Question 1
A curve C is defined parametrically

$$
(x, y, z)=(3 \cos t, 3 \sin t, 4 t), \quad 0 \leq t \leq 5 \pi .
$$

where t is a parameter.
a) Sketch the graph of C.
b) Find the length of C.

Question 2
A curve C is defined parametrically

$$
(x, y, z)=\left(\mathrm{e}^{t}, \mathrm{e}^{t} \cos t, \mathrm{e}^{t} \sin t\right), 0 \leq t \leq 2 \pi
$$

where t is a parameter.

Describe the graph of C and find its length.
arclength $=\sqrt{3}\left[\mathrm{e}^{2 \pi}-1\right]$

Question 3
The position vector of a curve C is given by

$$
\mathbf{r}(t)=\cos (\cosh t) \mathbf{i}+\sin (\cosh t) \mathbf{j}+t \mathbf{k}
$$

where t is a scalar parameter with $0 \leq t \leq a, a \in \mathbb{R}$.

Determine the length of C.
arclength $=\sinh a$

Created by T. Madas

Question 4
Evaluate the integral

$$
\int_{(1,0)}^{(3,3)}(y+x) d x+(y-x) d y
$$

along the curve with parametric equations

Question 5
It is given that

$$
\mathbf{F}(x, y, z) \equiv \mathbf{j} \wedge \mathbf{r}
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Evaluate the line integral

$$
\int_{C} F \cdot d r
$$

where C is the closed curve given parametrically by

$$
\mathbf{R}(t)=\left(t-t^{2}\right) \mathbf{i}+\left(2 t-2 t^{2}\right) \mathbf{j}+\left(t^{2}-t^{3}\right) \mathbf{k}, 0 \leq t \leq 1
$$

Question 6
Evaluate the integral

$$
\int_{(1,1,0)}^{(5,3,4)}(3 x-2 y) d x+(y+z) d y+\left(1-z^{2}\right) d z
$$

along the straight line segment joining the points with Cartesian coordinates ($1,1,0$) and $(5,3,4)$.

Question 7
A surface S has equation

$$
x^{2}+y^{2}-z^{2}=1
$$

Find a suitable parameterization of S.

$$
x=\cos \theta \cosh t, \quad y=\sin \theta \cosh t, \quad z=\sinh t
$$

Question 8
The position vector of a curve C is given by

$$
\mathbf{r}(t)=\left(\frac{2}{1+t^{2}}-1\right) \mathbf{i}+\left(\frac{2 t}{1+t^{2}}\right) \mathbf{j}
$$

where t is a scalar parameter with $t \in \mathbb{R}$.
Find an expression for the position vector of C, giving the answer in the form

$$
\mathbf{r}(s)=f(s) \mathbf{i}+g(s) \mathbf{j},
$$

where s is the arc length of a general point on C, measured from the point $(1,0)$.

Question 9
Evaluate the line integral

$$
\oint_{C} y^{5} d x
$$

where C is a circle of radius 2 , centre at the origin O, traced anticlockwise.

You may not use Green's theorem in this question.

Question 10
A curve C is defined by $\mathbf{r}=\mathbf{r}(t), 0 \leq t \leq 2 \pi$ as

$$
\mathbf{r}(t)=(x, y, z)=[2(t-\sin t), \sqrt{3} \cos t, 1+\cos t] .
$$

Evaluate the integral
where s is the arclength along C.

$$
\int_{C} z d s
$$

Question 11

$$
V(x, y, z)=60 x y z^{2} .
$$

Evaluate the following integral along C, from $(3,1,1)$ to $(4,3,2)$,

$$
\int_{C} V \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

where C is the curve with parametric equations

$$
x=t+2, \quad y=2 t-1, \quad z=t
$$

Question 12

$$
\varphi(x, y, z) \equiv 3 x+2 y+z
$$

Evaluate the following integral along C, from $(1,0,0)$ to $(2,2,1)$,

$$
\int_{C} \varphi \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

where C is the curve with parametric equations

$$
x=t+1, \quad y=2 t, \quad z=t^{2}
$$

$$
\frac{41}{6} \mathbf{i}+\frac{41}{3} \mathbf{j}+\frac{49}{6} \mathbf{k}
$$

Question 13

$$
F(x, y, z)=x y z
$$

Evaluate the following integral along C, from $(1,0,0)$ to $(0,1,4)$,

$$
\int_{C} F \mathbf{d r}, \quad \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}}
$$

$$
\begin{equation*}
{ }^{2} \tag{0}
\end{equation*}
$$

where C is the curve with parametric equations

$$
x=\cos t, \quad y=\sin t, \quad z=\frac{8 t}{\pi} .
$$

$$
\frac{16-12 \pi}{9 \pi} \mathbf{i}+\frac{16}{9 \pi} \mathbf{j}+\frac{8}{\pi} \mathbf{k}
$$

$\int_{(1,90)}^{(0,1,4)} x y z d s=\int_{(0,0,0)}^{(9,1,4)} 2 y z z(d x y d y, d z)$	$\left\{\begin{array}{l} a=\cos t \Rightarrow d x=\sin t d t \\ y=s \sin t \rightarrow d y=\cos +d t\} \\ z=\frac{\theta t}{T} \Rightarrow d z=\frac{8}{\pi} d t \end{array}\right\}$

$\int_{0}^{(\cos t)}(\sin t) \frac{8 t}{\pi}\left(-\operatorname{sen} t d t \cos t t_{1} \frac{8}{\pi} d t\right)$ $\int_{0}^{\frac{\pi}{2}}\left(\frac{8}{\pi} t \cos t \sin ^{2} t, \frac{8}{\pi^{2}} t \cos ^{2} t \sin t, \frac{64}{\pi^{2}} t u \cos n t\right) d t$

Question 14
A curve C has equation

$$
x^{2}+x y+y^{2}=1 . \quad, \quad 0 \leq x \leq 3
$$

Find a suitable parameterization of C in the form

$$
x=A \cos \theta+B \sin \theta \quad \text { and } \quad y=A \cos \theta-B \sin \theta,
$$

where A and B are suitable constants.

Question 15
A surface S is given parametrically by

$$
x=a t \cosh \theta, x=b t \sinh \theta, z=t^{2}
$$

where t and θ are real parameters, and a and b are non zero constants .
a) Find a Cartesian equation for S.
b) Determine an equation of the tangent plane on S at the point with Cartesian coordinates $\left(x_{0}, y_{0}, z_{0}\right)$.

Question 16
In standard notation used for tori, r is the radius of the tube and R is the distance of the centre of the tube from the centre of the torus.

The surface of a torus has parametric equations

$$
x(\theta, \varphi)=(R+r \cos \theta) \cos \varphi, \quad y(\theta, \varphi)=(R+r \cos \theta) \sin \varphi, \quad z(\theta, \varphi)=r \sin \theta
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$.
a) Find a general Cartesian equation for the surface of a torus.

A torus T has Cartesian equation

$$
\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}=1-z^{2}
$$

b) Use a suitable parameterization of T to find its surface area.

Question 17
A spiral ramp is modelled by the surface S defined by the vector function

$$
\mathbf{r}(u, v)=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=(u \cos v) \mathbf{i}+(u \sin v) \mathbf{j}+v \mathbf{k}
$$

where $0 \leq u \leq 1,0 \leq v \leq 3 \pi$.

Determine the value of

$$
\int_{S} \sqrt{x^{2}+y^{2}} d S
$$

Question 18
The surface S is defined by the vector equation

$$
\mathbf{F}(u, v)=\left[u \cos v, u \sin v, \frac{1}{u}\right]^{T}, u \neq 0 .
$$

Find the area of S lying above the region in the $u v$ plane bounded by the curves

$$
v=u^{4}, v=2 u^{4}
$$

and the straight lines with equations $u=3^{\frac{1}{4}}$ and $u=8^{\frac{1}{4}}$.

Question 19
The surface S is defined by the parametric equations

$$
x=t \cosh \theta, y=t \sinh \theta, z=\frac{1}{2}\left(1-t^{2}\right)
$$

where t and θ are real parameters such that $0 \leq t \leq 1$ and $0 \leq \theta \leq 1$.

Find, in exact form, the value of

$$
\frac{1}{30}\left[\frac{(\cosh 2+1)^{\frac{5}{2}}-1}{\cosh 2}+1-4 \sqrt{2}\right] \approx 0.274397 \ldots
$$

\square

Created by T. Madas

Question 20

$$
\mathbf{F}(x, y, z) \equiv y \mathbf{i}+x^{2} \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the flux through the surface with parametric equations

$$
\mathbf{r}(u, v)=u \mathbf{i}+v \mathbf{j}+(u+v) \mathbf{k}, \quad 0 \leq u \leq 1, \quad 1 \leq v \leq 4
$$

All integrations must be carried out in parametric.

Question 21
Evaluate the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface represented parametrically by

$$
\mathbf{r}(u, v)=\left[\begin{array}{c}
u+v \\
u-v \\
u
\end{array}\right], \quad 0 \leq u \leq 2, \quad 0 \leq v \leq 3,
$$

and \mathbf{F} is the vector field

$$
x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

All integrations must be carried out in parametric.
\square 36

- Honce we now that in partmetalic
$\int_{S} E \cdot d s=\int_{S} E \cdot \hat{n} d s$

$=\int_{S} E \cdot\left(\frac{\partial r}{\partial u} A \frac{\partial r}{\partial r}\right) d u d r$

Question 22
Evaluate the surface integral

$$
\int_{S} z \mathbf{k} \cdot \mathbf{d S}
$$

where S is the surface represented parametrically by

$$
\mathbf{r}(\theta, \varphi)=\left[\begin{array}{c}
\sin \theta \cos \varphi \\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}\right], 0 \leq \theta \leq \frac{1}{2} \pi, 0 \leq \varphi \leq \frac{1}{2} \pi
$$

All integrations must be carried out in parametric.

Question 23

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+2 z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(u \cos v) \mathbf{i}+(u \sin v) \mathbf{j}+u \mathbf{k}
$$

such that $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

\square
\square

Question 24

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(1+\sin u \cos v) \mathbf{i}+(\sin u \sin v) \mathbf{j}+(\cos u) \mathbf{k}
$$

such that $0 \leq u \leq \pi, 0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 25

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(u, v)=(u \cos v) \mathbf{i}+(1+u \sin v) \mathbf{j}+(u-1) \mathbf{k}
$$

such that $0 \leq u \leq 1,0 \leq v \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 26

$$
\mathbf{F}(x, y, z) \equiv x \mathbf{i}+y \mathbf{j}+2 z \mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S}
$$

where S is the surface with parametric equations

$$
\mathbf{r}(\theta, \varphi)=[(4+\cos \theta) \cos \varphi] \mathbf{i}+[(4+\cos \theta) \sin \varphi] \mathbf{j}+(\sin \theta) \mathbf{k},
$$

such that $0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq 2 \pi$.

All integrations must be carried out in parametric.

Question 27
It is given that the vector field \mathbf{F} satisfies

$$
\mathbf{F}=2 y \mathbf{i}-2 x \mathbf{j}+\mathbf{k} .
$$

Find the magnitude of the surface integral

$$
\int_{S} \mathbf{F} \cdot \mathbf{d S},
$$

where S is the surface with Cartesian equation

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

cut off by the cylinder with cartesian equation

$$
x^{2}+y^{2}=x
$$

You must find a suitable parameterization for S, and carry out the integration in parametric, without using any integral theorems.

Created by T. Madas

