) $\Rightarrow a = 2t + C$ $\Rightarrow a - 2t = C$ cose da = da

ettions: $F(u_1v) = 0$, where $u(u_1t_1z)$

100: 2 - 502 = f(2-2t)Z = 502 + f(2-2t) $\begin{array}{l} (100) \quad \mathcal{R}(\mathbf{x}_{1} \mathbf{o}) = \mathbf{o} \\ (100$ f(x) = -sm• ltt u=2

hs.com

mada

I.V.G.B.

Created by T. Madas

COM

2

Question 2

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2z(x+y)$$

a) Use the transformation equations

$$u = x + y$$
 and $v = x - y$,

to find a general solution for the above partial differential equation.

b) Given further that when $z(x, y) = x^2$ at x + y = 1, find the value of z(1, 0).

8	. Co		C
a) START BY PERSONNE THE PERIVATIVES BY THE C	STAN POLE	NOTTICARD YMANOE 347 8(MYMP) 🕚	a ²
u = x + y $v = x - y$		with sty=1 z(zy)=z2	
$ \frac{\partial x}{\partial x} = \frac{\partial n}{\partial x} \frac{\partial x}{\partial n} + \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial n}{\partial x} \cdot (1 + \frac{\partial x}{\partial x} \cdot 1) $	$= \frac{\partial r}{\partial z^{-}} + \frac{\partial r}{\partial z^{-}}$	$\Rightarrow \exists (x^{f} \hat{h}) = f(x-\hat{d}) e_{f(x+\hat{d})_{s}}$	
• $\frac{\partial U}{\partial z} = \frac{\partial u}{\partial u} \frac{\partial u}{\partial u} + \frac{\partial u}{\partial u} \frac{\partial u}{\partial v} = \frac{\partial u}{\partial u} \cdot + \frac{\partial u}{\partial v} (-i)$	$a = \frac{\partial n}{\partial S} = \frac{\partial A}{\partial S}$	$\Rightarrow \mathfrak{A}^{2} = \left\{ \left[\mathfrak{X}_{-}(\iota - \mathbf{x}) \right] e^{\frac{1}{2} (\iota)^{2}} \\ \Rightarrow \mathfrak{A}^{2} = \left\{ (\mathfrak{X}_{-}) e^{\frac{1}{2}} \right\}$	
THE P.D.E NOW BECOMES		, , , , , , , , , , , , , , , , , , , ,	
$\rightarrow \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2\varepsilon(x+y)$		• Now let $w = 2\chi - 1 \iff \chi = \frac{1}{2}(w+1)$ $\implies \frac{1}{4}(w+1)^2 = \frac{1}{2}(w) e^{\frac{1}{2}}$	
$\Rightarrow \left(\frac{\partial Z}{\partial u} + \frac{\partial Z}{\partial u}\right) + \left(\frac{\partial Z}{\partial u} - \frac{\partial Z}{\partial u}\right) = 2Zu$		$\Rightarrow \frac{1}{4} (W+1) = \frac{1}{2} (W+1)^2$ $\Rightarrow \frac{1}{4} (W) = \frac{1}{2} e^{\frac{1}{2}} (W+1)^2$	
-) 2 ge = 350		$ = -(x-y) = \frac{1}{4}e^{\frac{1}{2}}(x-y+1)^2 $	
⇒ ≩ = zu		HENCE THE SHORE SOUTHON IS	
SOLLE BY SEPARATING OARIARLES - V II TEATRO.	Futtrano + 24	$Z(x,y) = \frac{1}{2}(x-y+1)e^{\frac{1}{2}} \times e^{\frac{1}{2}(x+y)^2}$	
$\frac{1}{2} = 2c = a = 2a$			
$\rightarrow \ln z = \pm u^2 + A(v)$		$\therefore = \mathcal{Z}(I_{1}D) = \frac{1}{4}(J_{1}-0+I_{1})^{2}e^{\frac{1}{2}} \times e^{\frac{1}{2}(1+0)^{2}}$	
\rightarrow $z = e^{\pm i c_+ A(y)} = e^{\pm i v_+} e^{A(y)} =$	B(v)e ^{±u2}	$Z(I,0) = e^{-\frac{1}{2}}e^{\frac{1}{2}}$	
$\Rightarrow \overline{z}(x,y) = f(x-y) e^{\frac{1}{2}(x+y)^2}$		$\frac{2(1_0)}{2} = 1$	
2			

 $z(x, y) = g(x-y)e^{\frac{1}{2}(x+y)^2}$

z(1,0) = 1

Question 3

ĈŖ.

12

It is given that z = z(x, y) satisfies the partial differential equation

 $2\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = z \; .$

Given further that z = y at x = 1 for all y, find the solution of the above partial differential equation.

 $z(x, y) = \frac{1}{2}(3 - 3x + 2y)e^{\frac{1}{2}(x - 1)}$

2y= 3-W y= 3-W

2

-00	122
Some THE P.D.C. BY "UCORNIZE'S WITHER"	MARY THE BOWLONLY CONDITION 2(1)= 3
$2\frac{2\alpha}{2} + 3\frac{2\alpha}{2} = 7$	$\longrightarrow \partial e_{\overline{f}} \circ \partial (s \cdot s \partial)$
$\frac{b}{dx} = \frac{ds}{da} \Rightarrow \frac{5}{dx} \implies \frac{x}{da} = \frac{x}{da}$	
SOLUNIS @= @	$\implies \left(\frac{3-m}{3-m}\right)e_{-\frac{1}{2}} = \hat{d}(m)$
$\Rightarrow \frac{dx}{2} = \frac{du}{3} \Rightarrow \frac{dx}{2} = \frac{dz}{3}$	\Rightarrow g(gr-sd) = $\frac{3}{3} - \frac{3}{(37-5d)} e_{\frac{7}{2}}$
$\Rightarrow 3d_{\lambda} = 2d_{y}$ $\Rightarrow \frac{1}{2}\lambda = \ln 2 + D$ $\Rightarrow 3\lambda = 2a_{+}C$ $\Rightarrow \frac{1}{2}\lambda = \ln(A \cdot 2)$	$\Rightarrow \Im(\Im - \Im) = \frac{1}{2} e_{\mp} (\Im - \Im + \Im)$
$ -3a_{1} = 2a_{1} + c \qquad \Rightarrow \pm \lambda = h(A^{*}) $ $ -3a_{2} - 2a_{3} - c \qquad \Rightarrow e^{\frac{1}{2}\lambda} = A_{2} $	FILLALLY WE OSTAIN!
$u(x,y,z) = 3x - 2y \implies Z = B e^{\frac{1}{2}x}$	\implies Z $e^{-\frac{1}{2}\lambda}$ $g(\lambda_a - \lambda_g)$
$\Rightarrow 2e^{\frac{1}{2}x} = g$	\Rightarrow $Ze^{\frac{1}{2}\lambda} = \frac{1}{2}e^{-\frac{1}{2}(\lambda-3\lambda+2y)}$
THE BLERN SWITCH IS	$\Rightarrow Z = \frac{1}{2}e^{\frac{1}{2}\lambda}e^{-\frac{1}{2}}(3-3\lambda+2y)$
F(u,u)=0	$\rightarrow s(x^{i}h) = \sum_{j=0}^{i} e_{f(x-i)}(3-3x+5^{i})$
$U \in f(v)$ or $v \in \mathcal{A}(v)$	
2 e 2 x 3 (32-33)	

Question 4

V.G.B. Mal

I.F.G.B.

It is given that z = z(x, y) satisfies the partial differential equation

 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z \; .$

Given further that $z(x,0) = \cos x$, find the solution of the above partial differential equation.

adasman

<u></u>	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$	Sugger (9,g) = GT 3 TH SUG
$\frac{da}{l} = \frac{dy}{l} = \frac{dz}{dz}$	ular -
• $dx = dy$ x = y + C $x - y = C_1$	d1 = d2 a= 192+C 192= 2+C 2= e×c
	$\frac{2}{e} \in C_2 e^{2e}$
$ \lambda(3^{c}\hat{A}^{c}\hat{S}) = \frac{1}{2} \frac{6^{2}}{2} $	$\begin{cases} Gev solution u F'(u,v)=0\\ v \in G(u)\\ \frac{Z}{e^{Z}} = G(u-y) \end{cases}$
NOGI GNUBITIONS_	$\overline{Z} = e^{2}G(x-y)$
	$=) (asa = e^{2}G(a))$ $G(a) = e^{2}G(as(a)) + 3a$ $G(a) = e^{2}G(as(a)) + 3a$
Lt-T 4 = 2-y -Z-(2,y) = € ∞(2,y) = ₹	$\mathcal{P}(G(u) = e^{-t} cos(u))$ $e^{-t} cos(z-y)$ d cos(z-y)

Com

M2(12)

.C.p.

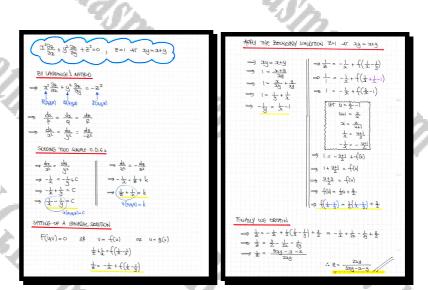
 $z(x, y) = e^{y} \cos(x - y)$

Created by T. Madas

2017

Question 5

F.G.B. M.


E.B.

The surface S, with equation z = z(x, y), satisfies the partial differential equation

 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} + z^2 = 0.$

The plane with equation z = 1 meets S on the curve with equation xy = x + y.

Find a Cartesian equation of S, in the form z = f(x, y).

 $z = \frac{1}{2}(3 - 3x + 2y)e^{\frac{1}{2}(x-1)}$

FGB.

na

Question 6

12

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} + xy = 0.$$

S contains the curve with equation

$$xy=1, z=x, \forall x$$

Find a Cartesian equation of S, in the form z = f(x, y).

REWART THE P.D.F & SOLVE BY "HERMORE'S METHOD"
22 20 + 43 20
$\frac{b}{qx} = \frac{b}{q^3} = \frac{c}{q5} \implies \frac{x5}{q5} = \frac{73}{q5} = \frac{-x4}{q5}$
SOLONG- ① = ②
$\Rightarrow \frac{dx}{32} = \frac{dy}{92} \Rightarrow \frac{dx}{32} = \frac{dz}{-34}$
→ =
⇒lnar=lny+lnd → yda=-zde
\rightarrow ha = h (A3) \rightarrow C, a da = -z da \rightarrow a = Ay
$\rightarrow \frac{4}{3} = C_1 \longrightarrow \frac{7}{2} c_1 a^2 + C_2 = -\frac{1}{2} a^2$
$\Rightarrow \frac{1}{2} $
$\Rightarrow \frac{1}{2} = -\frac{1}{2} = -\frac{1}{2}$
$\Rightarrow -xy + C_2 = z^2$
$\rightarrow 2^2 i x y - \zeta_2$
THE GENERAL SOLUTION IS GIVEN BY
$F(u,v) = O$ where $u(x,u,e) = \frac{x}{2}$
$\sqrt{(2_1y_1z)} = z^2 + xy_1$
∴ u=-f(v) or v-g(u)

$\Rightarrow e^{2} + xy = f\left(\frac{y}{x}\right)$	
$\rightarrow S_x = f(\frac{x}{d}) - x^{d}$	
AFRY BOONDARY CONDITIONS NEXT, $\alpha_{\rm H} = 1 \rightarrow$	t z=x vx,
$ \Rightarrow \mathfrak{C}_{2}^{*} = \left\{ \begin{pmatrix} y_{2} \\ y_{2} \end{pmatrix} - xg \\ \Rightarrow \mathfrak{a}^{*} \approx \left\{ \begin{pmatrix} x_{2} \\ x \end{pmatrix} - 1 \\ \Rightarrow \mathfrak{A}^{2} + \iota = f\left(\frac{1}{2^{k}}\right) \\ \end{cases} \right\} $	$\begin{array}{c} u = \frac{1}{3^2} \\ u^2 = \frac{1}{4} \end{array}$
$\Rightarrow \frac{1}{u} + 1 = f(u) \qquad \qquad$	in the second
$ \Longrightarrow \oint \left(\frac{y_1}{x}\right) = \frac{1}{4\chi} + 1 $ $ \Longrightarrow \oint \left(\frac{y_1}{x}\right) = \frac{x}{y} + 1 $	
45uct we now three	
$\frac{z^2}{z} = \frac{z}{y} + 1 - xy$	

Ĉ.Ŗ.

 $z(x, y) = \frac{x}{-} - xy + 1$

S.C.

Question 7

N.

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$(x^{2}+1)\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} - xy = 0$$

0

 $y^{\overline{5}}$

 $x^{2}+1$

S contains the curve with equation

$$z(x,1) = (x^2+1)^2, \quad \frac{1}{2} \le x \le \frac{2}{3}.$$

Find a Cartesian equation of S, in the form $z^2 = f(x, y)$

2	$\begin{array}{c} (\widehat{(\mathcal{I}^{4})}) \underbrace{\widehat{\mathcal{S}}_{\mathcal{L}}^{2}}_{\mathcal{S}_{\mathcal{L}}} + 2\underline{\mathcal{S}}_{\mathcal{S}_{\mathcal{L}}}^{2} - \mathbf{x}_{\mathcal{L}} = 0 \\ \\ (\widehat{\mathcal{I}^{4}}) \underbrace{\widehat{\mathcal{S}}_{\mathcal{L}}^{2}}_{\mathcal{S}_{\mathcal{L}}} + 2\underline{\mathcal{S}}_{\mathcal{S}_{\mathcal{L}}}^{2} = \mathbf{x}_{\mathcal{L}}^{2} \\ \\ \underbrace{\widehat{\mathcal{S}}_{\mathcal{L}}^{4}}_{\mathcal{S}_{\mathcal{L}}} + 2\underline{\mathcal{S}}_{\mathcal{S}_{\mathcal{L}}}^{2} = \mathbf{x}_{\mathcal{L}}^{2} \end{array}$	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_{a} \\ \sigma_{a} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \end{array} \\ \begin{array}{c} \sigma_{a} \\ \sigma_$	$ \begin{array}{c} \bullet & \frac{1}{(\underline{z}^{k} + t)^{\frac{k}{2}}} = & \left\{ \begin{pmatrix} 1 \\ \underline{z}^{k} + t \end{pmatrix} \right\} & \dots & \dots & \frac{1}{2} \leq T \leq \frac{2}{T} \\ & \text{let} 4 = \frac{1}{\underline{z}^{k} + t} \xrightarrow{\bullet} & \underline{z}^{k} + t = \frac{1}{4} & \dots & \dots & -\frac{q}{12} \leq 4t \leq \frac{q}{2}. \end{array} $
	$\begin{array}{c} \frac{dy}{2xy} = \frac{dz}{3xz} \\ \frac{dy}{2yz} = \frac{dz}{3xz} \\ \frac{dy}{2yz} = \frac{dz}{3z} \\ \Rightarrow \frac{dy}{2yz} = \frac{dz}{3z} \\ \Rightarrow \frac{dy}{1yz} = 2hz + C_{1} \\ \Rightarrow hy = h_{2}z + h_{1} \\ \Rightarrow hy = h_{2}z + h_{3} \\ \frac{dy}{2z} = \frac{dz}{3z} \\ \Rightarrow \frac{dy}{2z} = \frac{dy}{3z} \\ \Rightarrow \frac{dy}{2z} = \frac{dy}{3z} \\ \Rightarrow \frac{dy}{2z} = \frac{dy}{3z} \\ \frac{dy}{2z} \\ \frac{dy}{2z} = \frac{dy}{3z} \\ \frac{dy}{2z} \\ \frac{dy}{2z} = \frac{dy}{3z} \\ \frac{dy}{2z} \\ dy$	$\begin{aligned} \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} &= \frac{1}{4\epsilon} & \dots & \dots & \frac{1}{2} \leq u \leq \frac{u}{2} \\ & & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \\ u \end{pmatrix} &= \frac{1}{4\epsilon} & \dots & \frac{1}{2} \leq u \leq \frac{u}{2} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \\ u \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} u \\ u \\ u \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} u \\ u \\ u \end{pmatrix} & \dots & \frac{1}{2} \leq u \leq \frac{u}{2} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \dots & \frac{1}{2} \leq u \leq \frac{u}{2} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \end{pmatrix} \\ & & & \\ \frac{1}{2} \begin{pmatrix} u \\ u \end{pmatrix} & \frac{1}{2} \begin{pmatrix}$
	$\frac{\mathbb{S}_2}{n} \approx \oint \left(\frac{\mathcal{I}_{sH}}{n} \right) \qquad \overline{\mathrm{GF}} \frac{\mathcal{I}_{sH}}{n} \approx \oint \left(\frac{\mathbb{S}_2}{n} \right)$	

Question 8

?

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2z(x+y).$$

Given further that when $z(x, y) = x^2$ at x + y = 1, find the solution of the above partial differential equation.

	$z(x, y) = \frac{1}{4}(x - y + 1)^2 e^{-\frac{1}{4}(x - y + 1)^2}$	$xp\left[\frac{1}{2}(x+y+1)(x+y-1)\right]$
Pri	· 05.	42. 9
asinari	$\begin{cases} \frac{\partial Z}{\partial x} + \frac{\partial Z}{\partial y} = 2(2xy)z \\ \frac{\partial Z}{\partial x} + \frac{\partial Z}{\partial y} = 2(2xy)z \\ \frac{\partial Z}{\partial x} + \frac{\partial Z}{\partial y} \\ \frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial y} \\ \frac{\partial Z}{\partial y} \\ \frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial y} \\ \frac{\partial Z}{\partial y} \\ \frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial y} \\ \frac{\partial Z}$	NOW 4949 THE MODELY (CADRIG) $\mathcal{Z}(\chi_{H}) = \chi^{2}$ IF $\mathcal{I}_{+}\mathcal{I}_{+} = $ Thus $\left\{ \chi_{H}^{2}(\chi_{H}) = e^{2\chi_{H}} \int_{-}^{1} (\chi_{-},\chi) \right\}$ $\chi^{2} = e^{2\chi_{H}} \mathcal{I}_{+}^{2} (\chi_{-},\chi)$ $\chi^{2} = e^{2\chi_{H}} \mathcal{I}_{+}^{2} (\chi_{-},\chi)$ $\int_{-}^{1} (\chi_{-},\chi_{-}) \left\{ (\chi_{-},\chi_{-}) \right\}$ $\left\{ \mathcal{I}_{+}(\chi_{-},\chi_{-}) = -\frac{\chi_{-}}{e^{2\chi_{-}}} \right\}$
	$\begin{split} \frac{2(\hat{\mu}+\lambda r_{\zeta})}{2}\hat{\alpha}_{\lambda} &= \frac{\pi}{2}d_{\lambda} \\ (\hat{\alpha}_{\lambda}+\alpha_{\zeta}) &= \frac{\pi}{2}d_{\lambda} \\ (\hat{\alpha}_{\lambda}+\alpha_{\zeta}) &= \frac{\pi}{2}d_{\lambda} \\ \lambda ^{2}+2\zeta_{\zeta} &= \ln 2 + C \\ \ln 2 &= \lambda^{2}+2\zeta_{\zeta} + C \\ \mathcal{Z} &= 2\lambda^{2}+2\zeta_{\zeta} + C \\ \mathcal{Z} &= \zeta_{\lambda}e^{2\lambda^{2}+2\zeta_{\zeta}} + C \\ \mathcal{Z} &= \zeta_{\lambda}e^{2\lambda^{2}+2\zeta_{\zeta}} \\ \mathcal{Z} &= \zeta_{\lambda}e^{2\lambda^{2}+2\zeta_{\zeta}} \\ \mathcal{Z} &= \zeta_{\lambda}e^{2\lambda^{2}-2\zeta_{\zeta}} \\ \mathcal{Z} &= \zeta_{\lambda}e^{2\lambda^{2}-2$	$\begin{aligned} & \left\{ \dot{u}_{i} \right\} = \frac{\frac{1}{2} \left\{ \frac{1-y_{i}}{2} \right\}^{2}}{\frac{1}{2} \left\{ \frac{1-y_{i}}{2} \right\}^{2} \left\{ \frac{1-y_{i}}{2} \right\} \left\{ \dot{u}_{i} \right\} = \frac{1}{4} \left\{ \frac{1-y_{i}}{1-w_{i}-\xi_{i}} \left\{ \frac{1-y_{i}}{2} \right\} \left\{$
1. Y.C.D	$\begin{array}{c} \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{aligned} & + \left((g, \chi) = \frac{1}{4} \left((-g + \chi)_{e}^{2} \frac{1}{2} \left((g^{2} 2g + \chi^{2} - 1) \right) \right) \\ & \therefore g \left(\chi_{ij} \right) = \frac{1}{4} \left((-g + \chi)_{e}^{2} \frac{1}{4} \left((\chi^{2} 2g + \chi^{2} - 1) \right) \right) \\ & = \left(\chi_{ij} \right) = \frac{1}{4} \left((\chi_{ij} + 1)_{e}^{2} \frac{1}{4} \left((\chi^{2} 2g + \chi^{2} - 1) \right) \right) \\ & = \left(\chi_{ij} \right) = \frac{1}{4} \left((\chi_{ij} + 1)_{e}^{2} \frac{1}{4} \left((\chi_{ij} + 1)$
120/20.	madasn.	nado. 1120
n and	Con 13/1/s.C	nn snaths.co.
I.Y.G.	· · · · · · · · · · · · · · · · · · ·	
n _{ado}	Created by T. Madas	na na

Question 9

V.G.B. May

I.F.G.B.

It is given that z = z(x,t) satisfies the partial differential equation

 $e^x \frac{\partial z}{\partial x} + \frac{\partial z}{\partial t} = 0$, $z(x,0) = \tanh x$.

Find the solution of the above partial differential equation, in the form z = f(x,t).

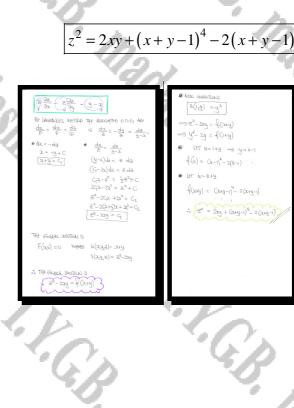
 $|z(x, y) = -\tanh | \ln (t + e^{-y})$ UE THE P.D.E BY "I AR TAL CONDITION, t=0 z=taugh: 95 + 1 95 tanha = f(ex) = = = $\frac{du}{dx} = \frac{dt}{1} = \frac{dz}{0}$ a = ln + funk(-lnw) = f(w) = +f(w) = +auh(-hw)f(w) = - touch (lmw) $f(t+e^{2}) = -t_{mh}\left[\ln(t+e^{2})\right]$:. u(x,t) = t+e" $z = -tanh \left[ln \left(t + e^{-t} \right) \right]$.. ∨(≥) = ≥. v = f(v): Z= f(+, 0x

200

COM

Ś

Question 10


Y.G.B. May

.Y.G.B.

It is given that z = z(x, y) satisfies the partial differential equation

$$z\frac{\partial z}{\partial x} - z\frac{\partial z}{\partial t} = y - x, \quad z(1, y) = y^2$$

Find the solution of the above partial differential equation, in the form $z^2 = f(x, y)$.

200

COM

Madasn

I.C.B.

Created by T. Madas

2017

Question 11

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$x\frac{\partial z}{\partial x} - 3y\frac{\partial z}{\partial y} = x^2y$$

a) Use the transformation equations

$$\xi(x, y) = \ln x$$
 and $\eta(x, y) = \ln y$,

- to transform the above partial differential equation into one with constant coefficients.
- **b**) Given further that z(1, y) = y, find a Cartesian equation of *S*, giving the answer in the form z = f(x, y).

 ∂z

 ∂x

 ∂z

дy

 $e^{2\xi+\eta}$

J. 22 3y 3 = 2'y 20 = 20 20 + 20 20 = 4 20 - 4 THE P.D $x(x_{\frac{1}{2}}) - 3(\overline{r}_{\frac{1}{2}}) = e_{\overline{x}}e_{\overline{x}}$ 3 - 3 3 - e25+1 BY LA WETHER THE ASS $\frac{dy}{1} = \frac{dy}{-3} = \frac{dz}{e^{2j+4}}$ • 3 dg = - dy • $d\xi = \frac{dz}{e^2 \xi + \gamma}$ dz est = dz $3F + \eta = c_1$ $U(\xi_1 \eta_1 z) = 3\xi + \eta$

source is F(4,V)=0 $z + e^{2\xi + \eta} = G(3\xi + \eta)$ $z_{+} e^{2lux + lny} = G(3h)$ $z + e^{\ln x^2} e^{\ln y} = G[\ln x^3 + \ln y]$ $z + x^2y = G[h_1(x^3y)]$ z + 24 = -f(24) z = f(xy) - xy Now APPCY CONDITION Z(1,4)= 9 4= f(y) - y -f(y)= 2y +y ● LET y=u f(y) = 2yIN PARTICULAR LET U= 334 - f(23)=2234 $\therefore \mathbb{E}(\alpha_1 y) = 2\alpha_2^2 y - \alpha_2^2 y$

 $z(x, y) = 2x^3$

v

Question 12

It is given that u = u(x, y) satisfies the partial differential equation

$$3y^2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} - xy^2u = 0.$$

It is further given that when $x = y + y^3$, $u(x) = xe^{\frac{1}{6}}$

Find a simplified expression for u = u(x, y), in the form $u(x, y) = f(x, y)e^{\frac{1}{6}x}$ where f is a function to be determined.

	-110	
34° 24 + 34 - 24	$\mu = 0$ SOLVET TO $\omega_{1+1}\omega = 2^{-1} \underbrace{\sum_{i=1}^{k} (\chi_{i})^{2}}_{i}$ $U(\chi) = \chi_{i} \underbrace{\sum_{i=1}^{k} \chi_{i}^{2}}_{i}$	$\Rightarrow \ln u = \frac{1}{2}x^2 + C$ $\Rightarrow u = e^{\frac{1}{2}x^2 + C} = e^{\frac{1}{2}x^2}$
● QW217F 7HE 7-D-E AC F	глон	$ u = C_2 e^{\frac{1}{6}a^2} $ $ = \frac{u}{e^{\frac{1}{6}a^2}} = C_2 $
$3\frac{\partial x}{\partial x} + \frac{1}{\partial x}\frac{\partial y}{\partial y} = x$	1	en canton 1947
(ILLING LAGRANDES MITHED	WE ORDAN	
$\frac{dx}{3} = \frac{dy}{dx} = \frac{du}{3t}$		$\frac{u}{e^{\frac{1}{2}x^2}} = f(x - y^2)$
SOLOING THE ABOOE ASSOCI	C.3.4.0 0874	$u(xy) = -(x-y^3)e^{\frac{1}{2}x^2}$
0 = 0	2 = 3	🤌 AAR COUDITION GIVIN, W(2)=
- de a y2 dy	$\Rightarrow y^2 dy = \frac{du}{au}$	3,etx2 = -f(y+y3-y3)e
$\rightarrow \int \frac{1}{3} dx = \int y^2 dy$	$\rightarrow \int 2y^2 dy = \int \frac{1}{4} du$	$\Rightarrow f(-g) = x = g + g$
$\Rightarrow \frac{1}{3}\alpha = \frac{1}{3}y^3 + c$	$\Rightarrow \int (g^{3}+c_{1})g^{2} dg = \int \frac{1}{4} du$	l€T V=-9 ⇐> y=-
$\implies a = y^3 + C_1$	$\Rightarrow \int t_t du = \int g^5 + C_t g^2 dy$	$\Rightarrow f(v) = (-v) + (-v)^{2}$ $\Rightarrow f(v) = -v - v^{3}$
$\Rightarrow \underline{x - y^3 = c_1}$	$\rightarrow bnu = \frac{1}{2}y_{e}^{\mu} + \frac{1}{2}c_{e}y^{3} + C$	
	$\implies \ln u = \frac{1}{6} (x - c_1)^2 + \frac{1}{5} c_1 (x - c_1) + 0$	
	$\implies b_{i}u_{i} = \frac{1}{2}x_{i}^{2} - \frac{1}{2}c_{i}x_{i} + \frac{1}{2}c_{i}^{2}$	$\delta_{\mathbf{r}} \underline{\psi(\mathbf{x}, \mathbf{y})} = \left[(\underline{\psi}^{\mathbf{y}} - \mathbf{x}) + (\underline{\psi}^{\mathbf{y}}) \right]$
	=> hu = tx2 - t G2 + C	

 $u(x, y) = |(y^3 - x) + (y^3 - x)^3|$

 $e^{\frac{1}{6}x^2}$

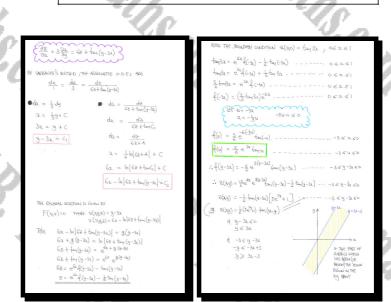
08

3-93)=+

- (x-43)- (x-44)

 $x-y^3 = g\left(\frac{u}{e^{\frac{1}{2}a^2}}\right)$

Question 13


The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$2\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = z$$

It is further given that

 $z(x,0) = \tan 3x, \ 0 \le x \le 1.$

Find a Cartesian equation of S, in the form z = f(x, y), further describing the relation of S to the x-y plane.

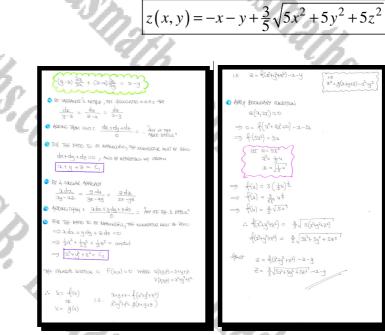
 $z(x, y) = \frac{1}{6} (5e^{x} + 1) \tan(3x - y), \quad 3x - 3 \le y \le 3x$

56

Question 14

The function f, with equation z = f(x, y), satisfies the partial differential equation

$$(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = x - y$$


It is further given that

É.G.B.

I.C.P.

$$f(x, y) = 0$$
, when $y = 2x$.

Find a Cartesian equation of f, giving the answer in the form z = f(x, y).

KC,

i G.B.

ma

Question 15

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = xy$$

The plane with equation z = 1 intersects S along the curve with equation

 $y = 2x^2, -1 < x < 1.$

Determine a Cartesian equation of S, giving the answer in the form $z^2 = f(x, y)$, sketching the projection of S on the x-y plane.

 $\alpha(2\chi^2) + \left\{ \left(\frac{\alpha}{2\chi^2} \right) \right\}$ da_ 117 = - 20 $2x^3 + f\left(\frac{1}{2x}\right)$ $f(\frac{1}{2\pi}) = 1 - 2\chi^3$ $O \frac{dx}{xz} = \frac{dy}{yz}$ $f(u) = 1 - 2\left(\frac{1}{2u}\right)^3$ $f(y) = 1 - 2(\frac{1}{803})$ $\oint(u) = 1 - \frac{1}{4u^1}$ EN PHETLOUAR WHEN U= - $-\left(\frac{x}{2}\right) = 1 - \frac{1}{4}\frac{y^3}{x^3}$ $(z) = \left(\frac{\alpha}{\alpha}\right)$ $(x_i y_i s) =$ $^{2}-\pi g = \frac{1}{\sqrt{2}}\left(\frac{x}{g}\right)$

z(x, y) = xy + 1

12221

 $-1 < \frac{l}{24} <$

1 < 1 < 1

-1<+<1

 $\frac{1}{2} \leq 2$ $\frac{1}{2} \leq 2$ $4x^{\overline{3}}$

Question 16

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$yz\frac{\partial z}{\partial x} - xz\frac{\partial z}{\partial y} = xy$$
.

- a) Find a general solution of the partial differential equation.
- The plane with equation y = 0 intersects S along the curve with equation

$$z = \sin x, \ 1 < x < 2.$$

- **b**) Find a Cartesian equation of S, giving the answer in the form $z^2 = f(x, y)$, sketching the projection of S on the x-y plane.
- c) Show that the characteristic curves of the partial differential equation are the intersections of the families of two circular cylinders.

 $z(x, y) = \frac{x}{y} - xy + 1$

(1) $\frac{28}{28} = -\frac{28}{28} = -\frac{28}{29}$ (1) $\frac{28}{28} = -\frac{28}{28} = -\frac{28}{29}$ (2) $\frac{28}{28} = -\frac{28}{29} = \frac{28}{29}$	$At f = \frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{k}$	$ \begin{array}{rcl} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $) $1 < x^2 + y^2$ $1 < x^2 + y^2$
$\begin{array}{c} & \frac{dx}{y^2} = \frac{dx}{2y} & \qquad $			4 02
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left\{ \left(x_{k}^{k} x_{k}^{k} \right) \right\} & = \left(\left(x_{k}^{k} x_{k}^{k} \right) \right) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} \right) & = \left(x_{k}^{k} x_{k}^{k} \right) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} x_{k}^{k} \right) & = \left(x_{k}^{k} x_{k}^{k} \right) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} x_{k}^{k} x_{k}^{k} \right) & = \left(x_{k}^{k} x_{k}^{k} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} x_{k}^{k} x_{k}^{k} \right) & = \left(x_{k}^{k} x_{k}^{k} x_{k}^{k} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} x_{k}^{k} x_{k}^{k} \right) & = \left(x_{k}^{k} x_{k}^{k} x_{k}^{k} \right) \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \sum_{k=1}^{n} \left(x_{k}^{k} x_{k}$	1 < 2 < 2 1 < x < 2 1 < u < 4 1 < u < 4 1 < 2 ² tg ² < 4	$\begin{array}{ccc} \overline{z^2} - \underline{a^1}_{z} \sim \underline{c_2} & & & \\ & & & \\ & & & \\ $	METRUITUS 187 ³ /22 ² = G () ³ /2 ² = G () ² /2 ³ = G () () q () AST ORIMON
			and the second se

Question 17

It is given that z = z(x,t) satisfies the partial differential equation

$$x\frac{\partial z}{\partial x} + (t-1)\frac{\partial z}{\partial t} = 0.$$

It is further given that

i.C.B.

I.C.B.

$$z(x,0) = \begin{cases} 1 - x^2 & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}.$$

Solve the above partial differential equation, and hence evaluate $z(\frac{1}{6}, \frac{1}{3})$ and $z(3, \frac{1}{3})$.

	Sec.	······································	ъ. –
2.	V.4/		P.ate.
	minun	man	
	$\left\{\begin{array}{c} x \frac{\partial z}{\partial x} + (t-i) \frac{\partial z}{\partial t} = 0 z = z(x_i t) \end{array}\right.$	$= \frac{1}{2} (x_i o) = \begin{cases} 1 - x^2 & x_i < 1 \\ 0 & x \ge 1 \end{cases}$	LET
V	BY LAGORALOG	minun	• 1
- i - j - j - j - j - j - j - j - j - j	$\frac{dx}{dx} = \frac{dt}{dt} = \frac{dz}{c}$		
	* + 0		• 1F
	THIS Z= C2	f d2=0	
10 J	• $\frac{dz}{dz} = \frac{dt}{dz_1}$		-THU
	lac = li(t-1) + C		
1 M .	ln (ac) = ln A		
	2 		2.
	" Gan solution f(un)=0 with	$= 4(z^{i}t^{j}s) = \Xi$	
r		$V(x_t t_t z) = \frac{x_t}{t-t}$	+40. e Z
	CALCOLLER (AUTURLER)		o fie
- A-			
	APPY WITHE CONDITION $\mathcal{E}(x_1 \circ) = \sum_{i=1}^{i=1} x_i < i$		4
10 .	20 201		0 3
Car	$f(-x) = \begin{cases} 1 - x^2 & x < 1 \\ 0 & x \ge 1 \end{cases}$		
No.	The child to consider if all <1	(∠ ≥	
	2.	V9.	
	10	·	
No.	and the second	· (D)	
	~//L		F
0	- 11 m		10
			F 9.
	40.		-//
"Jh	- C.O.		4
	-Un		
- Y - 1			
	Jr		

$lit u = -\infty \implies \infty = -u$
• IF $\exists z \leq i$ $\frac{1}{2}(\omega) = i - 2^2$ $\frac{1}{2}(\omega) = i - \omega^2$ $\frac{1}{2}(\omega) = i - \omega^2$
• If $ \mathcal{I} \ge 1$ $\frac{1}{2} (\sigma) = 0$ $ \sigma \ge 1$
$ \widehat{\mathcal{H}}_{\mathcal{M}} = \left\{ \begin{pmatrix} \underline{x}_{i} \\ \underline{t}_{i-1} \end{pmatrix} = \left\langle \begin{array}{c} 1 - \begin{pmatrix} \underline{x}_{i-1} \\ \underline{t}_{i-1} \end{pmatrix} & \left \begin{pmatrix} \underline{x}_{i} \\ \underline{t}_{i-1} \end{pmatrix} \right < 1 \\ 0 & \left \begin{pmatrix} \underline{x}_{i} \\ \underline{t}_{i-1} \end{pmatrix} \right > 1 \\ \end{array} \right\} $
$\therefore \mathcal{Z}(\mathbf{x}, t) = \begin{cases} 1 & -\frac{(\mathbf{x})}{(\mathbf{t}_{-1})^2}, & \left \frac{\mathbf{x}}{(\mathbf{t}_{-1})}\right \leq 1 \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ $
$ \begin{array}{c} \frac{d}{dt} \times \widetilde{x} \\ \bullet & \widetilde{z} \left(\frac{1}{k}, \frac{1}{k} \right) \\ \bullet & \widetilde{f} \left(\frac{1}{2k}, \frac{1}{k} \right) \\ \left \frac{1}{2k}, \frac{1}{k} \right & = \frac{1}{k} \\ \hline & \bullet & \widetilde{f} \left(\frac{3}{2k}, \frac{1}{k} \right) \\ \bullet & \widetilde{f} \left(\frac{3}{2k$

C.P.

 $z\left(\frac{1}{6},\frac{1}{3}\right) = \frac{15}{16}$, $z\left(3,\frac{1}{3}\right)$

=0

KQ,

Question 18

The surface S, with equation z = z(x, y), satisfies the partial differential equation

$$2\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = z \,.$$

It is further given that the plane with equation x=1 meets S along the straight line with equation $z = y, -1 \le y \le 1$.

Find a Cartesian equation of S, in the form z = f(x, y), further describing the relation of S to the x-y plane.

$$z(x, y) = \frac{1}{2}(3 - 3x + 2y)e^{\frac{1}{2}(x - 1)}, \quad \frac{3}{2}x - \frac{5}{2} \le y \le \frac{3}{2}x - \frac{1}{2}$$

$\begin{array}{c} \partial \frac{\partial g_{2}}{\partial x} + \partial \frac{\partial g_{3}}{\partial y} = \mathcal{Z} \\ \varphi \\ $	
• By $(AGU_{HVGE})_{S}^{2}$ METADD: $\frac{dx}{P} = \frac{dy}{Q} = \frac{dy}{R}$ I.E.	$\frac{da}{da} = \frac{da}{da} = \frac{da}{da}$
	$h 2 = \frac{1}{2}x + \zeta$ $R = \sqrt{e^{\frac{1}{2}x}}$ $\frac{1}{2e^{\frac{1}{2}x}} = 4$
	$(\overline{A}\overline{A}) = \underline{S} e^{\frac{1}{2}y}$
 GRAHAR SOUTION F(UN)=0 	
$\begin{array}{c} 1 \in V = \frac{1}{2}(\omega) \\ \hline \mathbb{Z}_{2}^{-\frac{1}{2}(N_{2}-\frac{1}{2})} \\ \bullet \rightarrow \mathcal{H}(y) \text{ (contract}) \mathbb{Z}(1,y) = y \rightarrow 1 \neq y \neq 1 \end{array}$	
$\begin{array}{c} y e^{\frac{1}{2}} = \left\{ \begin{pmatrix} 3-2y \end{pmatrix} & -1 \leqslant 4y \leqslant 1 \\ w \approx 3-2y & 1 \leqslant w \leqslant 5 \\ y = \frac{1}{2} - \frac{w}{2} & 1 \leqslant w \leqslant 5 \end{array} \right\}$	
$\begin{array}{c} \left\{ \left(p, \overline{\sigma}\right) = \frac{p}{2} \left(p - 2p^{2} \overline{\sigma}\right) e_{\overline{p}} \\ \left\{ \left(p^{2}, \overline{\sigma}\right) = \left(\frac{p}{2} - 2p^{2} \overline{\sigma}\right) e_{\overline{p}} \\ \left(p^{2} - 2p^{2} \overline{\sigma}\right) e_{\overline{p}} \\ $	$\left \begin{array}{c} (I+THe Hor or THE SUDACE \\ (H+THe Hor or THE SUDACE \\ (H+THE Hor or THE SUDACE \\ (H+THE Hor or THE Hor or THE SUDACE \\ (H+THE Hor or THE Hor or THE SUDACE \\ (H+THE Hor or THE Hor or THE SUDACE \\ (H+THE Hor or THE Hor or THE SUDACE \\ (H+THE HOR or THE SUD$
$:: 2e^{\frac{1}{2}z} = \frac{1}{2}e^{\frac{1}{2}(y-3x-3y)} \le 3x-3y \le 1$	9 4 45 ±-±

Question 19

The surface S, with equation z = z(x, y), is orthogonal to the sphere with Cartesian equation

 $x^2 + y^2 + z^2 = 2x \,.$

It is further given that S passes through the plane with equation y = x at $z = -\frac{1}{2}$

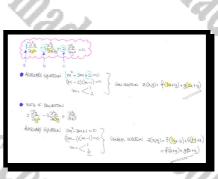
 $z(x,0) = \tan 3x, \ 0 \le x \le 1.$

Find a Cartesian equation of S, in the form z = f(x, y).

	The second se
$\mathcal{Z} = \oint (\lambda_1 g) \qquad \mathcal{J}^2$	+u2+22=2x
ler \$(2,9,3)= {(3,9)==	ler V(244,2) = 22442+22-
$\overline{M} = \left(\underbrace{\underline{A}}_{1}, \underbrace{\underline{A}}_{1}, \underbrace{\underline{A}}_{2}, \underbrace{\underline{A}$	$\Psi(u_{ij} c) = x_{ij} + c_{-}$ $\Psi(u_{ij} c) = x_{ij} + c_{-}$
$\Delta \phi = \left(\frac{\partial f}{\partial f}, \frac{\partial f}{\partial f}, -1\right)$	$\overline{\Delta}h = (5x-5^{1}, 5h^{1}, 5s^{2})$
lF aethpeanyai ∑p.∑v=o	
(2a-2) H + 2y 2	22=0
(x-1) 3 + 9 3 +	
(x-1) 3 + y 3 +	- 2
$Bor \neq = A(x_1y)$	m
	2 P
BY UMERIANCE & MATHER, THE HEED	UATHO O.D.ES ARL
$\frac{d\alpha}{p} = \frac{dy}{q} = \frac{dz}{R}$ it	$\frac{y_{-1}}{qy} = \frac{q}{dx} = \frac{s}{q^2}$

$\bullet \frac{du}{dt} = \frac{du}{dt}$ $\bullet \frac{du}{dt} = \frac{du}{dt}$
by a -1 = by y + by A by = by z + by B
$\ln\left[\frac{n-1}{2}\right] = \ln A$ $\ln\left[\frac{n}{2}\right] = \ln C$
$\frac{2-1}{y} = C_1 \qquad \qquad \frac{2}{y} = C_2$
• assert solution is $F(u_N) = 0$ where $u(x_i u_i a) = \frac{2-i}{u_i}$
V(Auge) = g
· the abular souther on the worth in
$\frac{\underline{\mathcal{F}}}{\underline{\mathcal{F}}} = \underbrace{\mathcal{R}\left(\frac{2-1}{\underline{y}}\right)}_{\underline{\mathcal{F}} = \underbrace{\mathcal{R}\left(\frac{2-1}{\underline{y}}\right)}_{\underline{\mathcal{F}} = \underbrace{\mathcal{R}\left(\frac{2-1}{\underline{y}}\right)}_{\underline{\mathcal{R}} = \underbrace{\mathcal{R}\left(\frac{2-1}{\underline{y}}\right)}_{$
• NOW BOUNDARY CONDITION 9=2 => 2=2
$\implies 1 = y f\left(\frac{y}{y}\right) = \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
$\frac{\mathrm{tr} \left(\mathbf{i} = \frac{\mathbf{y} - \mathbf{i}}{\mathbf{y}} \right)}{\mathrm{tr}} \Rightarrow f\left(\frac{\mathbf{x} - \mathbf{i}}{\mathbf{y}}\right) = \frac{\mathbf{y} - \left(\mathbf{x} - \mathbf{i}\right)}{2\mathbf{y}}$
$ = y - uy \qquad $
$\longrightarrow I = \underline{g} - \underline{u} \qquad \qquad$
$ = \frac{1}{2\pi - \alpha} \qquad $
Thus $\frac{1}{2} = \frac{1}{1-\alpha} \mathcal{H}(\alpha)$ $Z = \frac{1+4\beta-\chi}{2}$
$\left\{ \left(u \right) = \frac{1-u}{2} \right\}$
MUF A=x 5=7

 $z(x,y) = \frac{1}{2}(1+y-x)$

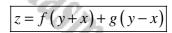

SECOND ORDER P.D.E.s $P\frac{\partial^2 z}{\partial x^2} + Q\frac{\partial^2 z}{\partial x \partial y} + Q\frac{\partial^2 z}{\partial y^2} = 0, \quad z = z(x, y)$ TASIDATIS COLL 1. Y. G.B. MARASIDATIS COLL 1. Y. G.B. MARASINA

Question 1

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 3\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$$

Find a general solution of the above partial differential equation.


z = f(x+y) + g(2x+y)

Question 2

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}.$$

Find a general solution of the above partial differential equation.

Question 3

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + 4\frac{\partial^2 z}{\partial y^2} = 0$$

Find a general solution of the above partial differential equation.

Question 4

It is given that z = z(x,t) satisfies the partial differential equation

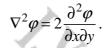
 $\frac{\partial^2 z}{\partial x^2} + 15 \frac{\partial^2 z}{\partial t^2} = 8 \frac{\partial^2 z}{\partial x \partial t}.$

Find a general solution of the above partial differential equation.

z(x,t) = f(3x+t) + g(5x+t)

z = f(2x+y) + xg(2x+y)

1 32 - D32 + (Bay


032 -0

$$\begin{split} &\frac{\partial S_{0}}{\partial x^{2}} - 8\frac{\partial S_{0}}{\partial x^{2}} + 15\frac{S_{0}}{\partial x^{2}} = 0 \\ &\frac{\partial S_{0}}{\partial x^{2}} - 8\frac{\partial S_{0}}{\partial x^{2}} + 15 = 0 \\ &m^{2} - 8m + 15 = 0 \\ &(m-3)(m-5) = 0 \\ &\alpha_{1} = < \frac{1}{x} \\ &\frac{1}{4} \\ &\text{Howe:} \quad \mathbb{E}(x_{0}^{2}) = \frac{1}{2} (\frac{\partial S_{0}}{\partial x_{1}} + 1) + \underline{\alpha}(S_{0} + 1) \end{split}$$

Question 5

It is given that $\varphi = \varphi(x, y)$ satisfies the partial differential equation

Find a general solution of the above partial differential equation.

It is given that z = z(x, y) satisfies the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 6\frac{\partial^2 z}{\partial y^2} = 2e^{x-y}$$

Find a general solution of the above partial differential equation.

$= f(y-2x) + g(y-3x) + e^{x-y}$	
a 1912	•
$\begin{array}{c} \frac{\partial \frac{2}{\partial x}}{\partial x^{2}} + 5 \frac{\partial \frac{2}{\partial y^{2}}}{\partial x^{2}} + \zeta \frac{\partial \frac{2}{\partial y^{2}}}{\partial y^{2}} = 2e^{2\pi i \frac{2}{\partial y^{2}}} \\ \bullet A_{NUUAN} \left(g_{0,N(DA)} \right) \\ W_{1}^{2} + Sm_{1} + \delta_{-m} \\ (M+3)(O_{1}+3) = c \\ (M+3)(O_{1}+3) = c \\ M_{1} \leq 2^{-2} \qquad \therefore Cantum Strep (Singpa) \end{array}$	
$\mathbb{E}(x,y) = f(y-2x) + g(y-3x)$	Ľ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\therefore \text{ (Fin Southan)} \exists (\underline{z},\underline{y}) = \left\{ (\underline{y},\underline{z}\underline{y}) + \underline{y} (\underline{y},\underline{z}\underline{y}) + e^{\underline{y}-\underline{y}} \right\}.$	

z = f(x+y) + xg(x+y)

Question 7

It is given that z = z(x, y) satisfies the partial differential equation

 $\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = 48 \left(x^2 + y^2 \right).$

COM

Find a general solution of the above partial differential equation.

Question 8

Y.C.B. May

I.G.B.

It is given that z = z(x, y) satisfies the partial differential equation

 $x^{2}\frac{\partial^{2}z}{\partial x^{2}} + 2xy\frac{\partial^{2}z}{\partial x\partial y} + y^{2}\frac{\partial^{2}z}{\partial y^{2}} = 0.$

Find a general solution of the above partial differential equation.

1202sm

z(x, y) = f+xх

3

- THIS LOOK'S LIKE A "ONLOW EVER TYPE" IN THE VARIABLE SO THE Z= $2^3 g^{11}$ As THE SOUTION $\frac{3^2}{272} = \lambda(L-1)^2 \lambda_3^2 I^4$
- 32 = 4(4-1)22 y 4-2
- and = rhangh-
- $$\begin{split} \lambda &= -h, \quad \overrightarrow{q} \quad \mathcal{Y} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} \quad \mathcal{Y} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} \quad \mathcal{Y} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} \quad \mathcal{Y} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} \quad \mathcal{Y} = -h, \quad \overrightarrow{q} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} = -h, \quad \overrightarrow{q} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} = -h, \quad \overrightarrow{q} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} = -h, \quad \overrightarrow{q} = -h, \\ \lambda &= -h, \quad \overrightarrow{q} = -h, \quad \overrightarrow{q} =$$
- $$\begin{split} & \mathcal{S}^{2} = \mathcal{S}_{f}^{2} \mathcal{J}_{f} = \mathcal{J}_{f}^{-1} \mathcal{A}_{f} = \frac{\mathcal{J}_{f}}{\partial t} = -\frac{\mathcal{J}_{f}}{\partial t} = -$$

I.C.B.

Mada

: Given solution $\mathcal{Z}(\underline{x},\underline{y}) = \mathcal{H}(\frac{\underline{y}}{\underline{x}}) + \mathcal{R}(\frac{\underline{y}}{\underline{x}})$

Created by T. Madas

 \hat{c}_{i}