PARTIAL

DIFFERENTIATION

 INTRODUCTIONCreated by T. Madas

Question 1 (**)
A right circular cylinder has radius 5 cm and height 10 cm .

Use a differential approximation to find an approximate increase in the volume of this cylinder if the radius increases by 0.4 cm and its height decreases by 0.2 cm .

Determine an approximate percentage increase in y, if x decreases by $5 \%, z$ increases by 2% and w decreases by 10%.

Created by T. Madas

Question 3 (**)
The function f depends on u and v so that

$$
f[u(x, y, z), v(x, y, z)]=u v, u=x+2 y+z^{2} \quad \text { and } \quad v=x y z .
$$

Find simplified expressions for $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, in terms of x, y and z.

$$
\frac{\partial f}{\partial x}=2 x y z+2 y^{2} z+y z^{3}, \frac{\partial f}{\partial y}=4 x y z+x^{2} z+x z^{3}, \frac{\partial f}{\partial z}=3 x y z^{2}+x^{2} y+2 x y^{2}
$$

Question 4 (**)

A surface S is defined by the Cartesian equation

$$
x^{2}+y^{2}=25
$$

a) Draw a sketch of S, and describe it geometrically.
b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates $(3,4,5)$.

Question 5 (**)
A surface S is defined by the Cartesian equation

$$
y^{2}+z^{2}=8
$$

a) Draw a sketch of S, and describe it geometrically.
b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates $(2,2,2)$.

Question 6 (**)
The function φ depends on u, v and w so that

$$
\varphi[u(x, y, z), v(x, y, z), w(x, y, z)]=u v+w
$$

It is further given that

$$
u=x+2 y, \quad v=x y z \quad \text { and } \quad w=z^{2} .
$$

By using the chain rule for partial differentiation find simplified expressions for $\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}$ and $\frac{\partial \varphi}{\partial z}$, in terms of x, y and z.

$$
\frac{\partial \varphi}{\partial x}=2 y z(x+y), \frac{\partial \varphi}{\partial y}=x z(x+4 y), \frac{\partial \varphi}{\partial z}=x^{2} y+2 x y^{2}+2 z
$$

$\phi(u v, w)=u v+w$

- $\frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial \phi}{\partial v} \frac{\partial v}{\partial}+\frac{\partial t}{\partial w} \frac{\partial w}{\partial x}$
$\begin{aligned} & =v \times 1+u \times y z+1 \times 0 \\ & =x_{z} z+c x+z y z^{2}\end{aligned}$
$\begin{aligned} & =x y z+(x+2 y) y z \\ & =x y z+2 y-2 y^{2} z\end{aligned}$
$=2 x y z+2)^{2} z$
$=x y z(x+y)$
$=x y z(x+y) \Rightarrow$
- $\frac{\partial b}{\partial y}=\frac{\partial x}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial b}{\partial v} \frac{\partial x}{\partial y}+\frac{\partial t}{\partial w} \frac{\partial w}{\partial y}$
$=v \times z+u \times x z+1 \times 0$.
$=2 x y z+(x+2 y) p z$
$=2 x y z+2 z+2 x y z$
$=x z(2 y+x+2 y)-x z(x+4 y)$
- $\begin{aligned} \frac{\partial \phi}{\partial z} & =\frac{\partial \phi}{\partial v} \frac{\partial u}{\partial z}+\frac{\partial t}{\partial v} \frac{\partial v}{\partial z}+\frac{\partial \phi}{\partial m} \frac{\partial v}{\partial z} \\ & =v \times q+u \times z y+1 n z z\end{aligned}$
$=v \times 0+4 \times a y+\ln 2 z$
$=(x+2 y) x y+2 z$
$=x y+2 x y^{2}+2 z$

Question 7 (**)
The point $P(1, y)$ lies on the contour with equation $x^{2} y+y^{2} x-6=0$.

Determine the possible normal vectors at P

The radius of a right circular cylinder is increasing at the constant rate of $0.2 \mathrm{cms}^{-1}$ and its height is decreasing at the constant rate of $0.2 \mathrm{cms}^{-1}$.

Determine the rate at which the volume of this cylinder is increasing when the radius is 5 cm and its height is 16 cm .

Created by T. Madas

Question 9 (**)
A curve has implicit equation

$$
x^{2}+2 x y+y^{3}=8
$$

Use partial differentiation to find an expression for $\frac{d y}{d x}$.

No credit will be given for obtaining the answer with alternative methods
(2), $\frac{d y}{d x}=-\frac{2 x+2 y}{2 x+3 y^{2}}$

Question 10 (**)
A surface S is defined by the Cartesian equation

$$
z=x y(x+y) .
$$

Find an equation of the tangent plane on S at the point $(1,2,6)$.
\square $8 x+5 y-z=12$

Created by T. Madas

Question 11 (**)
A curve has implicit equation

$$
\mathrm{e}^{x y}+x+y=1
$$

Use partial differentiation to find the value of $\frac{d y}{d x}$ at $(0,0)$.

No credit will be given for obtaining the answer with alternative methods

Created by T. Madas

Question 12 (**+)
The function f is defined as

$$
f(x, y, z) \equiv 2 x+y^{2}+x z
$$

where $x=2 t, y=t^{2}$ and $z=3$.
a) Use partial differentiation to find an expression for $\frac{d f}{d t}$, in terms of t.
b) Verify the answer obtained in part (a) by a method not involving partial differentiation.

Question 13 (**+)
The function φ is defined as

$$
\varphi(x, y, z) \equiv x^{2}+y^{2}+t z+t, \quad t \neq 0
$$

where $x=3 t, y=t^{2}$ and $z=\frac{1}{t}$.
a) Use partial differentiation to find an expression for $\frac{d \varphi}{d t}$, in terms of t.
b) Verify the answer obtained in part (a) by a method not involving partial differentiation.

Created by T. Madas

Question 14 (**+)
Plane Cartesian coordinates $(x . y)$ are related to plane polar coordinates (r, θ) by the transformation equations

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta .
$$

a) Find simplified expressions for $\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$, in terms of r and θ.
b) Deduce simplified expressions for $\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$, in terms of x and y.

$$
\frac{\partial r}{\partial x}=\cos \theta, \frac{\partial r}{\partial y}=\sin \theta, \frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r}, \frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r}
$$

$$
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{\partial r}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{\partial \theta}{\frac{\partial x}{\partial x}=-\frac{y}{x^{2}+y^{2}}}, \frac{\partial \theta}{\partial y}=\frac{x}{x^{2}+y^{2}}
$$

Question 15 (**+)
The point $P\left(1, y_{0}, z_{0}\right)$ lies on both surfaces with Cartesian equations

$$
x^{2}+y^{2}+z^{2}=9 \text { and } z=x^{2}+y^{2}-3 .
$$

At the point P, the two surfaces intersect each other at an angle θ.

Given further that P lies in the first octant, determine the exact value of $\cos \theta$.

Question 16 (**+)
The point $P(1,1,2)$ lies on both surfaces with Cartesian equations

$$
z(z-1)=x^{2}+x y \text { and } z=x^{2} y+x y^{2} .
$$

At the point P, the two surfaces intersect each other at an angle θ.

Determine the exact value of θ.

Question 17 (***)
The point $P(-1,1,3)$ lies on both surfaces with Cartesian equations

$$
z(z-2)=x^{2}-2 x y \quad \text { and } \quad z=x y(A x+B y),
$$

where A and B are non zero constants.

The two surfaces intersect each other orthogonally at the point P.

Determine the value of A and the value of B.

$$
A=-14, B=-17
$$

\square

Question 18 (***)
The function f depends on u, v and t so that

$$
f\{u[x(t), y(t), z(t)], v[x(t), y(t), z(t)], t\}=u^{2}+v+2 t
$$

It is further given that

$$
u=x+y-2 z, v=4 x-2 y-z \quad \text { and } \quad x=2 t, y=t^{2}, z=5 .
$$

a) Find simplified expressions for $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, in terms of x, y and z.
b) Determine an expression for $\frac{d f}{d t}$, in terms of t.

$$
\begin{array}{r}
\frac{\partial f}{\partial x}=2 x+2 y-4 z+5, \frac{\partial f}{\partial y}=2 x+2 y-4 z+\frac{1}{\sqrt{z}}-2, \frac{\partial f}{\partial z}=-x-4 y+8 z-1, \\
\frac{d f}{d t}=4 t^{3}+12 t^{2}-36 t-30
\end{array},
$$

$\frac{\frac{\partial f}{\partial x}=2 x+2 y-4 z+5}{}, \frac{\frac{\partial f}{\partial y}=2 x+2 y-4 z+\frac{1}{\sqrt{z}}-2}{, \sqrt{\frac{\partial f}{\partial z}}=-x-4 y+8 z-1}$,
$\frac{d f}{d t}=4 t^{3}+12 t^{2}-36 t-30$

Question 19 (***)
The function z depends on u and v so that

$$
z=(2 x+3 y)^{2}, u=x^{2}+y^{2} \text { and } \quad v=x+2 y .
$$

Find simplified expressions for $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial \nu}$, in terms of x and y.

$$
\frac{\partial z}{\partial u}=\frac{2 x+3 y}{2 x-y}, \frac{\partial z}{\partial v}=\frac{2(3 x-2 y)(2 x+3 y)}{2 x-y}
$$

The function $w=\varphi[u(x, y), v(x, y)]$ satisfies

$$
x=\mathrm{e}^{u} \cos v \text { and } y=\mathrm{e}^{-u} \sin v .
$$

Determine simplified expressions for $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$, in terms of u and v.

$, \frac{\partial u}{\partial x}=\frac{\mathrm{e}^{-u} \cos v}{\cos 2 v}, \frac{\partial u}{\partial y}=\frac{\mathrm{e}^{u} \sin v}{\cos 2 v}, \frac{\partial v}{\partial x}=\frac{\mathrm{e}^{-u} \sin v}{\cos 2 v}, \frac{\partial v}{\partial y}=\frac{\mathrm{e}^{u} \cos v}{\cos 2 v}$

Question 21 (***)
A surface S has Cartesian equation

$$
z=x^{2}-y^{2}
$$

a) Sketch profiles of S parallel to the $y-z$ plane, parallel to the $x-z$ plane, and parallel to the $x-y$ plane.
b) Find an equation of the tangent plane on S, at the point $P(1,1,0)$.

$$
2 x-2 y-z=0
$$

\square

Question 22 (***)
A surface S is given parametrically by

$$
x=a t \cosh \theta, x=b t \sinh \theta, z=t^{2}
$$

where t and θ are real parameters, and a and b are non zero constants .
a) Find a Cartesian equation for S.
b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates $\left(x_{0}, y_{0}, z_{0}\right)$.
\square
\square $2 b^{2} x x_{0}-2 a^{2} y y_{0}=a^{2} b^{2}\left(z+z_{0}\right)$

\square
\Rightarrow contunt $=\frac{2 x^{2}}{a^{2}}-\frac{2 y_{0}{ }^{2}}{b^{2}}-z_{0}$
\Rightarrow constunt $=2\left(\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}{ }^{2}}{b^{2}}\right)-z_{0}$ \Rightarrow constant $=z_{0}$ Thes we now HAOT
$\Rightarrow\left(\frac{2 x_{x}}{a^{2}}\right)^{x}-\left(\frac{2 y_{0}}{b^{2}}\right) y-z=z_{0}$ $\Rightarrow 2 b^{2} x_{0} x-2 a^{2} y_{y} y-a^{2} b^{2}\left(z+z_{0}\right)=0$ $\Rightarrow 2 b^{2} x_{0} x-2 a^{2} y_{0} y=a^{2} b^{2}\left(z-z_{0}\right)$

Question 23 (***)
The function z depends on x and y so that

$$
z^{2}(x, y)=\frac{y-x^{3}-x y^{2}}{x}, x \neq 0
$$

Show that

Question 24 (***)
The function f depends on u and v where

$$
u=2 x y \quad \text { and } \quad v=x^{2}-y^{2} .
$$

Assuming $x \neq y, x \neq 0$ and $y \neq 0$, show that
\square

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=2\left[u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}\right]
$$

\square , proof
\square

Question 25 (***)
The functions F and G satisfy

$$
G(x, y) \equiv F[u(x, y), v(x, y)]
$$

where u and v satisfy the following transformation equations.

$$
u=x \cos y, \quad v=x \sin y
$$

Use the chain rule for partial derivatives to show that

$$
\left[\frac{\partial G}{\partial x}\right]^{2}+\left[\frac{1}{x} \frac{\partial G}{\partial y}\right]^{2}=\left[\frac{\partial F}{\partial u}\right]^{2}+\left[\frac{\partial F}{\partial v}\right]^{2}
$$

\square , proof

Question 26 (***+)
The function f is defined as

$$
f(x, y, z) \equiv x^{3}-75 x+3 z(y-1)^{2}+z^{3}
$$

The point Q lies on f.

The derivatives at Q in the directions $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $-\mathbf{i}+\mathbf{j}-\mathbf{k}$, are equal.
a) Show that Q must lie on the surface of a sphere S.

The point $P(1,3, a)$ lies on S.
b) Find a vector equation of the normal line to S at P.

A sphere T is concentric to S and has radius three times as large as that of S. The normal line to S at P intersects the surface of T at the points A and B.
c) Determine the coordinates of A and B.

$$
(x, y, z)=[\lambda+1,2 \lambda+3,2(\lambda+1) \sqrt{5}], A(3,7,6 \sqrt{5}) B(-3,-5,-6 \sqrt{5})
$$

Created by T. Madas

Question 27 (***+)
The function z depends on x and y so that

$$
z=r^{2} \tan \theta, \quad x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

a) Express r and θ in terms of x and y and hence determine expressions for $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, in terms of x and y.
Give each of the answers as a single simplified fraction
b) Verify the answer to part (a) by implicit differentiation using Jacobians

$$
\frac{\partial z}{\partial x}=\frac{y\left(x^{2}-y^{2}\right)}{x^{2}}, \frac{\partial z}{\partial y}=\frac{x^{2}+3 y^{2}}{x}
$$

Dfallina wat eact of ate greuts of THe matrix

- $\frac{\partial r}{\partial a}=\frac{1}{J} \frac{\partial u}{\partial \theta}=\frac{1}{r}(\operatorname{rin} \theta)=\cos \theta$
- $\frac{\partial r}{\partial y}=-\frac{1}{\sigma} \frac{\partial x}{\partial \theta}=-\frac{1}{r}(-r \sin \theta)=\sin \theta$
- $\frac{\partial \theta}{\partial \alpha}=-\frac{1}{5} \frac{\partial y}{\partial r}=-\frac{1}{r}(\sin \theta)=-\frac{\sin \theta}{r}$
- $\frac{\partial \theta}{\partial y}=\frac{1}{J} \frac{\partial z}{\partial r}=\frac{1}{r}(\cos 0)=\frac{r}{r} \theta$ Non By THe ctimin ave we titat
$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial x}=(2 r \tan \theta)(\cos \theta)+\left(r^{2} \sec \theta\right)\left(\frac{-\sin \theta}{\Gamma}\right)$
$=2 r \sin \theta-r \tan \theta \sec \theta$
$=2(r \sin \theta)-r \tan \theta\left(\frac{1}{\cos \theta}\right)$
$=2 y-r\left(\frac{y}{x}\right)\left(\frac{r}{x}\right)$
$=2 y-\frac{r^{2} y}{x^{2}}=2 y-\frac{y\left(x^{2}+y^{2}\right)}{x^{2}}$
$=\frac{2 y x^{2}-x^{2} y-y^{3}}{x^{2}}=\frac{y x^{2}-y^{3}}{x^{2}}$
$=\frac{y\left(x^{2}-y^{2}\right)}{x^{2}}$
$\frac{\partial z}{\partial y}=\frac{\partial z}{\partial r} \frac{\partial x}{\partial y}+\frac{\partial z}{\partial y} \frac{\partial \theta}{\partial y}=(2 r \tan \theta) \sin \theta+\left(r^{2} \sec \theta\right)\left(\frac{\cos \theta}{r}\right)$
$=2 \tan \theta(r \sin \theta)+r \cos \theta \times \frac{1}{\cos ^{2} \theta}$
$=2\left(\frac{y}{x}\right) y+x\left(\frac{r^{2}}{x^{2}}\right)=\frac{2 y^{2}}{x}+\frac{r}{x}$
$=\frac{2 y^{2}+r^{2}}{x}=\frac{2 y^{2}+x^{2}+y^{2}}{x}=\frac{x^{2}+3 y^{2}}{x}$

Created by T. Madas

Question 28 (***+)
The function φ depends on u and v so that

$$
x=2 u+\mathrm{e}^{2 v} \quad \text { and } \quad y=2 v+\mathrm{e}^{-2 u} .
$$

Without using standard results involving Jacobians, determine simplified expressions for $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$, in terms of u and v.
$\square, \frac{\partial u}{\partial x}=\frac{1}{2+2 \mathrm{e}^{2(v-u)}}, \frac{\partial u}{\partial y}=-\frac{\mathrm{e}^{2 v}}{2+2 \mathrm{e}^{2(v-u)}}, \frac{\partial v}{\partial x}=\frac{\mathrm{e}^{-2 u}}{2+2 \mathrm{e}^{2(v-u)}}$,
$\frac{\partial v}{\partial y}=\frac{1}{2+2 \mathrm{e}^{2(v-u)}}$

Question 29 (***+)
A hill is modelled by the equation

$$
f(x, y)=300 \mathrm{e}^{-\left(x^{2}+y^{2}\right)}, x \in \mathbb{R}, y \in \mathbb{R}
$$

A railway runs along the straight line with equation

$$
y=x-2 .
$$

Determine the steepest slope that the train needs to climb.

Question 30 (${ }^{* * *}{ }^{*}$)
The functions F and G satisfy

$$
G(u, v) \equiv F[x(u, v), y(u, v)],
$$

where x and y satisfy the following transformation equations.

$$
x=u v, \quad y=\frac{u+v}{u-v}
$$

Use the chain rule for partial derivatives to show that

$$
u \frac{\partial G}{\partial u}+v \frac{\partial G}{\partial v}=2 x \frac{\partial F}{\partial x}
$$

and $\frac{u^{2}-v^{2}}{2 u v}\left[v \frac{\partial G}{\partial v}-u \frac{\partial G}{\partial u}\right]=2 y \frac{\partial F}{\partial y}$.
\square

$\sigma\left(u_{v} v\right)=F\left[x\left(u_{v}\right), y(u, v)\right]$	$x=u v$ $y=\frac{u+v}{u+v}$

STAR BY cerinning $\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}$

- $\frac{\partial x}{\partial u}=v \quad \cdot \frac{\partial u}{\partial u}=\frac{(u-v)-(u+v)}{(u-v)^{2}}=-\frac{2 v}{(u-v)^{2}}$
- $\frac{\partial x}{\partial v}=u \quad \cdot \frac{\partial u}{\partial v}=\frac{(u-v)-(u+v(-1)}{(u-v)^{2}}=\frac{2 u}{(u-v)^{2}}$

By THE atrin Rule
$\frac{\partial G}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial u}=v \frac{\partial F}{\partial x}-\frac{2 v}{(u-v)^{2}} \frac{\partial F}{\partial y}$
$\frac{\partial G}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}=u \frac{\partial f}{\partial x}+\frac{2 u}{(u-v)^{2}} \frac{\partial F}{\partial y}$
Thos we thue
$u \frac{\partial G}{\partial u}+v \frac{\partial G}{\partial v}=u\left[v \frac{\partial F}{\partial x}-\frac{2 v}{(u-v)^{2}} \frac{\partial F}{\partial y}\right]+v\left[u \frac{\partial F}{\partial x}+\frac{2 u}{\left(u v v^{2}\right.} \frac{\partial F}{\partial y}\right]$
$=u v \frac{\partial F}{\partial x}-\frac{2 u v}{\left(u-f^{2}\right)^{2}} \frac{\partial f}{\partial y}+u v \frac{\partial F}{\partial x}+\frac{2 u v}{(u-v)^{2}} \frac{\partial f}{\partial y}$
$=2 u v \frac{\partial f}{\partial x}$
$=22 \frac{2 \mathrm{x}}{\frac{2}{2}}$

Question 31 (****)
The function z depends on x and y so that

$$
z=(u+v)^{2}, \quad x=u^{2}-v^{2} \quad \text { and } \quad y=u v
$$

Show clearly that ...
i. $\quad \ldots \frac{\partial z}{\partial x}=\frac{x}{z-2 y}$.
ii. $\ldots \frac{\partial z}{\partial y}=\frac{2 z}{z-2 y}$.

Question 32 (****)
The function z depends on x and y so that

$$
z=f(u, v), \quad u=x+y \quad \text { and } \quad v=2 x-2 y
$$

Show clearly that

Question 33 (****)
The function z depends on x and y so that

Created by T. Madas

Question 34 (****)
The surface S has equation

$$
z=y f\left(\frac{x}{y}\right)
$$

where the function $f\left(\frac{x}{y}\right)$ is differentiable.

Show that the tangent plane at any point on S passes through the origin O

Question 35 (****)
The functions $u=u(x, y)$ and $v=v(x, y)$ satisfy

$$
u+3 v^{3}=3 x+y^{2} \quad \text { and } \quad v-2 u^{3}=x^{3}-2 y .
$$

Determine the value of $\frac{\partial(u, v)}{\partial(x, y)}$ at $(x, y)=(0,0)$.
$\left.\frac{\partial(u, v)}{\partial(x, y)}\right|_{(0,0)}=-6$

Question 36 (****)
A surface S has equation $f(x, y, z)=0$, where

$$
f(x, y, z)=x^{2}+2 x y-4 x+2 y^{2}+2 y z-8 y-z^{2}+4 z .
$$

a) Show that there is no point on S where the normal to S is parallel to the z axis and hence state the geometric significance of this result with reference to the stationary points of S.
S is translated to give a new surface T with equation

$$
f(x, y, z)=-56
$$

The plane with equation $x+y+z=k$, where k is a constant, is a tangent plane to T.
b) Determine the two possible values of k.
\square , $k=2 \cup k=6$

Question 37 (****)
A surface S has equation $f(x, y, z)=0$, where

$$
f(x, y, z)=x^{2}+3 y^{2}+2 z^{2}+2 y z+6 x z-4 x y-24 .
$$

Show that the plane with equation

$$
10 x-y+2 z=6
$$

is a tangent plane to S, and find the coordinates of the point of tangency.
\square

$$
(-2,-6,10)
$$

\square

Question 38 (****)
It is given that g is a twice differentiable function of one variable, with domain all real numbers.

It is further given that for $x>0$

$$
\begin{gathered}
f(x, y)=g(y \ln x) \\
x^{2} \ln x \frac{\partial^{2} f}{\partial x^{2}}-x y \frac{\partial^{2} f}{\partial x \partial y}+x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0 .
\end{gathered}
$$

Question 39 (****)
The function w depends on x and y so that

$$
w=f(u), \quad \text { and } \quad u=\left(x-x_{0}\right)\left(y-y_{0}\right)
$$

where x_{0} and y_{0} are constants.

Show clearly that

Question 40 (****)
The functions f and G satisfy

$$
G(r, \theta, \varphi) \equiv f[x(r, \theta, \varphi), y(r, \theta, \varphi), z(r, \theta, \varphi)]
$$

where x, y and z satisfy the standard Spherical Polar Coordinates transformation relationships

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta
$$

Use the chain rule for partial derivatives to show that

$$
\left[\frac{\partial G}{\partial r}\right]^{2}+\left[\frac{1}{r} \frac{\partial G}{\partial \theta}\right]^{2}+\left[\frac{1}{r \sin \theta} \frac{\partial G}{\partial \varphi}\right]^{2}=\left[\frac{\partial f}{\partial x}\right]^{2}+\left[\frac{\partial f}{\partial y}\right]^{2}+\left[\frac{\partial f}{\partial z}\right]^{2}
$$

\square

Sther By osthwn sout Basc Pheral Jemwriuts
By THe Cotho
$\frac{\partial G}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r}$ $\frac{\partial G}{\partial y}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$
$\frac{\partial G}{\partial \phi}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial f}{\partial y} \frac{\partial u}{\partial \phi}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \phi}$ $=-\frac{\partial f}{\partial x} \operatorname{ran} \theta \cdot \sin \phi+\frac{\partial f}{\partial y}$ rem θ oup

Hace we costan
$\left(\frac{\partial G}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial G}{\partial \theta}\right)^{2}+\left(\frac{1}{r \sin \theta} \frac{\partial G}{\phi}\right)^{2}$
$=f_{x}^{2} \sin ^{3} \theta \cos ^{2} \phi+f_{y}^{2} \sin ^{2} \theta \sin ^{2} \phi+f_{z}^{2} \cos ^{2} \theta$ $+2 f_{2} f_{y} \sin ^{2} \theta \cos \alpha \sin \phi+2 f_{y} f_{2} \sin ^{2} \cos \theta \sin \phi+2 f_{1} t_{2} \sin \theta \cos \theta \cos =$ $+\frac{1}{12}\left[x_{2}^{2}+2 \cos ^{2} \theta \cos ^{2} \phi+f_{y}^{2} x^{2} \cos ^{2} \cos ^{2} \cos ^{2} \phi+f_{2}^{2} r^{2} \sin ^{2} \theta\right.$

 Resiloupinc. Aftin Tite canceluations $=f_{x}^{2}\left[\sin ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right]$ $+f_{y}^{2}\left[\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta \sin ^{2} \phi+\cos ^{2} \phi\right]+f_{z}^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]$ $+2 f_{x} f_{y}\left[\sin ^{2} \theta \cos \phi \sin \phi+\cos ^{2} \theta \cos \phi \cos \phi-\operatorname{sun} \phi \cos \phi\right]$ $+2 f_{y} \frac{1}{2}[\sin \theta \cos \theta \sin b-\cos \theta \sin \theta \sin \phi]$ $+2 \frac{f}{z} \hat{C}_{x}[\sin \theta \cos \theta \cos \phi-5 \sin \theta \cos \theta \cos \theta]$ Created by T. Madas

Question 41 (****+)
It is given that

$$
z(x, y)=f(u, v)
$$

so that

$$
u=x^{3}+y^{3} \quad \text { and } \quad v=\frac{y}{x}
$$

a) Use the chain rule to show that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3 u \frac{\partial f}{\partial u} \quad \text { and } \quad y x^{3} \frac{\partial z}{\partial y}-x y^{3} \frac{\partial z}{\partial x}=u v \frac{\partial f}{\partial v} .
$$

b) Hence show further that

$$
v \frac{\partial x}{\partial u}=\frac{\partial y}{\partial u} \quad \text { and } \quad \frac{\partial x}{\partial v}=-v^{2} \frac{\partial y}{\partial v} .
$$

Question 42 (****+)
It is given that f and g are differentiable functions of one variable, with domain all real numbers.

It is further given that for $x>0$

$$
F(x, y)=f\left[x^{2}+y^{2}+g(3 x-2 y)\right]
$$

If the function $y=y(x)$ is a rearrangement of $F(x, y)=0$, show that

$$
\frac{d y}{d x}=\frac{3 \frac{d g}{d u}+2 x}{2 \frac{d g}{d u}-2 y}
$$

Question 43 (****+)
The surface S has Cartesian equation

$$
z=f(x, y)
$$

The tangent plane at any point on S passes through the point $(0,0,-1)$.

Show that

Question 44 ($* * * * * *)$
It is given that the function f depends on x and y, and the function g depends on u and v, so that

$$
f(x, y)=g(u, v), \quad u=x^{2}-y^{2} \quad \text { and } \quad v=2 x y .
$$

a) Show that

$$
\frac{\partial^{2} f}{\partial x^{2}}=2 \frac{\partial g}{\partial u}+4 x^{2} \frac{\partial^{2} g}{\partial u^{2}}+8 x y \frac{\partial^{2} g}{\partial u \partial v}+4 y^{2} \frac{\partial^{2} g}{\partial v^{2}},
$$

and find a similar expression for $\frac{\partial^{2} f}{\partial y^{2}}$.
b) Deduce that if $f(x, y)=x+y$

$$
\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=0
$$

a) $\begin{array}{lll}f(x, y)=g(u, v) & \text { wirt } & \begin{array}{l}u=x^{2}-y^{2} \\ v=2 x y\end{array}\end{array}$

- STACT BY GHWLRTRNG FIOST DER WATNES
- $\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}=\frac{\partial a}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial u} \frac{\partial v}{\partial x}=2 x \frac{\partial z}{\partial u}+2 y \frac{\partial y}{\partial v}$
- $\frac{\partial f}{\partial y}=\frac{\partial g}{\partial y}=\frac{\partial g}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial x}{\partial y}=-2 y \frac{\partial g}{\partial u}+2 x \frac{\partial g}{\partial v}$

$\frac{\partial}{\partial x} \equiv 2 x \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial v}$
- Next THe secani Derewartives
- $\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial^{2} g}{\partial x^{2}}=\frac{\partial}{\partial x}\left[2 x \frac{\partial z}{\partial x}+2 y \frac{\partial g}{\partial v}\right]$
$=2 \frac{\partial z}{\partial u}+2 x \frac{\partial}{\partial x}\left(\frac{\partial a}{\partial u}\right)+2 y \frac{\partial}{\partial z}\left(\frac{\partial y}{\partial z}\right)$
$=2 \frac{\partial y}{\partial u}+2 x\left[2 x \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial u}\right]\left[\frac{\partial a}{\partial u}\right]+2 y\left[2 x \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial u}\right]\left[\frac{\partial y}{\partial u}\right]$
$=2 \frac{\partial y}{\partial x}+4 x^{2} \frac{\partial y}{\partial u^{2}}+4 x y \frac{\partial^{2} y}{\partial u u^{2} v}+4 x y \frac{\partial^{2} y}{\partial u x y}+4 y^{2} \frac{\partial^{2} y}{\partial v^{2}}$
$=2 \frac{\partial q}{\partial u}+4 x^{2} \frac{\partial y}{\partial u^{2}}+8 y y \frac{\partial^{2} q}{\partial u \partial v}+4 y^{2} \frac{\partial^{2} q}{\partial x^{2}}$
- $\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} g}{\partial y^{2}}=\frac{\partial}{\partial y}\left[-2 y \frac{\partial g}{\partial u}+2 x \frac{\partial g}{\partial v}\right]$
$=-2 \frac{\partial y}{\partial u}-2 y \frac{\partial}{\partial y}\left(\frac{\partial a}{\partial u}\right)+2 x \frac{\partial}{\partial y}\left(\frac{\partial a}{\partial x}\right)$
$=-2 \frac{\partial \partial}{\partial u}-2 y\left[-2 y \frac{\partial}{\partial u}+2 x \frac{\partial}{\partial v}\right]\left[\frac{\partial a}{\partial u}\right]+2 x\left[-2 y \frac{\partial}{\partial u}+2 x \frac{\partial}{\partial v}\right]\left[\frac{\partial g}{\partial v}\right]$
$=-2 \frac{\partial g}{\partial u}+4 y^{2} \frac{\partial^{2} g}{\partial u^{2}}-4 x y \frac{\partial^{2} g}{\partial u \partial v}-4 x y \frac{\partial^{2} g}{\partial u \partial v}+4 x^{2} \frac{\partial g}{\partial v^{2}}$
$=-2 \frac{\partial x}{\partial u}+4 y^{2} \frac{\partial^{2} z}{\partial u^{2}}-8 x y \frac{\partial^{2} y}{\partial u^{2} v}+4 x^{2} \frac{\partial^{2} y}{\partial v^{2}}$
b) $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}$
$=2 \frac{\partial z}{\partial u}+4 x^{2} \frac{\partial y}{\partial u^{2}}+8 x y \frac{\partial z}{\partial u \partial v}+4 y^{2} \frac{\partial \partial^{2} y}{\partial v^{2}}$ $-2 \frac{\partial y}{\partial u}+4 y^{2} \frac{\partial^{2} y}{\partial u^{2}}-8 x y \frac{\partial^{2} g}{\partial u \partial v}+4 x^{2} \frac{\partial^{2} y}{\partial y^{2}}$
$=\left(4 x^{2}+4 y^{2}\right) \frac{\partial^{2} y}{\partial u^{2}}+\left(4 x^{2}+4 y^{2}\right) \frac{\partial y}{\partial x^{2}}$
$=\left(4 x^{2}+4 y^{2}\right)\left[\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}\right]$
- Now if $f(x, y)=x+y \Rightarrow \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}=0$ - Hfince
$\Rightarrow \frac{\partial^{2} f}{\partial z^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\left(4 x^{2}+4 y^{2}\right)\left[\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial y}{\partial v^{2}}\right]$
$\Rightarrow \quad 0=\left(4 x^{2}+4 y^{2}\right)\left[\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right]$
$\Rightarrow \frac{\partial^{2} y}{\partial u^{2}}+\frac{\partial^{2} g}{\partial y^{2}}=0$

Question 45 (*****)
The function z depends on x and y so that

$$
z=f(u, v), \quad u=x-2 \sqrt{y} \quad \text { and } \quad v=x+2 \sqrt{y}
$$

Show that the partial differential equation

$$
\frac{\partial^{2} z}{\partial u \partial v}=0 .
$$

\square

 Stan ROLS AND Prosucis
$\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)-\left[-1 \frac{\partial}{y} \frac{\partial}{2 x}+\frac{1}{y} \frac{\partial}{3 z}\right]\left(-\frac{1}{\sqrt{2}} \frac{\partial z}{\partial 4}+\frac{1}{y^{2}} \frac{\partial z}{\partial x}\right)$
$=-\frac{1}{y^{2}} \frac{\partial}{\partial u}\left[-\frac{1}{y_{y}} \frac{\partial z}{\partial u}+\frac{1}{y^{2}} \frac{\partial z}{\partial v}\right]+\frac{1}{y^{\frac{1}{2}} \frac{\partial}{\partial z}}\left[-\frac{1}{y^{2}} \frac{\partial z}{\partial u}+\frac{1}{y^{2}} \frac{\partial z}{\partial x}\right]$

$+\frac{1}{y y^{2}}\left[\frac{1}{2 y z} \frac{\partial y}{\partial v} \frac{\partial z}{\partial u}-\frac{1}{y^{2}} \frac{\partial z z}{\partial v^{2} v}-\frac{1}{\partial y^{2} z} \frac{\partial y}{\partial v} \frac{\partial z}{\partial v}+\frac{1}{y^{2} / \frac{\partial^{2} z}{\partial v^{2}}}\right]$
Tiov and reconserinc
$\frac{\partial z}{\partial y^{2}}=-\frac{1}{2 y^{2}} \frac{\partial z}{\partial u} \frac{\partial z}{\partial u}+\frac{1}{y} \frac{\partial z}{\partial u^{2}}+\frac{1}{\partial y^{2}} \frac{\partial y}{\partial u} \frac{\partial z}{\partial v}-\frac{1}{y} \frac{\partial^{2}}{\partial u^{\prime} \partial v}$
$\frac{1}{2 z^{2}} \frac{\partial u}{\partial v} \frac{\partial z}{\partial u}+\frac{1}{y} \frac{\partial^{2} z}{\partial v^{2}}-\frac{1}{2 y^{2}} \frac{\partial z}{\partial v} \frac{\partial z}{\partial v}-\frac{1}{y} \frac{\partial^{2} z}{\partial u \partial v}$

$2 \frac{\partial z}{\partial x^{2}}-2 y \frac{\partial z}{\partial y^{2}}-\frac{x_{2}}{\partial y}=0$

Created by T. Madas

Question 46 (*****)

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

The above partial differential equation is Laplace's equation in a two dimensional Cartesian system of coordinates.

Show clearly that Laplace's equation in the standard two dimensional Polar system of coordinates is given by

$$
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=0 .
$$

\square 	

Question 47 (*****)
It is given that for $\varphi=\varphi(x, y)$ and $\psi=\psi(x, y)$

$$
\frac{\partial \varphi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \text { and } \quad \frac{\partial \varphi}{\partial y}=-\frac{\partial \psi}{\partial x} .
$$

Show that the above pair of coupled partial differential equations transform in plane polar coordinates to

$$
\frac{\partial \varphi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad \text { and } \quad \frac{\partial \psi}{\partial r}=-\frac{1}{r} \frac{\partial \varphi}{\partial \theta} .
$$

$\left.\left.y=\operatorname{ran} \theta\} \Rightarrow \begin{array}{l}x^{2}+y^{2}=r^{2} \\ \tan \theta=\frac{y}{x}\end{array}\right\} \Rightarrow \begin{array}{l}r=7\left(x^{2}+y^{2}\right)^{2} \\ \theta=\arctan \left(\frac{y}{x}\right)\end{array}\right\}$

$r=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}$
$\frac{\partial x}{\partial x}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} \times 2 x=\frac{x}{\left(x^{2}+y^{2}\right) \frac{1}{2}}=\frac{\sqrt{\cos \theta}}{y}=\cos \theta$ $\frac{\partial x}{\partial y}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} \times 2 y=\frac{y}{\left(x^{2}+y^{2}\right) t}=\frac{r \sin \theta}{\Gamma}=\sin \theta$ $\theta=\arctan \left(\frac{y}{2}\right)$ $\frac{\partial \theta}{\partial x}=-\frac{y}{x^{2}} \times \frac{1}{1+\frac{y^{2}}{\partial x}}=-\frac{y}{x^{2} 2} \times \frac{x^{2}}{x^{2}+y^{2}}=-\frac{\frac{y}{x^{2}+y^{2}}}{x^{2}}=\frac{-r \sin \theta}{1 r^{2}}=-\frac{\sin \theta}{r}$ $\frac{\partial \theta}{\partial y}=\frac{1}{x} \times \frac{1}{1+\frac{y^{2}}{x^{2}}}=\frac{1}{x^{2}} \times \frac{x^{2}}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}=\frac{r \cos \theta}{r^{2}}=\frac{\cos \theta}{\Gamma}$ (1) $\frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial x}=\frac{\partial t}{\partial r} \cos \theta-\frac{\partial \phi}{\partial \theta} \frac{\sin \theta}{r}$ $\frac{\partial f}{\partial y}=\frac{\partial \phi}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial y}=\frac{\partial \phi}{\partial r} \sin \theta+\frac{\partial t}{\partial t} \frac{\cos \theta}{\Gamma}$ $\frac{\partial \psi}{\partial \alpha}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial x}=\frac{\partial \psi}{\partial r} \cos \theta-\frac{\partial \psi}{\partial \theta} \frac{\sin \theta}{r}$ $\frac{\partial \psi}{\partial y}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial y}=\frac{\partial \psi}{\partial r} \sin \theta+\frac{\partial \psi}{\partial \theta} \cos \theta$ - By THy 'Filut" cancay-rieminn gquation we obtain $\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y}$ $\frac{\partial b}{\partial r} \cos \theta-\frac{\partial t}{\partial \theta} \frac{\sin \theta}{r}=\frac{\partial \psi}{\partial r} \sin \theta+\frac{\partial \psi}{\partial \theta} \frac{\cos \theta}{\Gamma}$
$\cos \theta\left[\frac{\partial \phi}{\partial r}-\frac{1}{r} \frac{\partial \psi}{\partial \theta}\right]-\sin \theta\left[\frac{\partial \psi}{\partial r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right]=0$
 $\frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x}$
$\frac{\partial \phi}{\partial r} \sin \theta+\frac{\partial \phi}{\partial \theta} \frac{\cos \theta}{r}=-\left[\frac{\partial \psi}{\partial r} \cos \theta-\frac{\partial \psi}{\partial \theta} \frac{\sin \theta}{r}\right]$
$\frac{\partial \phi}{\partial r} \sin \theta-\frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}+\frac{\partial \psi}{\partial r} \cos \theta+\frac{\partial \phi}{\partial \theta} \frac{\cos \theta}{\Gamma}=0$ $\sin \theta\left[\frac{\partial \psi}{\partial r}-\frac{1}{r} \frac{\partial \psi}{\partial t}\right]+\cos \theta\left[\frac{\partial \psi}{\partial r}+\frac{1}{r} \frac{\partial \phi}{\partial 6}\right]=0$

- Eumbiting in rowas
$\cos ^{2} \theta\left[\frac{\partial \phi}{\partial r}-\frac{1}{r} \frac{\partial \psi}{\partial \theta}\right]-\cos \theta \sin \theta\left[\frac{\partial \psi}{\partial r}+\frac{1}{r} \frac{\partial s}{\partial \theta}\right]=0$
$\operatorname{sun}^{2} \theta\left[\frac{\partial \phi}{\partial r}-\frac{1}{r} \frac{\partial \psi}{\partial \theta}\right]+\sin \theta \cos \theta\left[\frac{\partial u}{\partial r}+\frac{1}{r} \frac{\partial t}{\partial \theta}\right]=0$ $\left(\cos ^{3} \theta+\sin ^{2} \theta\right)\left[\frac{\partial \phi}{\partial r}-\frac{1}{r} \frac{\partial \psi}{\partial \theta}\right]=0$
$\frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$
AND $-\sin \theta \cos \theta\left[\frac{\partial *}{\partial v}-\frac{1}{r} \frac{\partial \psi}{\partial \theta}\right]+\sin \theta\left[\frac{\partial \psi}{\partial v}+\frac{1}{r} \frac{\partial v}{\partial \theta}\right]=0$ $\frac{\cos \theta \sin \theta\left[\frac{\partial}{\partial t}-\frac{1}{t} \frac{\partial w}{\partial v}\right]+\cos 3\left[\frac{\partial v}{\partial r}+\frac{1}{r} \frac{\partial t}{\partial t}\right]=0}{\left[\sin \theta+\cos ^{2} \theta\right]\left[\frac{\partial v}{\partial}+\frac{1}{\left.+\frac{\partial t}{\partial t}\right]}=0\right.}$

