PARTIAL

DIFFERENTIATION

APPLICATIONS

STATIONARY POINTS

Created by T. Madas

Question 1 (**)
A surface has Cartesian equation $z=f(x, y)$, given by

$$
f(x, y)=(x-2)^{2}+(y-1)^{2} .
$$

Investigate the critical points of f.
\square
local minimum at $(2,1,0)$

Question 2 (**)

$$
z=5 x y-6 x^{2}-y^{2}+7 x-2 y .
$$

Investigate the critical points of z.

Question 3 (**)
A profit function P depends on two variables E and W, as follows.

$$
P(E, W)=9 E-2 E^{2}-5 E W+7 W-W^{2}, E>0, W>0 .
$$

Investigate the critical points of P.

Created by T. Madas

$$
f(x, y)=9-y^{2}-2 x^{2}+4 x+y-x y
$$

Investigate the critical points of f.

Question 5 (**+)

$$
z=x^{3}-6 x y+y^{3}
$$

Investigate the critical points of z. saddle point at $(0,0,0)$, local minimum at $(2,2,-8)$

Question 6 (**+)

$$
z(x, y)=x^{4}+y^{4}-4 x y .
$$

Investigate the critical points of z.

Created by T. Madas

Question 7 (***)

$$
z=2 x y(x y+2 y)-4 y\left(y^{2}-4\right) .
$$

Investigate the critical points of z.

saddle point at $(-1,1,10)$, local minimum at $\left(-1,-\frac{4}{3},-\frac{416}{27}\right)$

Question 8 (***)
The function of two variables f is defined as

$$
f(x, y) \equiv x y(x+2)-y(y+3), \quad x \in \mathbb{R}, y \in \mathbb{R}
$$

Find the coordinates of each of the stationary points of f, where $z=f(x, y)$, and further determine their nature.
\square
\square saddle point at $(1,0,0)$, saddle point at $(-3,0,0)$, local maximum at $(-1,-2,4)$

Question 9 (***)
The function of two variables f is defined as

$$
f(x, y) \equiv 2 x^{3}+6 x y^{2}-3 y^{3}-150 x, \quad x \in \mathbb{R}, y \in \mathbb{R}
$$

Find the coordinates of each of the stationary points of f, where $z=f(x, y)$, and further determine their nature.
\square saddle point at $(3,4,-300)$, saddle point at $(-3,-4,300)$, local minimum at $(5,0,-500)$, local maximum at $(-5,0,500)$

- Find the firest order decwations amd set thim equal to zere $\left.\left.\begin{array}{l}\frac{\partial f}{\partial x}=6 z^{2}+6 y^{2}-150 \\ \frac{\partial f}{\partial y}=12 x y-9 y^{2}\end{array}\right\} \Rightarrow \begin{array}{l}6 x^{2}+6 y^{2}-150=0 \\ 12 x y-9 y^{2}=0\end{array}\right\} \Rightarrow$ $x^{2}+y^{2}=25$ $3 y(4 x-3 y)=0$
\qquad if $y=0 \quad x=<_{-2}^{2}$ if $\begin{aligned} & y=\frac{4}{3} x \quad \\ & \quad x^{2}+\frac{16}{9} x^{2}=25 \\ & \\ & 4 x^{2}+16 x^{2}=225\end{aligned}$ $\begin{aligned} 25 x^{2} & =225 \\ x^{2} & =9\end{aligned}$
\qquad

Question $10 \quad(* * *+)$
The function of three variables f is defined as

$$
f(x, y, z) \equiv x^{2}+y^{2}+z^{2}+x y-x+y, \quad x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}
$$

Find the stationary value of f, including the triple (x, y, z) which produces this value, further determining the nature of this stationary value.
\square, local minimum of -1 at $(1,-1,0)$

\square
Pbocteco to find THE HigñoAluts of THF MATEXX $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
 $\Rightarrow \left\lvert\, \begin{gathered} \\ \vdots \\ 0\end{gathered}\right.$

- Gipmodiv THe Tried Gumm $\Rightarrow(2-\lambda)\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$ $\Rightarrow-(\lambda-2)\left[(2-\lambda)^{2}-1\right]=0$ $\Rightarrow(\lambda-2)\left[(\lambda-2)^{2}-1\right]=0$ $\Rightarrow(\lambda-2)(\lambda-2-1)(\lambda-2+1)=0$ $\Rightarrow(\lambda-2)(\lambda-3)(\lambda-1)=0$ $\Rightarrow A=<2_{3}^{2}$

Question 11 (${ }^{* * *+)}$
The function of three variables f is defined as

$$
f(x, y, z) \equiv x^{2}+x y+y^{2}+2 z^{2}+3 x-2 y+z, \quad x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}
$$

Find the stationary value of f, including the triple (x, y, z) which produces this value, further determining the nature of this stationary value.

$$
\square, \text { local minimum of }-\frac{155}{24} \text { at }\left(\frac{7}{3},-\frac{8}{3},-\frac{1}{4}\right)
$$

\square
 $\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right] \quad \begin{aligned} & \text { If } \mathrm{Hl} 3 \text { Het Hositut } \Rightarrow \mathrm{MIN} \\ & \text { If } \mathrm{All} 3\end{aligned}$ If MIX of PaOTNT/NTGATIUG \Rightarrow "StaDf" $\Rightarrow\left|\begin{array}{ccc}2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & 4-\lambda\end{array}\right|=0$
 $-(\lambda-4)\left[(2-\lambda)^{2}-1\right]=0$ $(\lambda-4)\left[(\lambda-2)^{2}-1\right]=0$ $(\lambda-4)(\lambda-2-1)(\lambda-2+1)=0$ $(\lambda-4)(\lambda-3)(\lambda-1)=0$ $\Rightarrow \lambda=<_{4}^{1}$
\therefore Au Positive $\Rightarrow\left(\frac{7}{3}, \frac{-8}{3},-\frac{1}{4}\right)$ yitros A WCALY MINMMOM Vhut of $-\frac{155}{24}$ fur $f(x, y, z)$

Question 1 (****)
A set of points P_{i} with Cartesian coordinates $\left(x_{i}, y_{i}\right), 1<i \leq n$, is given.

It is required to find a straight line with equation $y=m x+c$, so that the sum of the squares of the vertical distances between P_{i} and the straight line is least.

Find simplified expressions for each of the constants m and c, in terms of x_{i} and y_{i}.
$m=\frac{n \sum_{i=1}^{n}\left(x_{i} y_{i}\right)-\sum_{i=1}^{n}\left(x_{i}\right) \sum_{i=1}^{n}\left(y_{i}\right)}{n \sum_{i=1}^{n}\left(x_{i}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}\right) \sum_{i=1}^{n}\left(x_{i}\right)}$

$$
c=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}\right)-\frac{m}{n} \sum_{i=1}^{n}\left(x_{i}\right)
$$

\square

Created by T. Madas

Question 2 (****)
A set of points P_{i} with Cartesian coordinates $\left(x_{i}, y_{i}\right), 1<i \leq n$, is given.

It is required to find a hyperbola with equation $y=\frac{a}{x}$, so that the sum of the squares of the vertical distances between P_{i} and the hyperbola is least.

Find a simplified expression for the constant a, in terms of x_{i} and y_{i}.

$$
a=\frac{\sum_{i=1}^{n}\left(\frac{y_{i}}{x_{i}}\right)}{\sum_{i=1}^{n} \frac{1}{\left(x_{i}\right)^{2}}}
$$

Question 3 (****)
A set of points P_{i} with Cartesian coordinates $\left(x_{i}, y_{i}\right), 1<i \leq n$, is given.

It is required to find a curve with equation $y=a \ln x$, so that the sum of the squares of the vertical distances between P_{i} and the curve is least.

Find a simplified expression for the constant a, in terms of x_{i} and y_{i}.

Question 4 (****)
A set of points P_{i} with Cartesian coordinates $\left(x_{i}, y_{i}\right), 1<i \leq n$, is given.

It is required to find a curve with equation $y=a x^{2}+b$, so that the sum of the squares of the vertical distances between P_{i} and the curve is least.

Find simplified expressions for each of the constants a and b, in terms of x_{i} and y_{i}.

Question 5 (****)
The table below shows experimental data connecting two variables x and y.

\boldsymbol{t}	5	10	15	30	70
\boldsymbol{P}	181	158	145	127	107

It is assumed that t and P are related by an equation of the form

$$
P=A \times t^{k}
$$

where A and k are non zero constants.

By linearizing the above equation, and using partial differentiation to obtain a line of least squares, determine the value of \bar{A} and the value of k.

$$
A \approx 250, k \approx-0.2
$$

CONSTRAINED

OPTIMIZATION

Question 1 (***)

$$
f(x, y)=x^{2}+y^{2}, x \in \mathbb{R}, y \in \mathbb{R}
$$

The region R in the $x-y$ plane is a circle centred at $(-1,1)$ and of radius 1 .

Use partial differentiation to determine the maximum and the minimum value of f, whose projection onto the $x-y$ plane is the region R.
\square $, f_{\max }=3+2 \sqrt{2}, f_{\min }=3-2 \sqrt{2}$

OSING CAGCHNBE'S Netikeo, we thate in THe usual notation	
- obleetive finction $f(x, y)=x^{2}+y^{2}$ - constrant $\begin{aligned} & (x+1)^{2}+(y-1)^{2}=1 \\ & x^{2}+2 x+1+y^{2}-2 y+1=1 \\ & x^{2}+y^{2}+2 x-2 y+1=0 \\ & \phi(x, y)=x^{2}+y^{2}+2 x-2 y+1 \end{aligned}$	
Hhnce we thue The fouowing gruations	
$\left.\begin{array}{l}\text { (I) } \frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}=0 \\ \text { (II) } \frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}=0 \\ \text { (IIt) } \phi(\partial y)=0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}2 x+\lambda(2 x+2)=0 \\ 2 y+\lambda(2 y-2)=0 \\ x^{2}+y^{2}+2 x-2 y+1=0\end{array}\right\} \Rightarrow$	
$\Rightarrow\left\{\begin{array}{l} x=-\lambda(x+1) \\ y=-\lambda(y-1) \\ x^{2}+y^{2}+2 x-2 y+1=0 \end{array}\right\} \rightarrow$ DulDING THe Fert-wo gRuations	
$\begin{aligned} & \Rightarrow \frac{x}{y}=\frac{x+1}{y-1} \\ & \Rightarrow x+y-x=x y^{\prime}+y \end{aligned}$	

Question 2 (***)

$$
f(x, y)=(x+1) \sqrt{y}, x \in \mathbb{R}, y \in \mathbb{R}, y>0 .
$$

Find the value of x and the value of y which maximizes value of f, subject to the constraint $x+2 y=11$.

Question 3 (***)
The region R in the $x-y$ plane is the ellipse with equation

$$
2 x^{2}+x y=2 y^{2}=15
$$

The surface with equation $z=f(x, y)$ is given by

$$
f(x, y)=x y, x \in \mathbb{R}, y \in \mathbb{R} .
$$

Determine the maximum value of f and the minimum value of f, whose projection onto the $x-y$ plane is the region R.

Give the corresponding x and y coordinates in each case

$$
\rho f_{\max }=3 \text { at }(\sqrt{3}, \sqrt{3}) \text { or }(-\sqrt{3},-\sqrt{3}), f_{\max }=-5 \text { at }(\sqrt{5},-\sqrt{5}) \text { or }(-\sqrt{5}, \sqrt{5})
$$

\square

$$
\text { (1) If } y=x \text {, LQuation (3) yiths }\{\text { If } y=-x \text {, Equation (3) yities }
$$

$$
\begin{aligned}
& 2 x^{2}+x^{2}+2 x^{2}=15 \\
& 5 x^{2}=15
\end{aligned} \quad\left\{\begin{array}{l}
2 x^{2}-x^{2}+2 x^{2}=15 \\
3 x^{2}=15
\end{array}\right.
$$ $x^{2}=3$

$$
\begin{aligned}
& f(x, y)=x y \text { subsect to tite constenst } 2 x^{2}+x y+2 y^{2}=1 \\
& \text { - CONSTOUT (AGRANGAN } \\
& \frac{\partial x}{\partial y}+\lambda \frac{\partial p}{\partial y}=0 \quad \Rightarrow \quad x+\lambda(x+4 y)=0 \text { (2) } \\
& \phi(x, y)=0 \quad \Longrightarrow \quad x^{2}+x y+2 y^{2}=15 \quad \text { (3) } \\
& \text { (C) Pewart (1)\& (2) } \\
& \left.\begin{array}{rl}
-y & =\lambda(4 x+y) \\
-x & =\lambda(x+4 y)
\end{array}\right\} \text { DIUDF } \quad \frac{y}{x}=\frac{4 x+y}{x+4 y} \\
& x y+4 y^{2}=4 x^{2}+x y \\
& y= \pm x
\end{aligned}
$$

Question 4 (***)
A scalar field F exists on the surface of the sphere with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=\frac{1}{8}
$$

Given further that $F=x^{2}+y+z$, determine the maximum value of F and the minimum value of F.
$F_{\max }=\frac{1}{2}, \quad F_{\min }=-\frac{1}{2}$ 2

Question 5 (***)

$$
f(x, y)=x^{2}+y^{2}+\sqrt{x^{2}+y^{2}}, x \in \mathbb{R}, y \in \mathbb{R}
$$

Find the value of x and the value of y which minimizes value of f, subject to the constraint $x+y=1$.

Question 6 (***+)
Determine in exact form the shortest distance of the point $(1,2,3)$ from the sphere with equation

Question 7 (***+)

A water tank, in the shape of a cuboid, is to have a capacity of $1 \mathrm{~m}^{3}$.

Sheet metal is used for the construction of the tank. The sheets are of uniform thickness but the density of the metal used for the lid is half the density of the metal used for the rest of the tank.

Use Lagrange's constrained optimization method to show that the minimum total sheet metal to be used is exactly $3 \sqrt[3]{6} \mathrm{~m}^{2}$.

Question 8 (***+)

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

Determine the minimum value of F, subject to the constraints

$$
x+y+z=3 \quad \text { and } \quad x-2 y+z=1
$$

$$
f_{\min }=\frac{19}{6}
$$

$$
f\left(\left.\frac{7}{6} \right\rvert\, \frac{2}{5}, \frac{7}{6}\right)=\frac{49}{36}+\frac{4}{5}+\frac{49}{36}=\frac{49}{36}+\frac{4}{36}+\frac{45}{3}=\frac{114}{36}=\frac{57}{18}=\frac{19}{6}
$$

$$
\text { ut } x=0
$$

$$
\left.\begin{array}{rlrl}
-2 y+z=1
\end{array}\right] \Rightarrow \begin{array}{rlr}
\frac{3 y}{y}=2 & f\left(9 \frac{2}{3} 1 \frac{7}{3}\right) & =0+\frac{4}{3}+\frac{49}{3} \\
z=3-\frac{2}{3} & =\frac{7}{3} & \\
& =\frac{53}{9}>\frac{19}{6}
\end{array}
$$

Created by T. Madas

Question 9 (***+)

$$
F(x, y, z)=x^{2}+y^{2}+(z-2)^{2} .
$$

Determine the minimum value of F, subject to the constraint $z=x y$.

Question 10 (***+)
The points P and Q lie on the intersection of the sphere and cylinder with respective Cartesian equations

$$
x^{2}+y^{2}+z^{2}=9 \quad \text { and } \quad x^{2}+y^{2}=8
$$

The position of P is such so that the distance of P from the point $(5,5,5)$ is least.
The position of Q is such so that the distance of Q from the point $(5,5,5)$ is greatest.

Determine the coordinates of P and the coordinates of Q.

Give the corresponding distance from $(5,5,5)$ in each case.

$$
d_{\min }=\sqrt{34}, \quad P(2,2,1), \quad d_{\max }=\sqrt{134}, \quad P(-2,-2,1)
$$

Question 11 (****)
The function F is defined in cylindrical polar coordinates (r, θ, z) as

$$
F(r, \theta, z)=r^{2}+\sin ^{2} \theta-z, \quad r \geq 0,0 \leq \theta<2 \pi
$$

Determine the minimum value and the maximum value of F, subject to the constraint

$$
z=2 r^{2} \sin \theta-1
$$

$$
F_{\min }=-1, \quad F_{\max }=\frac{1}{2}
$$

\square ATND HOM THC COATEDNT $z=2 \pi^{2} \sin ^{2} \theta-$ $z=2\left(\frac{1}{\sqrt{2}}\right)^{2} \sin ^{2}\left(\begin{array}{l}\text { "an } \\ 0 \text { ar } \\ 0 \text { (tat+ }\end{array}\right)-1$ $z=1 \times \frac{1}{2}-1$
$z=-\frac{1}{2}$
(2) Summarizig the the RButs
\qquad
 IN THE REffectut ORDER הGBOL

\square | $F(r(\theta z)$ | -1 | 0 | -1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\therefore F_{\operatorname{MaX} \times}$ \& $\frac{1}{2} \quad r=\frac{1}{2}, z=-\frac{1}{2} \quad \theta=\frac{\pi}{4}, \frac{3 \pi}{4} 1, \frac{5 \pi}{4} 1 \frac{7 \pi}{4}$ $F_{\mu \mid / W}$ is ti at $r=0, z=-1,\left[\theta=0, \frac{\pi}{2}, \pi, \frac{2 \pi}{2}\right]$

Created by T. Madas

Question 12 (****+)
A brick is made so that

- the sum of the lengths of all of its edges is 40
- the sum of the area of all of its faces is 24

Use differentiation to find the maximum volume of the brick.

APPLICATIONS
TO O.D.E.s

Created by T. Madas

Question 1 (***)
Find the solution of the following differential equation

$$
\frac{d y}{d x}=\frac{1-3 x^{2} y}{x^{3}+2 y}
$$

subject to the boundary condition $y=1$ at $x=1$.

Created by T. Madas

Question 2 (***)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{2 x y+6 x}{4 y^{3}-x^{2}}
$$

subject to the boundary condition $y=1$ at $x=1$.

Question 3 (***)
Find a general solution of the following differential equation

$$
\frac{d y}{d x}=\frac{y\left(y^{2}-3 x^{2}+1\right)}{x\left(x^{2}-3 y^{2}-1\right)}
$$

Question 4 (***)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{4 \mathrm{e}^{2 x}-y\left(2 \mathrm{e}^{2 x}+1\right)}{\mathrm{e}^{2 x}+x}
$$

subject to the boundary condition $y=2$ at $x=0$.

$$
y=\frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+x}
$$

Question 5 (***+)
Find a general solution of the following differential equation

$$
\frac{d y}{d x}=\frac{\cos x \cos y+\sin ^{2} x}{\sin x \sin y+\cos ^{2} y}
$$

$$
\sin x \cos y-\frac{1}{4}(\sin 2 x+\sin 2 y)+\frac{1}{2}(x-y)=\text { constant }
$$

