

Created by T. Madas

Question 1
It is given that $\psi=\psi(r, \theta)$.

Find a general circularly symmetric solution to the partial differential equation

$$
\begin{aligned}
& \nabla^{4} \psi=0 . \\
& \psi(r)=A+B r^{2}+C \ln r+D r^{2} \ln r
\end{aligned}
$$

$$
\begin{aligned}
& \text { - IETVEving to THE O.D.E }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow P^{3} \frac{4 y}{d r}+2 r^{2} \frac{d x}{d x}-r \frac{d y}{d r}+\frac{d y}{d r}=0
\end{aligned}
$$

$\Rightarrow \lambda\left(r-1(x-2) r^{2}+2 x\left(a-1 r^{2}-2 r^{2}+r^{2}=0\right.\right.$

