Created by T. Mauas DIFFERENTIAL FOUATIONS IFFEL EQUATIONS 2nd order or higher

uasmaths.com

asmaths.com

2^{N⊾} WITH WITH CONSTANT COEFFICIENTS T I.Y.C.B. Madasmalls.Com I.Y.C.B. Madasu CF.

Question 1 (**)

Find a general solution of the differential equation

F.G.B.

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 12\left(x + e^x\right)$$

madasm,

$\frac{d^2_{4}}{da^2} + 5 \frac{d_{4}}{da} + 6y = 12(a + 6)$	2)	
	$S_{1+G=0}^{3} = 0$ $S_{1}^{3}(1+2)=0$ $C_{1}F= g = Ae^{-33} + 1$	Be ⁻²²
· PARTICULAR INTERPAL	~ -2	
TRY 9= Ba+Q+ Ret		
de P+ Rex		
$\frac{d_{A}}{dq_{A}} = Re^{\alpha}$		
$Re^{2} + 5(P + Re^{2}) + 6C$	$\left(\mathbb{R}_{x}+\mathbb{Q}+\mathbb{R}_{e}^{2}\right)=\left \mathbb{R}_{x}^{2}+e^{2}\right $	
12Re2 + 6Px + (SP+60		
R=1 , P=2		
$f = 4e^{-3\alpha} + Be^{2\lambda} +$	e + 2 - 3	

 $^{-3x} + Be$

y = Ae

 $e^{-2x} + e^{x} + 2x - \frac{5}{3}$

1+

Question 2 (**)

·GB.

I.C.B.

Find a general solution of the differential equation

 $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 13y = 13x^2 - x + 22.$

<u>100 .</u>				Y
$\frac{\partial^2 y}{\partial a^2} + 6 \frac{\partial u}{\partial a} + 13y = -13a^2 - z$	a + 22			
• $t_{\text{control}}(q_{\text{control}})$: $3^{+} G_{4} + B = 0$ $(2^{+})^{+} = +4B = 0$ $(3^{+}8)^{+} = -4$ $3^{+}3 = \pm 2i$ $3^{-} = -3\pm i$ $Cf: g_{\pm} \in (A_{\text{control}}, B_{\text{control}})$	y = F $\frac{\partial y}{\partial x} = 2$ $\frac{\partial y}{\partial x} =$ $T \psi_{0,1} =$ 2P + 6(1)	y SUBSTITUTION (BL+Q) + 13(PS	? 1450 744 °.DX 2+G2+P)∈B32 +6Q+13R)≡B32 2P+6Q+13R=8	-x4 <u>22</u>
		[Q=+[]	2 - 6 + 13R = 1 (3R = 2G) 1R = 2	2

Ĉ.

 $y = e^{-3x} (A \cos 2x + B \sin 2x) + x^2 - x + 2$

Question 3 (**)

Find a solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 10\sin x,$$

subject to the boundary conditions y = 6 and $\frac{dy}{dx} = 5$ at x = 0.

o. In	$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 10 \sin \alpha + y(0) = 6, y(6) < 5$
A 00	Toward sharman
$\mathcal{O}_{\mathcal{O}}$ $\mathcal{O}_{\mathcal{O}}$	-10×01119 40+1101
Vales On	$(\lambda - 2)(\lambda - 1) = 0$
	A= <_2 CONTRAUNTABLY FUNCTION
	$y = Ae^{2} + Be^{2A}$
	PAEMOURE INDERAL BY INSPECTION
~ <u>^</u>	
~UD.	9= Pousz + Qsunz 9'=-Psunz + Qcusz
- Oh	$y^{4} = -P_{0002} - Q_{SMO2}$
-400	S.J.O. JHT CAN FIOTIZAUS
	$\implies (-Pcace - Psine) - 3(-Psine + Qcase) + 2(Rase + Qcane) \cong IUSine $
	- Piaca - Qisina - 3Quesa + 3Psina } ≡ 10sing + 2Prasa + 2psina }
	⇒ (P-3q)6052 + (3P+q)SM2 = 10SM2
	• $P - 3Q = 0$ • $3P + Q = 10$ • $P = 3Q$ $3(3p) + Q = 10$
	$T = ap \qquad 0 = 0 \qquad 0 = 2$
10 1	$\phi = (-3)$
100. / S	
	· / S / .
	- A
1 A A	
> //s	199 - A
	901 - Start -
2. IN	42
	9.0
n de	-0 /2.
V/0. 7/2	
dr	
	9
	972 - 9
~ · / · · ·	
	- C
	CO.
	Uh
· · · · · · · · · · · · · · · · · · ·	-102
	· · · · · · · · · · · · · · · · · · ·
	r. · · ·
- / k	
	\sim < 0

i Phen	WAR WHORK	
	3 = 30000 + SM12	
in GAN	la soution	
	y= 40° + 80° + 3002 +	042
DIFFELOSIATE U). IT a a topy conformals	
वै	$\frac{1}{\lambda} = \frac{1}{\lambda} + 2Be^{2\lambda} - 3sin + cos$	à
+J=0, y=6	→ 6= 4+8+3	
	⇒ A+B=3	
· x=0, dy -s	\Rightarrow S = A + 2B + 1	
	\Rightarrow A + 2B = 4	
	- B=1 A=2	
FINALLY WE a	8mbr.)	
	y= 2e ² + e ² + 36052 + SIM2	/

2112.SM

nn

aths com

I.V.C.B. Madasa

 $y = 2e^x + e^{2x} + 3\cos x + \sin x$

The Com

100

Created by T. Madas

I.V.C.A

I.F.G.B

lasmaths,

(**) **Question 4**

9

>

2013

2

I.F.G.B.

Ismaths.com

Smaths,

I.C.B.

I.V.C.B. Madasm

COM

Find a general solution of the differential equation

madasmaths.com

I.C.B.

I.C.B.

11₂(12,5)

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 6e^x$$

,
$$y = (A+2x)e^{x} + Be^{-2x}$$

asmaths.com

äsinäins.Col

5

6

Madasman

A VANDAULA (AND HIMICO TAMIC

- $\lambda^{2} + \lambda 2 = 0$ $(\lambda 1)(\lambda + 2) = 0$ $\lambda = < \frac{1}{-2}$
- y= Ae + Be 14= Pae the et is Augurany pres

Pre

du = Ae + Be = P(1+2)e3 \$ - Po3 + Po2 + Bach - 2Per3 + Part - Per (2+2)

I.C.B.

madasmaths,

2011

 $Pe(2+x) + P(1+x)e^{-2Pa} = 6e^{x}$ P[2+a+1+a-2a] = 63P = 6

11303SD

00

C.B.

" GENHEAR SOUTTON IS $q = Ae^{X} + Be^{2}$

?.ŀ;

The.

nn

I.V.C.B. Madasm

Question 5 (**)

Find a solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 20\sin 2x$$

subject to the boundary conditions y = 1 and $\frac{dy}{dx} = -5$ at x = 0.

Question 6 (**)

12,

Find a general solution of the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 12(e^{2x} - e^{-2x})$$

m

 $y = (A+4x)e^{2x} + Be^{-x} - 3e^{-x}$

100 M	
$\frac{d^2y}{dx^2} - \frac{dy}{dx} - \frac{2y}{dx} = 1$	$2\left(e^{2\lambda}-e^{-2\lambda}\right)$
4011111124 (PURTODA)	PHETRULAL MICHEAL
32-2-2=0	TEY 4= Pe=22 + Qae 22
(3-2)(3+1)=D	$\frac{dq}{d\lambda} = -2Pe^{2\lambda} + Qe^{2\lambda} + 2Qae^{2\lambda}$
$\mathcal{D} = \sum_{2}^{-1}$	$\frac{d^2y}{dx^2} = 447e^{2x} + 2qe^{2x} + 2qe^{4x} + 44qxe^{2x}$
C.F: 4= Ae+Be2	SUB MID THE DIDLE =
,	Ret que 40,00° ← the 28° - 9° - 200° ← the - 28° - 200° ← - 33
	4Pe ⁻¹² +3pe ²² = 12e ²² 12e ⁻²²
	(Q=4)
4 y= Ae+ Be	$-3e^{2\lambda}+4ae^{2\lambda}$
ў = (Анфс)е	$+Be^2 - 3e^{-2x}$

Question 7 (**)

madasmaths.

I. C.B. Madasmaths.Com

I.F.G.B.

1.1.6.8

maths.com

I.F.G.B

$$\frac{d^2 y}{dx^2} + y = \sin 2x, \text{ with } y = 0, \frac{dy}{dx} = 0 \text{ at } x = \frac{\pi}{2}.$$

ion of the above differential equation is
$$y = \frac{2}{3}\cos x (1 - \sin x).$$

I.V.G.B. Show that a solution of the above differential equation is

 $y = \frac{2}{3}\cos x \left(1 - \sin x\right).$

1	
$\begin{array}{c} y = S(A_{2}) \\ = S(A_{2}) \\ = 0 \\ = 1 \\ = 1 \\ = 1 \\ = 1 \\ = 1 \\ = 1 \\ S(A_{2}) \\ = 1 \\ = 1 \\ S(A_{2}) \\ = 1 \\ S(A_{2}) \\ = 1 \\ = 1 \\ S(A_{2$	To ARY loaditions that $\frac{1}{24} = -4000$ tow $= 2\pi \frac{2}{3}, g = 0$ $0 = 0 + B = 0$ $-\frac{1}{12\pi - 0}$ $= 2\pi \frac{2}{3}, \frac{1}{34} = 0$ $0 = -A + \frac{2}{3}$ $= \frac{1}{3} - \frac{2}{3} = 0000002$ $g = \frac{2}{3} \log x - \frac{1}{3} = 000002$ $g = \frac{2}{3} \log x - \log x \log x$
$\begin{array}{c} \text{Supp} \mathbf{x} + P \text{Supp} \mathbf{x} \\ \hline \\ - 3P_{\text{Supp}} \mathbf{x} - m_{\text{Supp}} \mathbf{x} \\ \hline \\ \hline \\ P = -\frac{1}{3} \\ \hline \\ \end{array}$	

EB. Madasmaths.com

ths.col

I.C.S.

11303SI131

.

ths.com

proof

Created by T. Madas

in C.P.

nadasmana Naths

Question 8 (**+)

I.C.B. Mada

Smaths.com

I.V.C.P

1

0

 $\frac{dy}{dx}$ -2x $2y = 6e^{2}$

with y = 3 and $\frac{dy}{dx} = -2$ at x = 0.

Show that the solution of the above differential equation is

 $y = 2e^x + (1 - 2x)e^x$ 2x

MARY (PUATION) FOR THE O.D.E IS DIFFERNTIARTE AND APPLY CONDITIONS $(\lambda = 0)(\lambda + 2) = 0$ y= 4+ +Be=2 - 210=21 $\lambda < < \frac{1}{-2}$ COUPCIMILSTARY FUNCTION 9= 4e2 + Be=22 GONSTANS GE 22 Water is PART FOR THE PARTICOLAR WHETER WE TEP y= Pae=22 dy = Pe - 2Be22 4Pare - 4Pe=2 $\frac{2}{2} = -2Pe^{2\lambda} - 2Pe^{-2\lambda} + 4Pae^{-2\lambda} =$ (4Pae 4Pe 2)+ (Pe -280 = 2(120 = 60 SPE = P = -2PARTOURAL MATERAC IS y=-22e-22

ASUREAL SOLUTION) (5 (y = Ae² + Be⁻²² - 27e²²⁸

2017

.Y.C.B.

 $\frac{du}{d2} = 4e^2 - 286^{22} - 2e^{24} + 42e^2$ A+B 2 --2 = A-28-2 4 -2B A = 2R= 2.B + B B=1 & A=2 FINARUA WE HAVE 202 + 0-21 - 215 14=

207

The Com

proof

ne,

I.F.C.B.

COM

Madasn

. G.D.

1+

I.C.B.

(**+) **Question 9**

Find a general solution of the differential equation

asiliatils.com

naths.col

. K.G.B.

· Car

.

I.V.C.B. Madasm

aths com

 $\overline{v} = x^2 + x - 4 + 6e^{-1}$

Madasmaths.com

2014

Smaths.com

I.F.G.B.

Find the solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 2x + 3,$$

subject to the conditions y = 2, $\frac{dy}{dx} = -5$ at x = 0.

madasmaths,

I.V.C.B. Madasman

I.G.p.

I.C.B.

FGB.

nadasmana Inalias Com

(**+) **Question 11**

12112

011

I.V.C.P.

2

Find a solution of the differential equation

Smaths.

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 34\cos 2x$$

subject to the boundary conditions y = 18 and $\frac{dy}{dx} = 0$ at x = 0.

nadasma,

20

COM

I.C.B. Madasn

200

The Com

The COL

.G.D.

1+

.

Created by T. Madas

2017

P.C.A

Question 12 (**+)

The curve C has a local minimum at the origin and satisfies the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = 32x^2$$

Find an equation for C.

V.G.B. Mal

I.F.G.p

200

100

1+

COM

Madası

I.C.p.

Created by T. Madas

2017

R.

Question 13 (**+)

 $9x + 12\sin 3t = 0, t \ge 0,$

with x=1, $\frac{dx}{dt}=2$ at t=0.

a) Show that a solution of the differential equation is

 $x = (2t+1)\cos 3t .$

b) Sketch the graph of x.

Smaths.com

I.V.G.B.

2

2017

ths.col

.G.D.

1

.

ths.com

proof

aths com

I.V.C.B. Madasn

Created by T. Madas

COM

E.A.

Question 15 (**+)

 $\frac{d^2y}{dx^2} - 2k\frac{dy}{dx} + k^2y = 12xe^{kx}, \ k > 0$

a) Find a general solution of the differential equation given that $y = Px^3 e^{kx}$ where P is a constant, is part of the solution.

 $y = e^{kx} \left(2x^3 - kx + 1 \right).$

b) Given further that y=1, $\frac{dy}{dx}=0$ at x=0 show that

I.C.B.

.Y.C.B.

I.C.B.

I.V.G.B.

 $y = e^{kx} \left(2x^3 + Ax + B \right)$ $\frac{d^2 g}{dx^2} - 2k \frac{dy}{dx} + k^2 g =$ y= Ao + Backs

£1).

6

= 3Pate + Pkate = 6Aze + 3Aze + 3Pkze + Pkze + Pkze \$2 = PKaze+ GRaze + Grae = -2P23 4 _ GPLa'e = Pyze

I.C.p.

mana

Question 16 (**+)

N.C.B. Madasm

Com

I.Y.G.B.

0

Show that the solution of the differential equation

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 24e^{4x}$$

 $y = \left(12x^2 - 1\right)e^{4x}.$

 $\frac{d^2y}{dx^2} - \theta \frac{dy}{dx} + lby = 24e^{\frac{1}{2}x}$

(7-B1+16=0 (7-4)x=0

y= P220.42

 $du = 2Pae^{44} + 4Pa^2e^{44} = 2P(\alpha+2n^2)e^{4}$

 $e^{\frac{d^2u}{d\lambda^2}} = 2P(1+4x)e^{4x} + BP(2+2t^2)e^{4x}$

2Pet [Bx2+Bx+1]

 $2fe^{4}[8i+6a+1] - 8\times 2f[a+2f]e^{4a} + 16fa^{-6a} \equiv 24e^{4a}$ $P_e^{\mu \chi} \left[\frac{1}{10^2 + 1} \frac{1}{10^2 + 1} - \frac{1}{10^2} - \frac{3}{20^2} + \frac{1}{100^2} \right] = 24e^{92}$

200

subject to the boundary conditions y = -1, $\frac{dy}{dx} = -4$ at x = 0, can be written as

proof

 $2Pe^{\frac{4}{P}} \equiv 24e^{\frac{4}{2}}$

HPPO/ LONDITION)S

2=0, y=-1 -) (-1 = A

 $\begin{array}{c} \Im = 0_1 & \bigoplus_{k=1}^{d_k} = -4 = B \\ & \Longrightarrow -4 = B \\ & \Rightarrow -4 = B \\ & \Rightarrow B = 0 \end{array}$

y= (122-1)

 $\begin{array}{c} \mathcal{J}_{(\alpha k)} & y = \mathcal{J}_{e}^{(\alpha k)} + B_{2} e^{(\alpha k)} + |2, \hat{\mathcal{I}}_{e}^{(\beta k)} \\ & (y = (\mathcal{J}_{e} + \mathcal{B}_{2} + |2)^{2}) e^{4\lambda^{2}} \end{array}$

 $\frac{dy}{d\lambda} = (B+24\lambda)e^{44}+4(A+B_{\lambda}+12\lambda^2)e^{44}$

COM

1.G.D.

14

./

COM

The s

2017

P.C.A

Question 17 (***)

I.G.B.

 $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 4e^{3x}.$

- **a**) Find a solution of the differential equation given that y = 1, $\frac{dy}{dx} = 0$ at x = 0.
- **b**) Sketch the graph of *y*.

The sketch must include ...

- the coordinates of any points where the graph meets the coordinate axes.
- the coordinates of any stationary points of the curve.
- clear indications of how the graph looks for large positive or negative values of x.

 $y = e^{3x}$

 $2x^2$

nana

(***+) **Question 18**

F.C.B.

I.G.B.

The curve with equation y = f(x) is the solution of the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 8\sin 2x.$$

The first two non zero terms in Maclaurin series expansion of f(x) are $x + kx^2$, where k is a constant.

Determine in any order the value of k and the exact value of $f\left(\frac{1}{4}\pi\right)$.

- (48+14+182)e2- 1600

40= 24+8 44=48+44-4

THE CONFLUENTSTACY FUN $(\lambda^2 - d\lambda + 4) = (\lambda - 2)^2 = 0$ $g = y_0 + xy'_0 + \frac{1}{2}y'_0 x^2 + ...$: C.F = (A+B) e2 $\begin{array}{l} y = (A+1) + (2A+B)a + \frac{1}{2}(4A+4B-4)a^{2} \\ y = 0 + a + ka^{2} \end{array}$ gootat AR INTEGRAL BY INSTECTION OR 3 -OMEDATOR 1 = Psin2x + Qcoc22 k = 24 + 28 - 2k = -2 + 6 - 2= 29cos21 - 29sn25 + 8 = 1 ₿ = 3 $\hat{\boldsymbol{y}} = \frac{1}{b^2 + 4b^2 + 4} \left\{ 8 \sin(2s) \right\} = \frac{1}{-4 - 4b^2 + 4} \left\{ \sin(2s) \right\}$ k= 2 y"- -4750424 - 44866224 $= -\frac{2}{D} \sum Sin_2 \lambda_2^2 = -2 \int Sin_2 \lambda_1 d\lambda_2$ dà. = - 4Pana - 40000 $y = f(x) = (3x-1)e^{2x} + \cos 2x$ $f(\frac{\pi}{2}) = (\frac{\pi}{2}-1)e^{\frac{\pi}{2}} + \cos 2x$ $f(\frac{\pi}{4}) = \frac{\pi}{4}(3n-4)e^{\frac{\pi}{2}}$ -40 = 89542 -8Pasza 4BSMA + 49 0 Q= ALTORNATUR $\underbrace{g_{\pm}(4+Bx)e^{2k}}_{2} + \log 2k = (4+Bx)(1+2k+2k^{2}+...) + (1-2k^{2}+...)$ = (ATOA) (...)= $A + 2A_{3} + 2A_{3}^{2}$ $B_{3} + 2B_{3}^{2}$ $(- 2x^{2})$ (A+Ba) 22+ 6052a they y'= Be +2(A+B2)e - 20112 = (A+1) + (24+8)2+ (24+28-2)22 + -y" = 282" + 282" + 4(+ ta)2"

k=2,

 $f\left(\frac{1}{4}\pi\right) = \frac{1}{2}(3\pi - 4)e^{\frac{1}{2}\pi}$

• ++1=0 • 2++8=1 • 2++28-2= 4P-1 -2+8=1 -2+6-2= B=8 K=2

erc erc erc

-246-2=k K=2,

. C.P.

ma

Question 19 (***+)

K.C.A

I.C.B.

The function y = f(x) satisfies the following differential equation

 $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 2e^{-x}(\sin 2x - 2\cos 2x),$

proof

4P+4Q=2 $3 \Rightarrow BP+BQ=1$ $3 \Rightarrow Q=0$ $4P=\frac{1}{2}$ -BP+2Q=-4 $3 \Rightarrow Q=0$ $4P=\frac{1}{2}$

=) = (Be-fe)sura+ (Be+fe)(2002)

A REQUIENC

i C.B.

ma

∴ 2 = (B++)×2

B= 1/2

9= e2 (Acasa+Banza) + z=25mza

-> y = Bezsinza + tezsinza

 $\rightarrow y = (Be^2 + \frac{1}{2}e^2)$ anza

 $y = \cos \ln x \sin 2x$

-> 0= 4

subject to the boundary conditions y = 0, $\frac{dy}{dx} = 2$ at x = 0.

Solve the differential equation to show that

 $y = \cosh x \sinh 2x$.

No credit will be given for verification methods.

Created by T. Madas 2ND ORDER or HIGHER CAUCHY EULER TYPE

Question 1 (**)

Find the general solution of the following differential equation.

K.C.

 $4t^{2}\frac{d^{2}x}{dt^{2}} + 4t\frac{dx}{dt} - x = 0.$

$4t^2\frac{d^2x}{dt^2} + 4t\frac{dx}{dt} - 2 = 0$

The 4 sources of the belt $x = t^{4}$, where is a source) is at fixed $\frac{dx}{dt} = vt^{4t''}$ $\frac{dx}{dt} = vt^{4t''}$ $\frac{dx}{dt} = b(x)t^{4t''}$ $\frac{dx}{dt} = b(x)t^{4t''}$ $\frac{dx}{dt} = b(x)t^{4t''}$

Question 2 (**+)

I.C.B.

Find the general solution of the following differential equation.

2

 $4t^2\frac{d^2y}{dt^2} + 4t\frac{dy}{dt} + y = 0.$

 $y = P\cos\left|\ln\sqrt{t}\right| + P\sin\left|\ln\sqrt{t}\right|$

$4t^{2}d^{2}_{4} + 4t^{2}_{4} + 9 = 0$

ice) of the fact $\underline{y} = t^{y}$ $\frac{dy}{dt} = nt^{y-1}$ $\frac{d^{2}y}{dt^{2}y} = u(u-1)t^{y-2}$ N.

- SUB IND THE O.D.E $\Rightarrow 4t^{2} \left[h(h-1)t^{n-2} \right] + 4t \left[ht^{n-1} \right] + t^{n} = 0$ $\Rightarrow \left[4n(h-1) + 4n + 1 \right] t^{n} = 0$
- $\Rightarrow \left[4\eta^{2} 4\pi + 4\eta + 1\right] t^{*} = 0$
- ⇒ +n+1= ⇒ n=±\$

 - $y = A e^{\ln(t^{\pm i})} + B e^{\ln(t^{\pm i})}$ $y = A e^{-iht^{\pm}} + B e^{-iht^{\pm}}$
 - $\begin{array}{l} y = A \cos \left(\ln t^{\frac{1}{2}} \right) + A \sin \left(\ln t^{\frac{1}{2}} \right) \\ B \cos \left(\ln t^{\frac{1}{2}} \right) + B \sin \left(\ln t^{\frac{1}{2}} \right) \end{array}$
 - $B \cos Ght^{\pm}) + Bsm(-ht^{\pm})$ $Y = (A+B) \cos[nt^{\pm}] + [A-B] sm[ht^{\pm}]$
 - $\begin{array}{l} y = (\gamma + \beta) \cos(n \cdot \underline{t}^{2} + [\underline{A} \underline{B}] \sin[\ln \underline{t}^{2}] \\ \\ y = P \cos(\ln \sqrt{t}) + Q \sin(\ln \sqrt{t}) \end{array}$

ing.

I.F.G.B.

17202

Question 3 (***)

I.C.B. Mal

2115.C

I.V.G.B.

 $x^{2}\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} - 4y = 9x^{8}.$

Determine the solution of the above differential equation subject to the boundary conditions

Created by T. Madas

K.C.

(***) **Question 4**

nn

aths Com

I.V.C.P

I.F.C.P.

Find the general solution of the following differential equation

nadasmaths.com

I.G.B.

I.C.B.

I.V.G.B.

27

C.P.

in,

Ś

1+

./

211201

nn

Created by T. Madas

2017

Question 5 (***+)

Given that if $x = e^t$ and y = f(x), show clearly that ...

a) ...
$$x \frac{dy}{dx} = \frac{dy}{dt}$$
.

I.G.B.

I.G.B.

b) ... $x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}$.

The following differential equation is to be solved

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2\ln x$$

subject to the boundary conditions $y = \frac{1}{2}, \frac{dy}{dx} = \frac{3}{2}$ at x = 1.

R.

c) Use the substitution $x = e^t$ to solve the above differential equation.

.G.B.

mada

I.G.p.

N.C.S.

madas,

Question 6 (***+)

y = 4, $\frac{dy}{dx} = 20$ at x = 0.

K.C.B. Madasm

Maths.com

I.V.G.p

I.C.B.

è

 $x^{3}\frac{d^{2}y}{dx^{2}} - 2x^{2}\frac{dy}{dx} - 4xy = 5.$

Find the solution of the above differential equation subject to the boundary conditions

nadas

 $\frac{1}{x}(1+\ln x)$ $y = 5x^4 -$ 23 dr - 22 du - 424 1=0, y=4, $\frac{dy}{dx}=2$ y = x" y'= nx"" y"= n(4-1) $2^{2} \frac{d^{2}y}{dt^{2}} - 2x \frac{dy}{dt} - 4y = \frac{5}{2}$ $h(u-i)x^{n-2} - 2x [vx^{n-1}]$

The CO

 $= -\frac{P}{\chi^{3}} \left[2 - 2h\chi + 1 \right]$ $= \frac{P}{\chi^{3}} \left[2h\chi - 3 \right]$ no THE O.D.E $2^{2} \left[\frac{p}{33} (2lux-3) \right] = 2x \left[\frac{p}{32} (l-lux) \right] = 4 \left[\frac{p}{2} lux \right] = \frac{5}{2}$ £ [24/2-3-2+21/2-4/2]= 5 y= Ax + B - 1/102 SA = 2SA = SB = -170=4A-B-1) u = sx4 - + (1+lnx)

The Com

I.F.G.B.

Created by T. Madas

COM

KCA

(***+) **Question 7**

Find the general solution of the following differential equation.

Question 8 (***+)

K.G.B. Madasm

I.C.B.

The curve with equation y = f(x) satisfies

$$x^{2}\frac{d^{2}y}{dx^{2}} + 5x\frac{dy}{dx} + 13y = 0, \ x > 0$$

By using the substitution $x = e^{t}$, or otherwise, determine an equation for y = f(x),

given further that y = 1 and $\frac{dy}{dx} = -2$ at x = 1.

20

I.C.B.

COM

 $\cos(3\ln x)$

Ś

Inadasn

Created by T. Madas

2017

R.

Question 9 (***+)

F.G.B.

I.C.P.

ma

 $x^{2} \frac{d^{2} y}{dx^{2}} - 8x \frac{dy}{dx} + 9y = 0, \ x > 0.$

Use the fact that $y = Ax^{\frac{3}{2}}$ satisfies the above differential equation, to find the full solution subject to y = A and $\frac{dy}{dy} = 10$ at x = 1

solution subject to y = 4 and $\frac{dy}{dx} = 10$ at x = 1.

Con

 $y = 4x^{\frac{3}{2}}(1+\ln x)$

F.G.P.

mana

Created by T. Madas

2

ing,

Question 10 (****)

Find the general solution of the following differential equation.

Com $x^{3}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 2x, \quad x > 0.$ I.F.G.B. 14], $y = Ax + B\cos(\ln x) + C\sin(\ln x) + x\ln x$ (LOOKING AT THE LEAS OF THE O.D.E WE The PARTICULAR INHEREN, BY INSPECTION, WE TRY y- Palus THE FORM y= Paclina 4= 2 du = P + Pho $\frac{d^2 g}{d \lambda^2} = \frac{P}{x}$ 1 = 2(1-1)x $\frac{d^2 y}{d\chi^2} = -\frac{P}{\chi^2}$ SUB WAS THE O.D.E GIVES SUBSTITUE INTO THE O.D.E (D.H.S = 0) -Pa + 2Pa + Pa + Patha $(y-1)(y-5)x_{y} + 5y(y-1)x_{y} + yx_{y} - x_{y} = 0$ $p \chi^{\lambda} \left(\lambda (\lambda - 1) (\lambda - 2) + 2\lambda (\lambda - 1) + \lambda - 1 \right] = 0$ (x-1) [x(1-2) +22 21 KNONTWOR JAMINGO HAT DOWN @ $(n-1)(\lambda^2+1)=0$ y = xx + bcos(lux) + y sig(lax) + alux $y = \in :$ 4= Aa' + Ba + Ca MOW NOTE THAT Ba+Cai = Behait Cehai = Beilma + Ceilma $= B\left[(cs(hx)+i \ sm(hx)\right] + \left[C \ cos(hx)-i \ sm(hx)\right]$ $= (B+c) \cos(ln\alpha) + i(B-c) \sin(ln\alpha)$.Y.G.B. = D caslinx) + E sin(hix) I.Y.G.B. Mada 1 F.G.B. 112020 Maths.com 27 2017 2017 1. V. G.B. I.V.C.B. Madash I.F.G.B. Created by T. Madas

(****) **Question 11**

Use variation of parameters to determine the specific solution of the following differential equation

 $x^{2}\frac{d^{2}y}{dx^{2}} - 7x\frac{dy}{dx} + 16y = 16\ln x,$

given further that $y = \frac{1}{2}$, $\frac{dy}{dx} = 2$ at x = 1.

 $\int_{-\infty}^{\infty} \frac{dy}{dx^2} - 7x \frac{dy}{dx} + 16y = 16 \ln x$ ASSUME SOUTION OF THE 22 a g= 2(2-1)x22 9- $\Rightarrow y' = \partial x^{\lambda - i}$ SUB IND THE O.D.E 2(2-1)2 - 7222 + 162 (22-2-7)+16)22=0 $\beta^2 - B\beta + 16 = 0$ y= A24 + 824 lux A=4 CREE PARTICULAR INSTRA. BY WARLAND ON OF PARAMETROS

(2) dry - Tr dy + 16y = 16m2 (a(x)=2²) e1 = 34 $e_2 = x^4 \ln x$

tilha +23

7_ 127/4-

.K.C.

I.F.G.B.

THE METROCAR INTHERAL II GIVEN BY
$$\begin{split} & (\beta_{b}=-c)\left(-\frac{\alpha_{b}}{\alpha_{b}}\right)\frac{x_{b}}{\alpha_{b}}dx + c^{2}\left(\beta_{b}-\frac{\alpha_{b}}{\alpha_{b}}\right)\frac{x_{b}}{\alpha_{b}}\frac{x_{b}}{\alpha_{b}}dx \\ & (\beta_{b}=-c)\left(-\frac{\alpha_{b}}{\alpha_{b}}\right)\frac{x_{b}}{\alpha_{b}}dx + c^{2}\left(-\frac{\alpha_{b}}{\alpha_{b}}\right)\frac{x_{b}}{\alpha_{b}}\frac{x_{b}}{\alpha_{b}}\frac{x_{b}}{\alpha_{b}}dx \end{split}$$
 $\bigcup_{\frac{n}{2}} = -\chi^{4} \int \frac{l6(\ln \chi)^{2}}{\chi^{4}} dx + \chi^{4} \ln \chi \int \frac{l6\ln \chi}{\chi^{4}} dx$ 🤣 GAGH BY PARTS

 $\frac{\left(\lfloor n_{X} \rfloor\right)^{2}}{\lfloor \frac{1}{2} \left(2n_{X} \right)^{2}} \left(\frac{\left(2n_{X} \right)^{2}}{16 \chi^{-2}}\right)}$

Inx ± -2ā⁺ 8x^{-s} Inc

-4x⁻⁴ (6x⁻⁵

- $\int 16\pi^{5}(\ln x)^{2} dx$ $= \int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \int_{-\frac{14}{3}} \int_{-\frac{14}{3}} \left(\int_{-\frac{14}{3}} \int_{-\frac$ BY PARTS AFRAN
- $= -\frac{4}{2t} \left(\ln x \right)^2 \frac{2}{2t} \ln x + \int 2x^4 dx$ $= -\frac{4}{36} (lmx)^2 - \frac{2}{34} lmx - \frac{1}{2} \sqrt{4}$
- [162-5/(m2) de
- $= -\frac{\mu}{2\pi} |N_{\lambda} + \int 4\chi^{-1} d\chi$ $= -\frac{4}{2^4} \ln 2 - 2^4$
- $\therefore \underbrace{\mathbb{Y}}_{p} = -\underline{x}^{4} \left[\underbrace{\mathbb{H}}_{xe} \underbrace{\mathbb{I}}_{nx} \underbrace{\mathbb{Y}}_{2e} \underbrace{\mathbb{I}}_{nx} \underbrace{\mathbb{I}}_{2e} \underbrace{\mathbb{I}}_{nx} \underbrace{\mathbb{I}}_{nx}$ 2/1x + 12 - 4(mx)2 - In:

 $y = \frac{1}{2} + (1 + x^4) \ln x$

I.F.G.B.

Mana,

24

2

- $\frac{1}{2} = A + \frac{1}{2} \implies A=0$
- $y = Ba^4 \ln x + \ln x + \frac{1}{2}$ $\frac{du_1}{d\chi} = 4B\chi^3 h\chi + B\chi^3 + \frac{1}{3c}$
- @ APPLY LONDITTON 2=1 du = 2 2= B+1
- B=1 : y= 24/m2 + 1m2 + 1/2
- $y = \frac{1}{2} + (x^4 + 1) \ln x$

vasinains.com Created by T. Madas

2ND ORDER 6 WITH MISSING COM INCOMINATION IN A COMPANY OF A COMPANY O T.Y.C.B. Madasmanni I.Y.C.B. Ma Jr. I.Y.C.B. Malasmanis Com I.Y.C.B. Managen

3SM aths.com

Question 1 (****+)

I.C.P.

I.C.p

The curve *C*, has gradient $\frac{2}{9}$ at the point with coordinates $\left(\ln 2, \frac{2}{3}\right)$, and satisfies the differential relationship

$$\frac{d^2y}{dx^2} = (1-2y)\frac{dy}{dx}, \quad y < \frac{1}{2}.$$

Find an equation for C, giving the answer in the form y = f(x).

Created by T. Madas

10

I.F.G.p.

(****) **Question 2**

Use appropriate techniques to solve the following differential equation.

Created by T. Madas

.

Question 3 (****+)

E.

. F.G.B.

The curve C, has a stationary point at (0,2) and satisfies the differential relationship

a) Given further that $\frac{dy}{dx} \ge 0$ along C, determine a simplified expression for the Cartesian equation of C.

 $y^2 - x^2 =$

F.C.P.

ng

b) Verify by differentiation the answer to part (**a**).

Question 4 (****+)

R,

I.C.B.

The curve C, has a stationary point at (0,4) and satisfies the differential equation

- a) Given further that $\frac{dy}{dx} \ge 0$ along *C*, determine a simplified expression for the Cartesian equation of *C*, giving the answer in the form x = f(y).
- b) Verify by differentiation the answer to part (a).

$\frac{d\tilde{g}}{dt^2} = \frac{2}{\sqrt{2}} \text{STATIONARY REALT AT (0,4) } \frac{dy}{dx} \ge 0$
doz du Cince the unique time in manes)
$\overrightarrow{qb} = \overrightarrow{qd} \left(\overrightarrow{qa} \right) = \overrightarrow{qc}_{a} \overrightarrow{qa} = \overrightarrow{qc}_{a} \overrightarrow{qa} \times \overrightarrow{b}$
$\frac{q\bar{d}_2}{q\bar{d}_2} = b \frac{q\bar{d}}{q\bar{d}_2}$
Thus $P \frac{dP}{dy} = \frac{2}{9^2}$ $\begin{pmatrix} y = 4 \text{ list}_{10} \\ y = 8 \text{ cold} \text{ Barther div} \end{pmatrix}$
$\Rightarrow \int p dp = \int \frac{2}{y^2} dy$ $\Rightarrow \int t^2 = -\frac{2}{y} + C$ $\Rightarrow \int \sqrt{\frac{4\omega}{4\omega}} \frac{\partial p}{\partial t} = \int 1 dt$
$\Rightarrow P^{2}_{=} \subset -\frac{1}{2} \qquad \Big\} \Rightarrow \int (\frac{2i\alpha dy}{2\pi y dy}) (\theta \alpha dy \theta \alpha dy) d\theta = \int I dy$
$ \Rightarrow \left(\frac{da}{dx}\right)^2 = C - \frac{d}{y} \qquad \qquad$
$\begin{cases} y = 4 dx = 0 \\ 0 = c - \frac{4}{3} \end{cases} \xrightarrow{(a)} \qquad \qquad$
$\begin{array}{c} (1) & (1-1) \\ \hline \\ $
$ = \frac{\partial H}{\partial t} = \frac{1 - \frac{H}{2}}{2} $ (ash $\theta = \frac{\sqrt{2}}{2}$ such $\theta = \sqrt{\frac{2}{2} - 1}$
$\Rightarrow \begin{pmatrix} \frac{1}{2}u \\ \frac{1}{$
$ = \int_{\sqrt{\frac{4}{y-4}}} dy = \int_{1} dx $

 $\alpha = 4 \operatorname{arcash}\left(\frac{4}{2}\right) + \sqrt{9^2 - 49}$ h(+++++(y2-44) = $\frac{d\alpha}{dy} = \mathcal{H} \times \frac{1}{\sqrt{\frac{\alpha}{2}-1}} \times \frac{1}{\sqrt{\frac{\alpha}{2}+1}} + \frac{1}{2} \left(g^2 - \frac{1}{2} \right)^2 \left(2g - 4 \right)$ $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\sqrt{9}^{1}\sqrt{\frac{y-4}{4}}} + \frac{y-2}{(9^{\frac{2}{4}}4y)^{\frac{1}{2}}}$ $\frac{\mathrm{d}z}{\mathrm{d}y} = \frac{1}{\sqrt{y^2 \cdot \omega_0}} + \frac{y - 2}{\sqrt{y^2 \cdot \psi_0}} = \frac{2}{\sqrt{y^2 \cdot \omega_0}} + \frac{y - 2}{\sqrt{y^2 \cdot \psi_0}} = \frac{4}{\sqrt{y^2 \cdot \psi_0}}$ $\frac{\mathrm{d} g}{\mathrm{d} x} = \frac{\sqrt{y^2 - q_y}}{y} = \frac{g^{-1} \left(g^2 - 4 y \right)^{\frac{1}{2}}}{y} = \frac{g^{-1} \times g^{1} \times \left(1 - 4 y^{-1} \right)^{\frac{1}{2}}}{y} = \left(1 - \frac{4}{y} \right)^{\frac{1}{2}}$ $\frac{d\hat{g}}{dx^{2}} = \frac{d}{dx}\left(\left(1 - \frac{u}{s}\right)^{\frac{1}{2}}\right) = -\frac{1}{2}\left(1 - \frac{u}{s}\right)^{-\frac{1}{2}} + \frac{u}{y^{2}} \times \frac{du}{dx} = -\frac{2}{y^{2}}\left(1 - \frac{u}{y}\right)^{\frac{1}{2}} \frac{du}{dx}$ Rot dy (1-4)2 $\frac{d^2 y}{d t^2} = \frac{2}{q^2} \left(1 - \frac{4}{y}\right)^{-\frac{1}{2}} \left(1 - \frac{4}{y}\right)^{\frac{1}{2}}$ 3 =

 $+\sqrt{y^2-4y}$

C.B.

 $x = 4 \operatorname{arcosh}\left(\frac{1}{2}\sqrt{y}\right)$

Question 5 (****+)

2

12

The curve C with Cartesian equation f(x, y) = 0, satisfies the differential equation

$$(1-y)y'' = (2-y)(y')^2$$

It is further given that y(0) = 0 and y'(0) = 1

- a) Determine a simplified expression for the Cartesian equation of C.
- **b**) Verify by differentiation the answer to part (**a**).

 $\left(1-\frac{y}{dx^2}\right)\frac{d^2y}{dx^2} = \left(2-y\right)\left(\frac{dy}{dx}\right)^2$ APPLY CONDITION 2=0, y=0, dy=1 200, 900 = D=0 SINCE THE DROWDAR ". x= yet or zet= g SUBATIONICAL $\frac{dy}{da} = P$ DIFF a= ye wer y 6 $\frac{d}{dy}\left(\frac{dy}{dx}\right) = \frac{dp}{dy}$ $\frac{dx}{dy} = 1xe^{-y} + y(-e^{-y})$ $=\frac{d^3y}{dx^2}\frac{dx}{dy}=\frac{dp}{dy}$ $\frac{dx}{dy} = \hat{e}^{y} - y e^{y}$ in the state of th $\frac{dx}{dy} = e^{-3}(1-y)$ वैभ = १ वर्ष $\frac{dy}{dx} = \frac{e^y}{1-y}$ • (1-y) p dp = (2-y) p2 $1 = \frac{A}{1} \circ 2 = 1$ Hus $P = \frac{e^{y}}{1-y}$ $\frac{dy}{dx} = \frac{e^{y}}{1-y}$ $\left\{ \begin{pmatrix} 1-y \end{pmatrix} \frac{dy}{dx} = e^y \right\}$ → (1-y) dg = (2-y) p $\Rightarrow \frac{1}{p} dp = \frac{2-y}{1-y} dy$ DIFF WET 7. $\Rightarrow \int ((-y) \tilde{e}^y dy = \int I dx$ $-\frac{du}{dx} \times \frac{du}{dx} + (1-y)\frac{dy}{dx} = \underbrace{e}_{t} \frac{du}{dx}$ $\frac{1}{p} dp = \frac{1+(1-y)}{1-y} dy$ t BY DARTS $\frac{1}{p} dp = \int \frac{1}{1-y} + 1 dy$ 1-y -1 -e-y e-y $(1-y) \frac{d^2y}{d\chi_2} = (1-y) \left(\frac{dy}{d\chi}\right)^2 + \left(\frac{dy}{d\chi}\right)^2$ \implies h[p] = -h[1-y] + y + C(1-4)= - (= y dy $P = e^{y - \ln |1 - y|_{+}C}$ x+D $\begin{pmatrix} I-y \\ d\bar{y} \\ d\bar{\chi}^2 \\ d\bar{\chi}^2 \\ = (2-y) \begin{pmatrix} \bar{y} \\ d\bar{\chi} \\ d\bar{\chi} \\ \end{pmatrix}^2$ = x+D $P = \frac{Ae^4}{1-9} \left(Are^{c}\right)$ 45 BL-PUIRED a + x =499% CONDITION yeo, P=du

 $x = y e^{-y}$

5

(*****) **Question 6**

Y.G.B. May

I.C.B

The function with equation y = f(x) satisfies the differential equation

 $\frac{d^2 y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 = 2y \ln 3, \quad y(0) = 1, \quad \frac{dy}{dx}(0) = 2\ln 3.$

3

proof

 $\left(\frac{p}{r}\right)^{2} = (4\ln 3)(\ln 4) + C$ ² = (4613)(y²hry) + Cy² y = 1 $\frac{dy}{dx} = p = 2\ln 3$ => (2143)2= (4143)xT2xT41 + Cx12

 $A + x^{\frac{1}{2}}(\mathcal{E} d) = U^{\frac{1}{2}} U^{\frac{1}{2}}$

Juz + h3 (2+1) J M3

AS BEDOVEN

Ĉ.

12/12

 $\Rightarrow \sqrt{\sqrt{3}} = 0\sqrt{\sqrt{3}} + 3$ -> B = b13

SINCE THE LAKT TRANSFORMATION US

Solve the above differential equation to show that $y = 3^{x^2+2x}$.

	107	- 22	200
	WILLIAM SHARE SAUCHARDEN HAT 24 , STUTTEBUS HIT-SURS	I	→ V= (dlw3)(lwg) + C
	$p = \frac{du}{dx} \longrightarrow \frac{de}{dy} \approx \frac{d}{dy} \left(\frac{du}{dx} \right) = \frac{d^2y}{dx^2} \times \frac{du}{dy}$		-HIPPY LOUDOTIONS ONCE THE LART TRANSFORMAT
	$\Rightarrow \frac{dy}{dy} = \frac{dy}{dy} \times \frac{1}{p}$		$\implies \left(\frac{p}{b_1}\right)^{2} = (4b_13)(b_1y) + C$
2	$\begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & $		$\Rightarrow p^2 = (4h3)(y^2hy) + Cy^2$
2			a=o, y=i, dy=p=2m
	TRANSFORMAND THE O.D.C. $\rightarrow \frac{\partial Q_0}{\partial z_0^2} - \frac{1}{4} \left(\frac{\partial Q_0}{\partial z_0^2} \right)^2 = \frac{2q}{q_0} \ln s$		$\implies (243)^2 = (413) \times 7^2 \times 10^{-10}$
Col 2 h			⇒ C= 4(43)2
116	$\implies p \frac{dp}{dy} - \frac{1}{y}p^2 = \frac{2y}{y}\ln 3$		\rightarrow $P^2 = (4ln3) y^2 lny + 4y^2 (ln3)^2$
	$\rightarrow \frac{dq}{dy} - \frac{r}{y} = \frac{2y}{p} k_3$		⇒ p² = 4y²hu3 [hny + bn3]
	USING FINDINGE EURATOTION V = +		$rac{dy}{dx} = \sqrt{4g^2 \ln 3 \ln 3g^2}$
Y	p= vy		-> du = 2y V hahay
	$\frac{dq}{dq} = \frac{db}{dq} + v$		$\Rightarrow \frac{dy}{dz} = zy (ws)^{\frac{1}{2}} (wsy)^{\frac{1}{2}}$
N	RASFORMING THE O.D.E FURTHER	Ģ	
<i>p</i> -	$\Rightarrow \left(y \frac{dy}{dy} + v \right) - v = \frac{2}{v} h3$		The second strategy and the second strategy and the second strategy and the second strategy and second str
	\Rightarrow 9 $\frac{ds}{ds} = \frac{2l_{N3}}{c}$		$\Rightarrow \int \frac{1}{\Im(\ln 3y)^{\frac{1}{2}}} dy = \int 2(\ln 3)^{\frac{1}{2}} dy$
	$\Rightarrow \int (v dv = (2\mu_3) \int \frac{1}{2} dy$		by substitution) of Ashere attin role recognitio
	$\implies \frac{1}{2}\sqrt{2} = (2\ln 3)(\ln q) + C$		$\Rightarrow \int \frac{1}{2} (h_{ij})^{\frac{1}{2}} dy = \frac{1}{2} (h_{ij})^{\frac{1}{2}} + \frac{1}{2}$
6 Y .	3.1 4.1.2.1.0	IĻ	
- (x · A			
514			$\rightarrow 2(\ln 3y)^{\pm} = 2(\ln 3)^{\pm} + A$
			-> √ h3y = 2√ h3 + B
	. S.A.		APPOR CONDITION) 2=0 y=1
_	n. 10		$\Rightarrow \sqrt{l_{H3}} = 0\sqrt{l_{H5}}^{2}$
	117 V.		-> B = lu3

Created by T. Madas

50,

Question 7 (*****)

I.C.B.

The curve with equation y = f(x) satisfies the differential equation

 $\frac{d^2y}{dx^2} = 6y^2 + 4y, \quad \frac{dy}{dx} \ge 0.$

If y = 3, $\frac{dy}{dx} = 12$ at $x = -\frac{1}{2} \ln 3$, solve the differential equation to show that

 $y = \operatorname{cosech}^2 x$.

proof

\$ APPLY THE LAST CONDITION

 $\sqrt{3+1} = \frac{1+\frac{1}{3}A}{1-\frac{1}{3}A}$

 $\lambda = \frac{3+A}{3-A}$

6-2A = 3+A

3 = 3A [A = 1]

 $\implies \sqrt{4+1} = \frac{e^{x} + e^{x}}{e^{x} - e^{x}}$

 $\Rightarrow \sqrt{y_{\pm 1}} = \frac{e^2 + e^2}{e^2 - e^2}$

⇒ √g+1 = - artha

 $= y + i = a d_{h,x}^2$

 $\Rightarrow y = \omega H_2 - ($

⇒ 9 = cosecha

What shi a

KOKES A

I.F.C.P.

m20

 $\iint \sqrt{y+i} = \frac{1+e^{2x}}{1-e^{2x}}$

y=3) $x=-\frac{1}{2}h3$ (i.e. $e^{2a}=\frac{1}{3}$)

No.

Question 8 (*****)

F.G.B.

I.C.P.

The curve with equation y = f(x) satisfies the differential equation

 $\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 8y.$

Given further that the curve has a stationary point at $(\frac{1}{2}, \frac{1}{4})$, solve the differential equation to show that

 $y = x^2 + x + \frac{1}{2}$.

 $\frac{dy}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 8y$ SURVERT TO 9= \$, dy =0, SAVE THE INDEPENDENT THEN IN MISSING (a) , LET $P = \frac{dy}{dx}$ The $\frac{dp}{dy} = \frac{d}{dy}(p) = \frac{d}{dy}(\frac{dq}{dx}) = \frac{d^2q}{dx^2} \times \frac{dx}{dy} = \frac{d^2q}{dx^2} \times \frac{1}{p}$ $\Rightarrow P \frac{dp}{du} + 2p^2 = 8y$ $\Rightarrow \frac{dP}{dy} + 2P = \frac{gy}{2}$ $\frac{dp}{dy} + 2p = Byp$ $I_{p} = E$ (p) $|_{(\delta F)} = \Xi = \frac{b_{-\ell-1}}{\ell} = b_S$ $2p\frac{dp}{dy} + 4p^2 = 16y$ l€ Z=p² $\frac{d_{12}}{dy} + 4z = 16y$ $\frac{dz}{dy} = 2p\frac{dp}{dy}$ INTRACATING FACTOR IS $e^{\int 4 dg} = e^{i y}$ $\Rightarrow \frac{d}{du} (ze^{4y}) = llye^{4y}$ (BY PHETS)

FGB.

M202

proof

Created by T. Madas

2

Question 9 (*****)

The curve with equation y = f(x) satisfies the differential equation

 $\frac{d^2 y}{dx^2} + e^{-y} = 0, \quad \frac{dy}{dx} \ge 0.$

If y = 0, $\frac{dy}{dx} = -1$ at $x = \frac{1}{2}\pi$, solve the differential equation to show that

 $y = \ln\left(1 - \cos x\right).$

proof

ne,

COM

COM

.Y.G.B.

- /
As the independent unrange (c) is inscribe the standard substitution $p = \frac{43}{32}$
$\Rightarrow \frac{d b}{d b} = \frac{d b}{d b} \left(\frac{d x}{d b} \right) = \frac{d t_0}{d t_0} \frac{d y}{d t_0} = \frac{d t_0}{d t_0} * \frac{1}{b}$
$\Rightarrow \frac{d_{1}^{2}}{dt^{2}} = p\frac{d_{2}}{ds}$ $\begin{cases} counter with the theorem with the theorem is the theorem with the theorem is theorem is the theorem is theorem is theorem is the theorem is t$
TRANSGEWING THE O.D.E
$ = \frac{d\eta}{du^2} + e^{-\theta} = 0 \qquad \left[u = \overline{v}_1, y = v, \frac{d\theta}{dt} = P = -1 \right] $
$\Rightarrow P \frac{dy}{dx} = -e^{-y} dy$
$\rightarrow \left[\frac{1}{2}p^{2}\right]_{-1}^{p} - \left[e^{-y}\right]_{0}^{y}$
$\Rightarrow \frac{1}{2} e^2 - \frac{1}{2} = e^{-9} - 1$
$\implies p^2 - 1 \qquad \approx 2^{-3} - 2$ $\implies p^2 = \frac{2}{p_3} - 1$
$\Rightarrow \left(\frac{dy}{dt}\right)^2 = \frac{2 - e^{\frac{y}{2}}}{e^{\frac{y}{2}}}$

1. V. Q. J.

ans.com

I.V.G.B

$\rightarrow \frac{dy}{dx} = \pm \frac{\sqrt{2-e^{y}}}{e^{\frac{1}{2}y}}$	са с. с. в с. с. ала с. а. с. а.
SPARATING CARCINELES - (FITTIN)	
$\implies \frac{e^{\frac{1}{2}}}{\sqrt{2-e^{\frac{3}{2}}}} dy = 1 dx$	
$\implies \int_{\frac{\pi}{2}}^{x} e^{\frac{1}{2}x} = \int_{0}^{y} \frac{e^{\frac{1}{2}y}}{\sqrt{2-e^{3}}}$	dy
ASING 4 TEBONOLITER, SUBSTITUTION	ON THE INTHOME IN THE R.H.C.
$e^{\frac{1}{2}} = 2s_0^2 \theta \qquad \left[e^{\frac{1}{2}s} = \sqrt{2} s_0 \right] s_0^2$	$\rightarrow \underline{oe} \theta = \operatorname{arcsm}\left(\frac{e^{\frac{1}{2}a}}{e^{\frac{1}{2}a}}\right)$
→ e ^y dy - 45m0kas()d0	
$\rightarrow dy = \frac{4s_{M}\theta \cos \theta}{e^{y}} d\theta = \frac{4}{e^{y}}$	$\frac{1}{2} \frac{1}{2} \frac{1}$

```
<u>no</u> de
(쁥)
```


20

Question 10 (*****)

Y.C.

I.V.G.B

The curve C, has gradient 1 at the origin and satisfies the differential relationship

$$\frac{d^2y}{dx^2}\sqrt{1-2y} = \frac{dy}{dx}(3y-2), \quad y < \infty$$

Find an equation for C, giving the answer in the form y = f(x).

AL

Question 11 (*****)

The curve *C*, has gradient $\frac{1}{8}$ at the point with coordinates $(1,\frac{1}{2})$ and further satisfies the differential relationship

 $2y^2 \frac{d^2 y}{dx^2} + (2y+1)(y-1)^2 \frac{dy}{dx} = 0, \quad y \neq 0.$

5

Find an equation for C, giving the answer in the form y = f(x).

2ND ORDER TASIDAR SUL SUL INGR. HARASHARSON I. Y.C.R. MARAN

Question 1 (***)

F.G.B.

I.C.P.

$$2y\frac{d^2y}{dx^2} - 8y\frac{dy}{dx} + 16y^2 = \left(\frac{dy}{dx}\right)^2, \ y \neq 0$$

Find the general solution of the above differential equation by using the transformation equation $t = \sqrt{y}$.

Give the answer in the form y = f(x).

 $y = \left(Ae^{2x} + Bxe^{2x}\right)^2$

 ● An(UAP) (20170) ● An(UAP) (20170) ● An(UAP) (20170) 	$\left\{\begin{array}{c} t_{a}=y_{a}^{a}\\ t_{a}^{b}=y\\ \hline t_{a}^{b}=y\\ \hline t_{a}^{b}=y\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}+2t\frac{dy}{dt}\\ \hline t_{a}^{b}=2t\frac{dy}{dt}+2td$
$\gamma_{-}\tau\gamma_{+} + \tau = 0$ $(\gamma_{-}\tau)_{-}^{2} = 0$ $\gamma_{-}\tau\gamma_{+} + \tau = 0$	
$\begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	

i C.B.

Madasn,

Question 2 (***) The differential equation

C.P.

2

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 3x, \ x \neq 0$$

is to be solved subject to the boundary conditions $y = \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$ at x = 1.

a) Show that the substitution $v = \frac{dy}{dx}$, transforms the above differential equation into

 $\frac{dv}{dx} + \frac{2v}{x}$

9)	$\frac{\partial t}{\partial x} \frac{\partial^2 y}{\partial x} + 2 \frac{\partial y}{\partial x} = 32$
	$x \frac{dy}{dx} + 2y = 3x$ $\left\{ \begin{array}{c} \frac{dy}{dx} = \frac{d^2y}{dx^2} \\ \frac{dx}{dx} = \frac{d^2y}{dx^2} \end{array} \right\}$
	$\frac{dv}{dx} + \frac{2v}{x} = 3$
þ	
	$\frac{dv}{dx} = -\frac{2v}{x}$
	$\int \frac{1}{V} dV = \int -\frac{2}{3} dx \langle \qquad P + \frac{2}{3} (R) \equiv 3$
	w v = -2 w x +c P + 2P = -3 P + 1 = 1
	$ W_1(y) = W_1(\frac{y_2}{y_2}) $
	$V = \frac{A}{\alpha^2}$
	$V = \frac{1}{2L^2} + \infty$ (or to it by interfactor)
	$\rightarrow \frac{dy}{dx} = \frac{A}{x^2} + .2$
	$\implies g = -\frac{A}{2t} + \frac{1}{2}a^2 + B$
	• $\forall W' = 0.00000 = 1$, $\frac{du}{dt} = \frac{1}{2} \Rightarrow \frac{1}{2} = \frac{1}{1} + 1$ $\Rightarrow [\underline{t} = -\frac{1}{2}]$
	• Here condition $x=1$, $y=\frac{3}{2}$ $\implies \frac{3}{2}=\frac{1}{2}+\frac{1}{2}+B$ $\implies B=\frac{1}{2}$
	$\therefore y = \frac{1}{2} + \frac{1}{2}x^2 + \frac{1}{2x}$
	$y = \frac{1}{22k} \left(1 + \alpha + \alpha^3 \right)$
	$y = \frac{1}{2} + \frac{1}{2}x^2 + \frac{1}{2x}$

Question 3 (***)

KQ,

K.C.

The curve C has equation y = f(x) and satisfies the differential equation

 $x^{2}\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} - 2y(2x^{2} - 1) = 3x^{3}e^{x}, x \neq 0$

is to be solved subject to the boundary conditions $y = \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$ at x = 1.

a) Show that the substitution y = xv, where v is a function of x transforms the above differential equation into

 $\frac{d^2v}{dx^2} - 4v = 3e^x.$

It is further given that C meets the x axis at $x = \ln 2$ and has a finite value for y as x gets infinitely negatively large.

b) Express the equation of *C* in the form y = f(x).

 $y = \frac{1}{2}xe^{2x} - xe^x$

$\frac{1}{2}\frac{d^2y}{dx^2} - 2\pi \frac{dy}{dx} - 2y(2\pi^2 - 1) = 3\pi^2 e^{2\pi}$	y= ava
USULO THE SUBSTITUTION	$\frac{dy}{dx} = V + ad$
$\mathfrak{A} \begin{bmatrix} a \frac{d \hat{v}}{d x} + 2 \frac{\delta u}{d x} \end{bmatrix} - 2 \mathfrak{a} \left[v + a \frac{\delta u}{d y} \right] - 2 \mathfrak{v} \mathfrak{a} \left(2 x^2 - 1 \right) = 3 \mathfrak{a} \frac{\delta u}{d x}$	$\frac{d\hat{g}}{d\hat{u}^2} = \frac{dv}{d\hat{x}} + \frac{d\hat{u}}{d\hat{x}} +$
23 BL 422 0 2020 103. 200 - 3202	da da

2 dy - 42	1 = 32 ² e ²	t.
d²v Iu		

trainary spuation	-PARTICULAR WOLGRAC
$\lambda_{5}^{2} - \mu = 0$ $\lambda_{5}^{2} - \mu = 0$	They $V = Pe^{X}$ $\frac{dY}{dt^{2}} = Pe^{X}$ sub into the op. $Pe^{X} = 4Pe^{X} = 3e$
	P- 4P= 3

 $\begin{array}{l} & \underbrace{\operatorname{Grades}}_{V=4} \underbrace{\operatorname{Grades}}_{A=2} e^{\lambda} \\ & \underbrace{\operatorname{Grades}}_{A=2} \underbrace{\operatorname{Grades}}_{A=2} e^{\lambda} e^{\lambda} \\ & \underbrace{\operatorname{Grades}}_{A=2} \underbrace{\operatorname{Grades}}_{A=2} \underbrace{\operatorname{Grades}}_{A=2} \underbrace{\operatorname{Grades}}_{A=2} \\ & \underbrace{\operatorname{Grades}}_{A=2} \underbrace{\operatorname{Grades}}$

 $\therefore y = \frac{1}{2}xe^{2x} - xe^{x}$

Question 4 (***+)

F.G.B.

I.C.P.

The differential equation

$$(x^{3}+1)\frac{d^{2}y}{dx^{2}}-3x^{2}\frac{dy}{dx}=2-4x^{3}$$

is to be solved subject to the boundary conditions y = 0, $\frac{dy}{dx} = 4$ at x = 0.

Use the substitution $u = \frac{dy}{dx} - 2x$, where *u* is a function of *x*, to show that the solution of the above differential equation is

 $y = x^4 + x^2 + 4x.$

CONTUTIZACE - FAT dy -2 $\Rightarrow \frac{d^2 y}{d l^2} = \frac{d u}{d r} + 2$ INRO = (23+1) d3 - 32 da 2-1/23 $\Rightarrow (\Im^3 + i)(\frac{du}{dpi} + 2) - \Im^2(u + 2x) = 2 - 4\chi^3$ \Rightarrow ($\mathfrak{X}^{3}+1$) $\frac{du}{d1}$ + 2($\mathfrak{X}^{3}+1$) - 3 \mathfrak{X}_{4} -6 \mathfrak{X}^{3} = 2 - 4 \mathfrak{X}^{3} = (23+1) du + 223+2 - 3422 - 623 = 2-423 = (2+1) サ - 312 - 大王 = 大平 $\Rightarrow (2^3+1)\frac{du}{dx} = 3ux^2$ $\frac{1}{u} du = \frac{3a^2}{a^3 + 1} du$ $\Rightarrow \int \frac{1}{4} dk = \int \frac{3x^2}{x^3 H} dx$ $|n|u| = |n|x^{3}+1| + |nA|$ $|h||u| = b_1 |A(x+1)|$ A(x3+1)

REVERSING THE TEANSBENATION = da -22 = AG2+1) $\Rightarrow \frac{dy}{dx} = A(x^3+1) + 2x$ INTHREATING W. R. F J $\Rightarrow y = A(\frac{1}{2}x^{4}+x) + x^{2} + B$ USING THE CONDITION GIVEN 2=0, y=0 -> 0= B 2=0, du=4 => 4 = 4 : y = 4(224+2) + 22 $y = x^4 + 4x + x^2$

proof

i C.B.

na

C.s.

Created by T. Madas

2

Question 5 (****)

14

C.B.

$$\frac{d^2y}{dx^2} - (1 - 6e^x)\frac{dy}{dx} + 10ye^{2x} = 5e^{2x}\sin(2e^x).$$

a) By using the substitution $x = \ln t$ or otherwise, show that the above differential equation can be transformed to

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 10y = 5\sin 2t.$$

 $A\cos(e^x) + B\sin(e^x)$

b) Hence find a general solution for the original differential equation.

 $y = e^{-3e^x}$

c	, th		The.
	a) That by define we range $\frac{1}{2}$ and \frac	$\begin{array}{llllllllllllllllllllllllllllllllllll$	440 62000000 9= PARIALA INTERN 9= PARIX + 20002 9= -28012 + 20022 0= -18002 - 48002 -286 NO 146 0.DE
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$ \Rightarrow \lambda = +3 \pm i $ computer frottion $ y = e^{3t} (Auct + Bant) $	ij = -4Pwst-Aqual +Gj = 12qual-128smit +10g = 10Paad+ 10quad +10g = 10Paad+ 10quad +50an0 trub coultreans
)	$\begin{array}{l} \qquad \qquad$		(@7+12@)002t + ≡ Ssinit (@q-129)sinit
	→ (+++++++++++++++++++++++++++++++++++	HOLE THE GRIDDAL SOUTH	$p_{2} = 4 \stackrel{\text{def}}{=} \begin{cases} 0 - p_{1}(p_{1}) \\ 2 - q_{2} \\ q_{3} \\ q_{4} \\ q_{5} \\ q_{5$
	-> dt +6 dt +10g = 2 suit	→ y = ē ^{3t} (Atost + Ban	

 $+\frac{1}{6}\sin\left(2e^{x}\right)-\frac{1}{3}\cos\left(2e^{x}\right)$

. R. J.

(***+) **Question 6**

21/4

2

Solve the differential equation

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0,$$

subject to the boundary conditions y = 2, $\frac{dy}{dx} = -1$ at x = 1.

ISMAILS COM INC.

Madas,

I.C.B.

40	0		h
		η_{2}	$y = \frac{2e^{2x}}{e^{2x} + x}$
	asmarhs.com		<u>20</u>
1212	Sh.		They source up= 22
S.Co.	"dlho	$ = \chi \frac{df}{dt} + 2p = \infty $ $ = \chi \frac{dg}{dt} = -\frac{2}{T} $ $ = \int \frac{1}{T} dt = \int -\frac{2}{T} dt $	$\begin{aligned} & S_{\mathbf{k}} \log \sigma \ Tr \in \sigma D, \varepsilon \\ & \mathcal{H} \left[\mathcal{H}^{2, H} + \mathcal{L} \mathcal{L}^{2, H} \right] = \sigma \\ & \left[\mathcal{H} \left(\mathcal{H}^{1} \right) + \mathcal{L}_{\mathbf{k}} \right] \mathcal{L}^{2, H} = \sigma \end{aligned}$
2	Con	$ \qquad $	$AC \qquad \begin{array}{c} \lambda^{*} + \lambda z \circ \\ \lambda(\lambda t) = \circ \\ \lambda = < \stackrel{\circ}{\underset{l}{(\lambda + 1)}} \end{array}$
	1.2 9	$ \Rightarrow \frac{ds}{dz} = \frac{c}{2^{4}} $ $ [\underline{y} = \frac{A}{2} + B] $ $ \bullet 2^{4} \underline{y} = 2 \Rightarrow 2^{2} + 4 $ $ \underline{y}' = -\frac{A}{2^{4}} $	$y = \frac{2}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$ $y = \frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} \frac{1}{2} \frac{1}$
·	·Gp	• 2ally gist = • 2ally gist = · · · · · · · · · · · · · · · · · · ·	
S.	5	- (2)	
asp. "	20.	Sp. 9	12. 43
All.	Nari	All.	na.
· · · Con	- AS	· Con	- Is
		, "4	
1.1.	1. Jen i	Ir.	1.1.
	101 S	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ISMATHS.COL

1.4.6.5

N.G.

1.

naths.com

I.V.C.B. Madasm

I.F.G.B.

Created by T. Madas

I.F.G.B.

Question 7 (***+)

¥G.B.

I.C.B.

$$x\frac{d^2y}{dx^2} + (6x+2)\frac{dy}{dx} + 9xy = 27x - 6y$$

Use the substitution u = xy, where u is a function of x, to find a general solution of the above differential equation.

in,

Con

ŀ.G.p.

112/231

Created by T. Madas

1.0.1

Question 8 (***+)

K.C.

I.C.B.

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx}\tan x - y\sec^4 x = 0.$$

The above differential equation is to be solved by a substitution.

- **a**) If $t = \tan x$ show that ...
 - **i.** ... $\frac{dy}{dx} = \frac{dy}{dt} \sec^2 x$
 - **ii.** ... $\frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} \sec^4 x + 2\frac{dy}{dt} \sec^2 x \tan x$
- **b**) Use the results obtained in part (**a**) to find a general solution of the differential equation in the form y = f(x).

 $y = A e^{\tan x} + B e^{-\tan x}$

C.P.

Question 9 (***+)

Show clearly that the substitution $z = \sin x$, transforms the differential equation

$$\frac{d^2y}{dx^2}\cos x + \frac{dy}{dx}\sin x - 2y\cos^3 x = 2\cos^5 x$$

 $\frac{d^2y}{dz^2} - 2y = 2\left(1 - z^2\right)$

into the differential equation

naths.com

I.F.G.B.

nadasmaths.com

I.G.B.

I.Y.C.I.

I.C.B. Madasman

proof

21/15.1

COM

I.V.C.B. Madasn

K.G.S.

I.C.

The Co	$ \begin{array}{c} \frac{d_{3}}{d_{1}} \cos \alpha_{1} + \frac{d_{3}}{d_{2}} \sin \alpha_{2} - \frac{2}{2} \cos \frac{2}{\alpha_{2}} = 2\cos \frac{2}{\alpha_{2}} \\ \bullet & \frac{1}{d_{1}} \left(\sin \alpha_{1} + \frac{d_{3}}{d_{2}} \sin \alpha_{2} - \frac{2}{2} \cos \frac{2}{\alpha_{2}} + 2\cos \frac{2}{\alpha_{2}} \right) \\ \bullet & \frac{d}{d_{1}} \left(\frac{d_{3}}{d_{2}} \right) = \frac{d}{d_{1}} \left(\cos \alpha_{1} + \frac{d_{3}}{d_{2}} + \frac{d_{3}}{d_{2}} \cos \frac{2}{\alpha_{2}} + \frac{d_{3}}{d_{2}} + \frac{d_{3}}{d_{2}} +$
	$\mathcal{L}_{2015} = \mathcal{L}_{2015} \mathcal{L}_{10} - \mathcal{D}_{10} \left[\frac{\partial}{\partial \mathcal{L}} \mathcal{L}_{10} \right] + \mathcal{D}_{10} \left[\frac{\partial}{\partial \mathcal{L}} \mathcal{D}_{10} - \frac{\partial}{\partial \mathcal{L}} \mathcal{L}_{10} \right] \mathcal{L}_{10}$
· .	$ = \operatorname{loc}_{\mathbf{x}} \operatorname{loc}_{\mathbf{y}} - \operatorname{symbol}_{\mathbf{y}} + \operatorname{symbol}_{\mathbf{x}} \operatorname{loc}_{\mathbf{y}} - \operatorname{symbol}_{\mathbf{x}} = \operatorname{sub}_{\mathbf{x}} $
	$\implies \frac{d_{21}}{d_{22}} - 2y = 2(a_{23}^2)$ $\implies \frac{d_{21}}{d_{22}} - 2y = 2(1 - 3a_{23}^2)$

KGA

Created by T. Madas

Maths.

20

Question 10 (***+)

By using the substitution $z = \frac{dy}{dx}$, or otherwise, solve the differential equation

 $(x^{2}+1)\frac{d^{2}y}{dx^{2}}+2x\frac{dy}{dx}=6x^{2}+2,$

subject to the conditions x = 0, y = 2, $\frac{dy}{dx} = 1$

I.F. G.B.

I.F.C.B

COM

I.F.G.B.

200

12

1.65

1

2017

Created by T. Madas

2017

Question 11 (****)

Y.G.B. III.

I.C.p

Use the substitution $z = \sqrt{y}$, where y = f(x), to solve the differential equation

$$\frac{d^2y}{dx^2} + \frac{1}{y}\left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 2y = 0$$

subject to the boundary conditions y = 4, $\frac{dy}{dx} = 44$ at x = 0.

Give the answer in the form y = f(x).

2.	and the second s
$e^{ij} = e^{ij} e^{i}$	$\begin{cases} \frac{d^2}{2} = A_{e}^{2N} + B_{e}^{-2L} \\ B_{e}^{\frac{1}{2}} + B_{e}^{-2L} \\ \frac{d^2}{2M} = 3A^{e^{\frac{2}{2}}} - 2\tilde{s}_{e}^{-2L} \end{cases}$
$\mathbf{q}_{\mathbf{n}}^{(\mathbf{r})} = \mathscr{A}_{\mathbf{n}}^{(\mathbf{r})} + \overset{\mathbf{r}}{\mathbf{r}} \mathbf{q}_{\mathbf{r}}^{(\mathbf{r})}$	$\begin{array}{ccccc} 1 & 4\overline{A} &\overline{A} & -\overline{A} \\ \hline 2 & -\overline{A} & +\overline{A} & -\overline{A} \\ 2 & -\overline{A} & +\overline{A} & -\overline{A} \\ -\overline{A} & +\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & +\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & +\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} & -\overline{A} \\ -\overline{A} & -\overline{A} & -\overline{A} & -A$
hs π ² [2(<u>μ</u>)] ² +22 <u>45</u>] - 32 <u>45</u> [π ² +22 <u>45</u>] - 34 <u>5</u> =0 μ ² (<u>μ</u>)] ² +12 <u>45</u> μ ² =0 μ ² (<u>μ</u>) ² -212 ⁶ =−	$\frac{SA = 15}{[A = 3]}$
$\frac{d^2}{d\chi^2} - \frac{dz}{dz} - 6z = 0$	$\therefore y^{\frac{1}{2}} = 3e^{\frac{3x}{2}} - e^{\frac{-3x}{2}}$
hallung (sutila) A=A−(s=0 (A=3)(A+2)=0 A= < ⁻²	$ \begin{array}{c} \mathcal{Y} = \left(\partial e_{u}^{n} + e_{u}^{2} \right)^{2} \\ \mathcal{Y} = \left(\partial e_{u}^{n} + e_{u}^{2} + e^{-\partial u} \right)^{2} \end{array} $
$4 \log e^{32} + Be^{32}$	

K.C.

 $y = 9e^{6x} - 6e^x + e^x$

I.C.B.

3

Created by T. Madas

R.

Question 12 (****)

$$2x\frac{d^2y}{dx^2} + \left(1 - 3x^{\frac{1}{2}}\right)\frac{dy}{dx} + y = 0.$$

The above differential equation is to be solved by a substitution.

- **a**) Given that y = f(x) and $t = x^{\frac{1}{2}}$, show clearly that ...
 - **i.** ... $\frac{dy}{dx} = \frac{1}{2t} \frac{dy}{dt}$.

ii. ...
$$\frac{d^2 y}{dx^2} = \frac{1}{4t^2} \frac{d^2 y}{dt^2} - \frac{1}{4t^3} \frac{dy}{dt}$$
.

b) Hence show further that the differential equation

$$2x\frac{d^2y}{dx^2} + \left(1 - 3x^{\frac{1}{2}}\right)\frac{dy}{dx} + y = 0,$$

can be transformed to the differential equation

$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0.$$

c) Find a general solution of the **original** differential equation, giving the answer in the form y = f(x).

Diff ward a $\Rightarrow \frac{d\hat{y}}{d\hat{x}} =$ $-\frac{1}{2t^2} \frac{dt}{dx} + \frac{1}{2t} \frac{d^2y}{dt^2} \frac{dt}{da}$ 222 04 + Bezt $\frac{dt}{dx} = \frac{1}{2}x^{\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2t}$ I da $= \frac{d_{21}^2}{d\lambda^2} = -\frac{1}{2t^2} \times \frac{1}{2t} \frac{dy}{dt} + \frac{1}{2t} \frac{d'y}{dt^2} \times \frac{1}{2t}$ at dy $\Rightarrow \frac{d^2 y}{d \lambda^2} = \frac{1}{4t^2} \frac{d^2 y}{d t^2} - \frac{1}{4t^3} \frac{d y}{d t}$ 7+ 4 b) $2\alpha \frac{d^2y}{d\alpha^2} + (1-3\alpha^2) \frac{dy}{d\alpha^2}$ 1 ds]+(1-3()×1 ds+g=0 2= + 共発 - 三課 + 9 = 0

 $y = A e^{\sqrt{x}} + B e^{2\sqrt{x}}$

Question 13 (****)

Show clearly that the substitution $z = y^2$, where y = f(x), transforms the differential equation

$$\frac{d^2y}{dx^2} + \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 2y = 0$$

into the differential equation

1.G.B.

I.C.P.

$$\frac{d^2z}{dx^2} - 5\frac{dz}{dx} + 4z = 0$$

F.G.B.

Madasn

(****) **Question 14**

Given that if $x = t^{\frac{1}{2}}$, where y = f(x), show clearly that

a)
$$\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt}$$
.

b) $\frac{d^2 y}{dx^2} = 4t \frac{d^2 y}{dt^2} + 2\frac{dy}{dt}$.

The following differential equation is to be solved

$$x\frac{d^2y}{dx^2} - \left(8x^2 + 1\right)\frac{dy}{dx} + 12x^3y = 12x^5$$

subject to the boundary conditions $y = \frac{10}{3}$, $\frac{d^2y}{dx^2} = 10$ at x = 0.

c) Show further that the substitution $x = t^{\frac{1}{2}}$, where y = f(x), transforms the above differential equation into the differential equation

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = 3t \; .$$

d) Show that a solution of the original differential equation is

$$y = e^{3x^2} + e^{x^2} + x^2 + \frac{4}{3}$$

12t g = 1 = 12t2

proof

(a)
$$\begin{array}{c} 2 = \frac{1}{2} \frac{2}{3} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{1}{2} \frac{dt}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} + \frac{1}{2} \frac{dy}{dy} \\ \Rightarrow \frac{dx}{dy} = \frac{1}{2} \frac{dx}{dy} \\ \Rightarrow \frac{dx}$$

 $y = Ae^{2^*} + Be^{32^-} + \alpha^2 + \frac{\alpha}{3}$ $\frac{dy}{da} = 2Aae^{2} + 6Bae^{3a^{2}} + 2a$ 24 e^{2²}+ 442 e^{2²}+68e^{30²}+3682 e^{30²}+2

Question 15 (****)

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx}\cot x + 2y\csc^2 x = 2\cos x - 2\cos^3 x.$$

Use the substitution $y = z \sin x$, where z is a function of x, to solve the above differential equation subject to the boundary conditions y = 1, $\frac{dy}{dx} = 0$ at $x = \frac{\pi}{2}$.

Give the answer in the form

F.G.B.

Y.G.B.

$$y = a\sin^2 x + b(1 - \sin x)\sin 2x,$$

where a and b are constants to be found.

$\mathbf{e}\left[\widehat{\boldsymbol{\rho}}=\boldsymbol{S}\boldsymbol{2}\boldsymbol{\mu}\boldsymbol{X}\right]$	ζ	le now foximativ fortu
 <u>du</u> = <u>du</u> shut + 2000 <u>du</u> = <u>du</u> shut + <u>du</u>sut + <u>du</u>sut - <u>du</u>sut - <u>du</u>sut 	3	@ FARTICULAR INTEGRAL, ID
$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & $	ζ	7745 -4.P.Sav(22 + P.Sav - 3.P
$\frac{dy}{dt} - 2idz, \frac{dy}{dt} + 2ywickz = 2iwz - 2iws^2z$ $\Rightarrow \frac{dz}{dt}wz + 2\frac{dy}{dt}wz - 2iwz - 2iwf (\frac{dy}{dt}wz + 2iwz) + 2(\frac{dy}{dt}wz - 2iwz) - 2iwdz$	Ş	P (6) SKUTIQ) Zz ,
$ \rightarrow \underbrace{\underset{M}{\partial t}}_{M} \underbrace{\operatorname{sure}}_{M} + \underbrace{\underset{M}{\partial t}}_{M} \underbrace{\operatorname{sure}}_{M} - \underbrace{\operatorname{sure}}_{M} + \underbrace{\operatorname{sure}}_{M} = \operatorname{sure}_{M} - 2\operatorname{sure}_{M} $ $ \rightarrow \underbrace{\underset{M}{\partial t}}_{M} \underbrace{\operatorname{sure}}_{M} - \underbrace{\operatorname{sure}}_{M} \underbrace{\operatorname{sure}}_{M} - \underbrace{\operatorname{sure}}_{M} \underbrace{\operatorname{sure}}_{M} = \operatorname{sure}_{M} \underbrace{\operatorname{sure}}_{M} \cdot \operatorname{sure}_{M} $ $ \rightarrow \underbrace{\underset{M}{\partial t}}_{M} \underbrace{\operatorname{sure}}_{M} - \underbrace{\operatorname{sure}}_{M} \underbrace{\operatorname{sure}}_{M} - \underbrace{\operatorname{sure}}_{M} \underbrace{\operatorname{sure}}_{M} = \operatorname{sure}_{M} \operatorname{sure}_{M} \cdot \operatorname{sure}_{M} $	ξ	$\frac{g}{s_{00}} = \frac{1}{2}$ $g = \frac{1}{2}$
$\Rightarrow \frac{d^2_{21}}{dx^2} = 7 \left[\frac{sd^2_{21} + 2cs^2_{21} - 2}{ss/x} \right] = 2cs^2_{21}su_{32}$	ξ	Waw a=±1y=1 ⇒[y= sonte +Asunze-fisi
$ \Rightarrow \frac{dz_{r}}{dz} - 5 \left[\frac{\partial y_{r}}{\partial z} - \frac{1}{2} \left[\frac{\partial y_{r}}{\partial z} + \frac{1}{2} \left[\frac{\partial y_{r}}{\partial z} + \frac{1}{2} - \frac{\partial y_{r}}{\partial z} + \frac{1}{2} \right] = 2hJS $	5	<u>dy</u> = 2011(102, +24052) dy = 2011(102, +24052) 4 40 2×21 dg=0 ⇒0:
$\Delta ne. = \frac{\int_{\Delta R}}{\int_{\Delta R}} - \frac{1}{2} \int_{\Delta R} = \int_{\Delta R} \int_{\Delta R} = \int_{\Delta R} \int_{\Delta R} = \int_{\Delta R} $	2	્ર ય = અહે (કું કમટ ય = અહે (કું કમટ ય = અહે + કું કમટ
		J AND T STAND

a = 1

2

Com

F.C.P.

Created by T. Madas

R,

Question 16 (****)

12

Smaths.com

Smaths.com

I.V.C.P

 $\frac{dy}{dx} - x^3y + x^5 = 0.$ dx

Use the substitution $x = z^{\frac{1}{2}}$, where y = f(x), to find a general solution of the above differential equation.

12112.8m

COM

naths.col

nadasma,

aths.com

I.V.C.B. Madasn

Ś

21/15.COM

Created by T. Madas

aths.com

I.C.B.

Question 17 (****)

I.G.B.

I.Y.G.B.

Use a suitable substitution to solve the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 6y = 2 - 2\ln x - 6(\ln x)^{2}$$

·C.

 $y = x^3 + \left(\ln x\right)^2$

I.F.G.p.

Madası

6%

1+

subject to the boundary conditions y(1) = 1, $\frac{dy}{dx}(1) = 3$

X

Give a simplified answer in the form y = f(x).

Created by T. Madas

5.02

(****) **Question 18**

I.V.G.P.

I.C.B. Ma

I.F.G.p.

Use a suitable trigonometric substitution to solve the following differential equation

Madas,

I.F.G.B.

I.F.C.B

 $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = 0, \quad y(0) = 1 \quad \frac{dy}{dx}(0) = 4.$ I.C.P.

$\left(1-\chi^2\right)\frac{d^2y}{d\chi^2} - \propto \frac{dy}{d\chi}$ x=0, y=1 dy=4 (8200 90) QMB=20 TH $\frac{dg}{dx^2} = \sec\theta \tan\theta \frac{d\theta}{dx} \frac{dg}{d\theta} + \sec\theta \frac{dg}{d\theta} \frac{d\theta}{dx}$ $\frac{da}{dy} = \cos\theta \frac{d\theta}{dy}$ $\frac{dy}{dz} = \frac{1}{\cos \theta} \frac{dy}{d\theta}$ dy = seco do (dy band + dy) dy = sec 0 dy SOB INTO THE O.D.E TO OBTIMN $(1 - 3ng) \sec^2 \theta \left(\frac{dy}{d\theta} + \frac{dy}{d\theta} \right) - \sin^2 \sec^2 \theta \frac{dy}{d\theta} + y = 0$ $\mathcal{CO}\left[\frac{dy}{d\theta} + \frac{d\theta}{d\theta^2}\right] - \frac{dy}{d\theta} + \frac{dy}{d\theta} + y = 0$ tout the + the - tout the

 $y = 3x - \cos(\arcsin x)$

K.G.B.

· ····

2017

I.Y.C.B. Mada

$\frac{d^2y}{dt^2} + y = 0$

- THIS IS A SIMPLE HARMONIC MUTICON
- Acost + BSMP
- Acas (arcanaz) + Bsin (arcana)
- I.F.G.B.

Created by T. Madas

2

Question 19 (****)

$$4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} = 1.$$

By using the substitution $t = \sqrt{x}$, or otherwise, show that the general solution of the above differential equation is

 $y = A - \sqrt{x} + \ln\left[1 + Be^{2\sqrt{x}}\right]$

where A and B are arbitrary constants.

Created by and VARIOUS TYPES TXCER TRADESTRATISCOM IXCER TRADESTRATISCOM IX ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM

Question 1 (**+)

Find the general solution of the following differential equation.

2

$$\frac{d^4\psi}{dx^4} + 2\lambda \frac{d^2\psi}{dx^2} + \lambda^4 \psi = 0$$

 $\psi = A\cos\lambda x + B\sin\lambda x$

$\frac{d^2\psi}{da^4} + 2\lambda^2 \frac{d^2\psi}{dx^2} + \lambda^4 \psi = 0$	
$\begin{array}{l} & \left(M_{\mu}^{4} + 2\lambda_{\mu}^{2} + \lambda_{\mu}^{4} \right) \\ & \left(M_{\mu}^{4} + 2\lambda_{\mu}^{2} + \lambda_{\mu}^{2} \right)^{2} = 0 \end{array}$	
μ ² + β ² = 0 Ψ ² = − λ ² Ψ = ±λi	4= Acosia + Bsinia
	_

Question 2 (***)

I.C.B.

Solve the differential equation

 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 1,$

given that $y = -\frac{1}{4}$ and $\frac{dy}{dx} = 1$ at x = 0, giving the answer in the form y = f(x).

 $y = \frac{1}{2} \left[2x - e^{-2x} \right]$

(***+) **Question 3**

aths

I.F.G.B

Solve the differential equation

 $\frac{d^2y}{dx^2} + 4\left(\frac{dy}{dx}\right)^2 = 1,$

given that y = 0 and $\frac{dy}{dx} = \frac{1}{6}$ at x = 0, giving the answer in the form y = f(x).

ins,

 $1 + 2e^{4x}$

.G.D.

14

2017

17202

I.V.G.B.

Created by T. Madas

I.V. G.B.

Question 5 (***+)

I.C.B. Ma

I.C.B.

The function with equation y = f(x) satisfies the differential equation

 $\frac{d^2 y}{dx^2} = \frac{2}{2x - 1} \left(1 - \frac{dy}{dx} \right), \quad y(0) = 1, \quad \frac{dy}{dx}(0) = -1.$

Solve the above differential equation giving the answer in the form y = f(x).

THE D.D.E AS FOLLOWS $\mathfrak{Y}=\alpha + \ln|2x-t|+B$ STACT BY READON Now if $x = 0, y = 1 \implies B = 1$ $\Rightarrow \quad \frac{d^2 y}{dx^2} = \frac{2}{2x-1} \left(1 - \frac{dy}{dx}\right)$ $\Rightarrow (2x-1)\frac{d^2y}{dx^2} = 2(1-\frac{dy}{dx})$ · y= x+ ln 2x-1 +1 $(2x-1)\frac{d^2y}{dx^2} = 2 - 2\frac{dy}{dx}$ $(2\alpha - 1) \frac{d^2y}{dy^2} + 2 \frac{dy}{dy} = 2$ INSPECTION THE L.H.S. IS + PERFECT DIFFERENTIAL $\frac{\partial}{\partial x} \left(\frac{(2x-1)}{\partial x} \frac{\partial y}{\partial x} \right) = 2$ $(2x-1)\frac{dy}{dx} = 2x + A$ $\frac{dy}{dx} = \frac{2x+4}{2x-1}$ dy = - 1 AT 2=0, Guts A=1 $\Rightarrow \frac{dy}{dx} = \frac{2x+1}{2x-1}$ $\Rightarrow y = \int \frac{2x+1}{2x-1} dx$ $\Rightarrow d = \left(\frac{(2\lambda-1)+2}{2\lambda-1} d \lambda \right)$ $= y = \int 1 + \frac{2}{2\lambda - 1} d\lambda$

 $y = x + 1 + \ln |2x - 1|$

I.F.G.B.

ma

3

1

Created by T. Madas

I.C.

Question 6 (****)

 $x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - (x^{2} + n^{2})y = 0.$

The above differential equation is known as modified Bessel's Equation.

Use the Frobenius method to show that the general solution of this differential equation, for $n = \frac{1}{2}$, is

 $y = x^{-\frac{1}{2}} \left[A \cosh x + B \sinh x \right].$

proof

C.P.

Maria.

Ins.

2 04 + 2 dy $-(\alpha^2 + \eta^2)\eta$ $3^{2}\frac{d_{1}}{d_{1}} + 3\frac{d_{2}}{d_{1}} - 3\frac{d_{2}}{d_{2}} - \frac{1}{2}y = 0$ [∞]₂ q_r x^{r+P} , a, ≠0 $\frac{d_{4}}{dx} = \sum_{\mu,\nu}^{\infty} q_{\nu}(r+p) x^{r+p-1}$)(++++)x +++-=

- $\begin{array}{l} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}$
- Which for the least space at 15 at , who the Hister at the $2^{n/2}$ for at the summarized for the summarized $\left[\frac{\alpha_{p}}{\alpha_{p}}\left(r_{p}^{(e-1)}+\alpha_{p}^{e}p-\frac{1}{4}\tau_{p}^{e}\right)\right]^{2}$ or at the summarized $\left[\frac{\alpha_{p}}{\alpha_{p}}\left(r_{p}^{(e-1)}+\alpha_{p}^{e}p-\frac{1}{4}\tau_{p}^{e}\right)\right]^{2}$
- $P(P-1) + P \frac{1}{4} = 0$ $P^2 - \frac{1}{4} = 0$ $P = \pm \frac{1}{2}$ Two Distribut Solution

I.C.B.

 $\begin{aligned} & = -\frac{1}{2} \qquad \mathbf{q}_{1} \left[\left[\frac{p^{2} + 2p}{4} + \frac{p}{4} \right] = \mathbf{0} \\ & \mathbf{Q}_{1} \left[\left[\frac{1}{4} - 1 + \frac{3p}{4} \right] = \mathbf{0} \\ & \mathbf{Q}_{1} \times \mathbf{0} = \mathbf{0} \\ & \mathbf{Q}_{1} \times \mathbf{0} = \mathbf{0} \end{aligned}$

 $\begin{array}{l} \eta_{2n} = \frac{\eta_{2n}}{\eta_{2n}} \sum_{i=1}^{n} \frac{\eta_{2n}}{\eta_{2n}} \sum_$

 $a_{H2} = \frac{da_{H}}{4(r_{PP2})(r_{PP1}) + 4(r_{PP2}) - 1}$

- $TBY = \frac{4(w+2)Gwi}{2} + \frac{4(w+2)-i}{2} \frac{Gw + r + p}{2}$ = $\frac{4w^2 + i2w + B}{2} + \frac{4w + B - i}{2}$ = $\frac{4w^2 + i2w + B}{2} + \frac{1}{2}$ = $\frac{(2w + 3)(2w + 5)}{2}$
- $= \left[2(r+p)+3\left[2(r+p)+5\right]\right]$ $= \left[2r+2p+3\left[2r+2p+5\right]\right]$
- BIT P= 12
- $= \left(2r_{+2}\right)\left[2r_{+1}+2\right] = \left(2r_{+2}\right)\left(2r_{+4}\right)$
- = 4(r+1)(r+2)
- $a_{r+2} \in \frac{4a_r}{4(r+1)(r+2)}$

$\alpha_{r+2} = \frac{\alpha_r}{(r+1)(r+2)}$

$$\begin{split} & \left[2 \otimes c : \quad q_{2} + \frac{q_{1}}{2q_{2}} \right] \\ & \left[2 \otimes 1 : \quad q_{3} = \frac{q_{1}}{2q_{3}} \right] \\ & \left[2 \otimes 1 : \quad q_{3} = \frac{q_{1}}{2q_{3}} \right] \\ & \left[2 \otimes 2 : \quad Q_{4} = -\frac{q_{1}}{2q_{3}} + \frac{q_{1}}{2q_{3}} + \frac{q_{1}}{2q_{3}} + \frac{q_{1}}{2q_{3}} + \frac{q_{1}}{2q_{3}} \right] \\ & \left[2 \otimes 2 \otimes \frac{q_{1}}{2q_{3}} + \frac{q_{1}}{2q_{3}} \right] \\ & \left[2 \otimes 2 \otimes \frac{q_{1}}{2q_{3}} + \frac{q_{1}}$$

 $y = \frac{A}{\sqrt{x}} \cosh x + \frac{1}{\sqrt{x}} \sinh x$

Question 7 (****)

I.C.p

Use the Frobenius method to find a general solution, as an infinite series, for the following differential equation

 $4x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + (3 - 4x^2)y = 0.$

2

I.C.B.

17₂₀₂

Give the final answer in terms of elementary functions.

Created by T. Madas

10

(****) **Question 8**

ŀG.B.

I.C.p

Find the solution of following differential equation

$$\left(\frac{dy}{dx}\right)\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3},$$

subject to the boundary conditions.

$$\left(\frac{dy}{dx}\right)\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3},$$

ary conditions.
$$y\left(-\frac{1}{2}\pi\right) = y'\left(-\frac{1}{2}\pi\right) = 0, \qquad y''\left(-\frac{1}{2}\pi\right) = \frac{1}{2}.$$

Given the answer in the form y = f(x).

 $y = 2\ln\left|\sec\left(\frac{1}{2}x + \frac{1}{4}\pi\right)\right|$

 $: g = 2 \ln |Sec(\frac{1}{2} + F)|$

F.C.B.

madası,

nn,

3

5

Question 9 (****+)

A curve has a stationary point at $\left(-\frac{1}{2}, -\frac{1}{2}\right)$.

The rate of change of the gradient function of the curve is given by

where x + y + 2 > 0.

Determine the equation of the curve, giving the answer in the form y = f(x).

x + y +

12.	
<u> かい</u> <u> かい <u> かい</u> <u> かい <u> かい</u> <u> かい <u> かい</u> <u> かい <u> かい</u> <u> かい <u> かい</u> <u> かい</u> <u> かい <u> かい</u> <u> かい</u> <u> かい <u> かい</u> <u> ひい <u> かい</u> <u> ひい</u> <u> ひ</u> <u> </u></u></u></u></u></u></u></u></u>	1
START with the could substituted $\implies V = \alpha t y + 2$ with $v = (-t_1 - \frac{1}{2}), \frac{dy}{dt} = 0$	
$ \Rightarrow \frac{q_1}{q_1} = \frac{q_2}{q_1} $ $ \Rightarrow \frac{q_1}{q_1} = \frac{q_2}{q_1} \text{ for } q_1 = 1 \text{ for } (-j_1 - j_1)^{\frac{1}{2}} = 0 $	⇒ [N246
ー	-
$\frac{dN}{dt^2} = V$ This o. b. c. thas the indervious unrinkle missing, so	
$\frac{1}{2}$	-
$\frac{\partial p}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\partial y}{\partial t} \right) \approx \frac{\partial y}{\partial t} \frac{\partial v}{\partial t} = \frac{\partial}{\partial t} \times \frac{1}{t} \implies \frac{\partial y}{\partial t} = e \frac{\partial}{\partial t}$	
Tetrisfican the 200 octor a.r. c to A first orthe strainties $\Rightarrow p \frac{dp}{dv} = v$	
$\implies b qb = n q h$	

$=9 \frac{1}{2} p^2 = \frac{1}{2} y^2 + C$
$ \Rightarrow \frac{\partial u}{\partial x} = v $ $ \Rightarrow \frac{\partial u}{\partial y} = \int dx $
INTHORATE SDELKET TO THE CONDITION 2=-1, V=)
$\Rightarrow \left[\left b \right v \right]_{1}^{b} = \left[x \right]_{-\frac{1}{2}}^{a}$ $\Rightarrow \left b \right v \left - \right t^{-} = x_{1} + \frac{1}{2}$
$= V_{2} e^{\frac{x+z}{2}}$
$y + x + 2 = e^{\frac{x+2}{2}}$
$\implies \underbrace{\mathcal{Y}} = \underbrace{\mathfrak{S}^{k+\frac{1}{2}}}_{k+\frac{1}{2}} 1 - 2$
a particular the state of the s

 $y = e^{x + \frac{1}{2}} - x - 2$

Question 10 (****+)

dasmaths.cj

Smaths.com

I.V.C.P

1

Solve the following differential equation

Created by T. Madas
****+)
ving differential equation

$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = 0, \ y(0) = 2, \ \frac{dy}{dx}(0) = -\frac{1}{2}.$$

Give the answer in the form $y^2 = f(x)$.

200

. G.D.

1.5

00

Madasn

I.F.C.B.

 $y^2 = 3 + e^{-2x}$

Created by T. Madas

2017

.Y.C.B.

Question 11 (****+)

I.C.B.

I.C.B.

By writing $\frac{dy}{dx} = p$ and seeking a suitable factorization find a general solution for the non linear differential equation

$$\left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx} \left(\frac{x^2 - y^2}{xy}\right) + 1.$$

(C.).

2

madasn

 $\left(xy+A\right)\left(x^2-y^2+B\right)=0$

I.C.B.

Give the solution in the form F(x, y)G(x, y) = 0.

N.

Question 12 (****+)

By writing $\frac{dy}{dx} = p$ and seeking a suitable factorization find a general solution for the non linear differential equation

 $\left(\frac{dy}{dx}\right)^2 + y\frac{dy}{dx} = x^2 + xy.$

Give the solution in the form F(x, y)G(x, y) = 0.

I.C.B

I.C.

I.C.B.

I.F.G.B.

19		
$\begin{cases} \frac{du}{dt}^2 + g\frac{dy}{dt} = x^2 + xg \\ \frac{du}{dt} + g\frac{dx}{dt} = x^2 + xg \end{cases}$		
$ \begin{aligned} & \left(\frac{1}{p} - x \right) \left(\frac{1}{p} + x + \frac{1}{2} \right) = 0 \\ & \left(\frac{1}{p} - x \right) \left(\frac{1}{p} + x + \frac{1}{2} \right) = 0 \end{aligned} $		
SPUT 100 2 MUMB2 ODEs • $\frac{d_{12}}{d_{21}} = \alpha \ge 0$ $\frac{d_{12}}{d_{21}} = \alpha \ge 0$ $\frac{d_{12}}{d_{21}} = \alpha$ $\frac{d_{12}}{d_{21}} = \alpha$ $\frac{d_{12}}{d$		
$2y - x^{2} = C_{1}$ • $\frac{d_{2}}{dx} + \chi + y = 0$ $dy + y = -\infty$ $dy + y = -\infty$ $L_{F} = e^{\int dx} = e^{-x}$: Prolet same) $(2y-x^2+A)(y+x-1+Be^{-2})=$	0
$\frac{d}{dx}(ye^{x}) = -xe^{x}$ $\frac{d}{dx}e^{x} = -xe^{x}dx$ $\frac{d}{dx}e^{x} = -xe^{x}dx$ $\frac{d}{dx}e^{x} = -xe^{x}dx$		
$y = -x + 1 + Ce^{x}$		

I.F.G.B.

 $(2y-x^2+A)(x+y-1+Be^{-x})=0$

A.C.S.

1

madasn

Question 13 (*****)

A curve C is described implicitly by the equation

 $xy^2 = e^y$.

a) Show, by a detailed method, that

 $\left(y^{2}-2y\right)\frac{d^{2}y}{dx^{2}}+\left(y^{2}-2\right)\left(\frac{dy}{dx}\right)^{2}-4y^{3}\frac{dy}{dx}e^{-y}=0.$

b) Use an analytical method, with suitable boundary conditions, to obtain the equation of C by solving the above differential equation.

Des

١.	1	6	- C.D.
	$ \begin{array}{l} \longrightarrow _{\lambda}\partial_{\lambda} + \pi(\lambda)\partial_{\mu}\partial_{\mu} \\ \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\theta_{n}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\theta_{n}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\theta_{n}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) = \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ \begin{array}{l} \longrightarrow & \frac{\partial}{\partial \tau}(\partial h_{j}) \\ \end{array} \\ $		$\frac{1}{\frac{1}{2}} = \frac{1}{2} \frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{2}} = \frac{1}{2} \frac{1}{2$
	→ 3年 + 30年 + 3年 + 20年 - 2 - [214-frager Role D + 4660] → 3年 + 30年 - 24年 → 3年 + 30年 - 24年	1	: $\frac{d^2_{ij}}{dx^2} = \frac{d^2_{ij}}{dy} P$
	$ \Rightarrow 4y_{ct}^{at} + 2a_{c}^{at}\left[\frac{1}{2}h_{c}^{at}\left(\frac{1}{2}h_{c}^{at}\right)^{2} + \frac{1}{2}h_{c}^{at}\right] = e^{2}\left[\left(\frac{1}{2}h_{c}^{b}\right)^{2} + \frac{1}{2}h_{c}^{at}\right] \\ \Rightarrow 4y_{ct}^{at} + 2y_{c}^{at}\left[\frac{1}{2}h_{c}^{b}\left(\frac{1}{2}h_{c}^{b}\right)^{2} + \frac{1}{2}h_{c}^{bt}\right] = e^{2}\left[\left(\frac{1}{2}h_{c}^{b}\right)^{2} + \frac{1}{2}h_{c}^{bt}\right] \\ \Rightarrow 4y_{ct}^{b} + 2e^{2}\left[\frac{1}{2}h_{c}^{b}\left(\frac{1}{2}h_{c}^{b}\right)^{2} + \frac{1}{2}h_{c}^{bt}\right] = e^{2}\left[\left(\frac{1}{2}h_{c}^{b}\right)^{2} + \frac{1}{2}h_{c}^{bt}\right] $		$ = (y_{1,23})g_{1,2}^{2} + (y_{1,2})g_{1}^{2} - (y_{1,2})g_{2}^{2} = 0 $ $ = (y_{1,23})g_{2,2}^{2} + (y_{1,2})g_{1}^{2} - 4y_{1}e_{2} = 0 $ $ = (y_{1,23})g_{1,2}^{2} + (y_{1,2})g_{1}^{2} - 4y_{1}e_{2} = 0 $
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5	$\begin{array}{l} \Rightarrow \begin{array}{l} \displaystyle \frac{dg}{dy} + \frac{d^{2}-2}{y^{2}-2y} \rho & = -\frac{dy^{2}e^{2y}}{y^{2}-2y} \\ \\ \displaystyle \frac{dgr}{dy} + \frac{d^{2}-2}{y^{2}-2y} dy & = -\frac{dy^{2}e^{2y}}{y^{2}-2y} dy \\ \end{array} \\ \displaystyle \frac{dgr}{e^{-\frac{d^{2}-2y}{y^{2}-2y}} dy} = -\frac{\int \frac{d^{2}-2y}{y^{2}-2y} dy}{z^{2}-2y} dy \\ \end{array} \\ \displaystyle \frac{dgr}{dy} + \frac{d^{2}-2y}{y^{2}-2y} dy \\ \end{array} $
	(J-3) (サート(+2)((カー)) - (サード)) - (サート)) - (リース) (カート) (J-3) (カート) - (サート)) - (カート)) - (カート)) - (サート)) - ((++)) - ((+		$= e_{j} \left[\left(+ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} q_{ij} \right) = e_{j} \left[\left(q_{ij} q_{ij} \right) \right] = e_{j} \left(q_{ij}^{2} q_{ij} \right)$ $= e_{j} \left[\left(+ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} q_{ij} \right) = e_{j} \left(q_{ij} q_{ij} \right) \right]$
	$\begin{array}{c} \alpha_{-e}, y_{-l} & \frac{1}{2k} = -\frac{1}{e} \end{array} \qquad \begin{array}{c} \overbrace{\qquad \ \ } & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \ } & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \underset{\qquad \ \end{array} & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ } \end{array} & \overbrace{\qquad \ } & \overbrace{\qquad \ \end{array} & \overbrace{\qquad \ } & \overbrace{\qquad } & \overbrace{\qquad } & \overbrace{\qquad } & \overbrace{\qquad } & \overbrace{\qquad } & \underset{\ \end{array} & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ \end{array} & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \overbrace{ \\ & \atop \\ & \underset{\ \end{array} & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & \underset{\ } & $		$\Rightarrow \frac{1}{dy} \left[p e^{\frac{1}{2}(y^2-2y)} \right] = \frac{dy^2 e^{yy}}{y^2 e^{-yy}} \times e^{\frac{1}{2}(y^2-2y)}$ $\Rightarrow \frac{1}{dy} \left[e^{\frac{1}{2}(y^2-2y)} \right] = \frac{4y^2}{4y^2}$
2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<u> </u>	$\begin{array}{c} \underline{O}_{1} & \underline{O}$
	$Pe^{it}(j^{2}\cdot 2g) = (j^{6} + A)$ $\Rightarrow p = \frac{g^{4}(A)}{y^{2}\cdot 2g}$ $\Rightarrow \frac{dg}{dt} = \frac{g^{4}(A)}{y^{2}\cdot 2g}$ $\xrightarrow{\text{trig}} \text{ The construct yes, } \frac{dg}{dt^{2}-e^{it}}$ $-\frac{b}{t} = \frac{(1+A)e^{it}}{1-2}$ $-e^{it} = -(1+A)e^{it}$ $-1 = -1+A$		HE LULS, SAY THE FILT and $ \begin{array}{c} \left[\frac{1}{\sqrt{2}}e^{2} + \int \frac{e^{2}}{\sqrt{3}}dy \right] - \int \frac{2e^{2}}{\sqrt{3}}dy = 2x+8 \\ & \begin{array}{c} \frac{1}{\sqrt{2}} & -\frac{2e^{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{2e^{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}$
	$Pet^{i}(j^{2}, 2y) = (j^{6} + \lambda)$ $\Rightarrow p = \frac{g^{4}\omega_{A}}{g^{4}-g^{2}}$ $\Rightarrow \frac{dy}{dx} = \frac{(g^{4}+\lambda)e^{2i}}{(j^{4}-2)^{2}}$ $-\frac{h^{2}\pi}{1-2}$ $-\frac{1}{1-2} = \frac{(j+\lambda)e^{2i}}{1-2}$ $-e^{i} = -(i\lambda)e^{i}$		He Lines, so the first and $ \frac{1}{2} \begin{bmatrix} \frac{1}{12}e^2 + \int \frac{1}{12}e^2 dy \\ \frac{1}{12}e^2 + \frac{1}{12}e^2 + \frac{1}{12}e^2 dy \\ \frac{1}{12}e^2 + \frac{1}{12}e^2 + $
	$\Rightarrow P^{ab}(j^{2}, 2y) = j^{a} + \lambda$ $\Rightarrow P = \frac{y^{a} + \lambda}{y^{b} - y^{a}}$ $\Rightarrow \frac{d}{dx} = \frac{y^{a} + \lambda}{y^{b} - 2y}$ $\Rightarrow \frac{d}{dx} = \frac{(y^{i} + \lambda)z^{i}}{y^{b} - 2y}$ $\Rightarrow \frac{d}{dx} = \frac{(j + \lambda)z^{i}}{y^{b} - 2y}$		He L.H.S., SW THE FILT ONE $\begin{bmatrix} \frac{1}{12}e^{2} + \int e^{2} \frac{1}{4}dy \\ \frac{1}{3}e^{2} + \int e^{2} \frac{1}{4}dy \\ \frac{1}{3}e^{2} + e^{2} \frac{1}{4}e^{2} \frac{1}{4}e^{2$
	$\Rightarrow P^{ab}(j^{2}-2g) = j^{ab} + A$ $\Rightarrow P = \frac{g^{ab}A}{g^{2}-2g}$ $\Rightarrow \frac{g^{ab}}{g^{b}} = \frac{g^{ab}A}{g^{2}-2g}$ $\Rightarrow \frac{g^{ab}}{g^{b}} = \frac{g^{ab}A}{g^{2}-2g}$ $\Rightarrow \frac{g^{ab}}{g^{b}} = \frac{g^{ab}A}{g^{2}-2g}$ $\Rightarrow \frac{g^{ab}}{g^{ab}} = \frac{g^{ab}A}{g^{ab}}$ $\Rightarrow \frac{g^{ab}}{g^{ab}} = \frac{g^{ab}A}{g^{ab}}$ $\Rightarrow \frac{g^{ab}A}{g^{ab}} = \frac{g^{ab}A}{g^{ab}}$ $\Rightarrow \frac{g^{ab}A}{g^{ab}} = \frac{g^{ab}A}{g^{ab}}$ $\Rightarrow \frac{g^{ab}A}{g^{ab}} = \frac{g^{ab}A}{g^{ab}}$		He Lines, so the first and $ \frac{1}{2} \begin{bmatrix} \frac{1}{12}e^2 + \int \frac{1}{12}e^2 dy \\ \frac{1}{12}e^2 + \frac{1}{12}e^2 + \frac{1}{12}e^2 dy \\ \frac{1}{12}e^2 + \frac{1}{12}e^2 + $

proof

1.G.D.

6

2

Question 14 (*****)

Find a general solution of the following differential equation.

