DIFFERENTIAL EQUATIONS $2^{\text {nd }}$ order or higher

$2^{\text {ND }}$ ORDER

WITH

CONSTANT

COEFFICIENTS

Question $1 \quad{ }^{(* *)}$
Find a general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=12\left(x+\mathrm{e}^{x}\right)
$$

Question 2 (**)
Find a general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=13 x^{2}-x+22
$$

$\square, y=\mathrm{e}^{-3 x}(A \cos 2 x+B \sin 2 x)+x^{2}-x+2$

Question 3 (**)
Find a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=10 \sin x
$$

subject to the boundary conditions $y=6$ and $\frac{d y}{d x}=5$ at $x=0$.
\square $y=2 \mathrm{e}^{x}+\mathrm{e}^{2 x}+3 \cos x+\sin x$

Created by T. Madas

Question $4 \quad{ }^{(* *)}$
Find a general solution of the differential equation

Question 5 (**)
Find a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=20 \sin 2 x
$$

$$
y=3 \cos 2 x-\sin 2 x-\mathrm{e}^{2 x}-\mathrm{e}^{x}
$$

Question 6 (**)
Find a general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=12\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)
$$

$$
y=(A+4 x) \mathrm{e}^{2 x}+B \mathrm{e}^{-x}-3 \mathrm{e}^{-2 x}
$$

Created by T. Madas

Question 7 (**)
$\frac{d^{2} y}{d x^{2}}+y=\sin 2 x, \quad$ with $y=0, \frac{d y}{d x}=0$ at $x=\frac{\pi}{2}$.

Show that a solution of the above differential equation is

Question $8 \quad(* *+)$

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=6 \mathrm{e}^{-2 x}
$$

with $y=3$ and $\frac{d y}{d x}=-2$ at $x=0$.

Show that the solution of the above differential equation is
\square , proof

Question $9 \quad\left({ }^{* *}+\right.$)
Find a general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 k \frac{d y}{d x}+k^{2} y=\frac{1}{4}, k>0
$$

Created by T. Madas

Question $10 \quad\left({ }^{* *}+\right.$)
Find the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=2 x+3
$$

Question $11 \quad{ }^{(* *+)}$
Find a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=34 \cos 2 x
$$

$=0$.
$y=2\left(8 \mathrm{e}^{-x}+1\right) \cos 2 x+8 \sin 2 x$

Created by T. Madas

Question 12 (**+)
The curve C has a local minimum at the origin and satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+8 y=32 x^{2}
$$

Find an equation for C.

$$
y=\mathrm{e}^{x}(\sin 2 x+\cos 2 x)+(2 x-1)^{2}
$$

Created by T. Madas

Question $13 \quad\left({ }^{* *}+\right.$)

$$
\frac{d^{2} x}{d t^{2}}+9 x+12 \sin 3 t=0, t \geq 0
$$

with $x=1, \frac{d x}{d t}=2$ at $t=0$.
a) Show that a solution of the differential equation is
b) Sketch the graph of x.

Created by T. Madas

Question $14{ }^{(* *+)}$

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=16+32 \mathrm{e}^{2 x}
$$

with $y=8$ and $\frac{d y}{d x}=0$ at $x=0$.

Show that the solution of the above differential equation is

$$
y=8 \cosh ^{2} x .
$$

Question $15 \quad\left({ }^{* *+}\right)$

$$
\frac{d^{2} y}{d x^{2}}-2 k \frac{d y}{d x}+k^{2} y=12 x \mathrm{e}^{k x}, k>0
$$

a) Find a general solution of the differential equation given that $y=P x^{3} \mathrm{e}^{k x}$, where P is a constant, is part of the solution.
b) Given further that $y=1, \frac{d y}{d x}=0$ at $x=0$ show that

$$
y=\mathrm{e}^{k x}\left(2 x^{3}+A x+B\right)
$$

$$
y=e^{k x}\left(2 x^{3}-k x+1\right)
$$

Question 16 (**+)
Show that the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=24 \mathrm{e}^{4 x}
$$

subject to the boundary conditions $y=-1, \frac{d y}{d x}=-4$ at $x=0$, can be written as

Question 17 (***)

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=4 \mathrm{e}^{3 x}
$$

a) Find a solution of the differential equation given that $y=1, \frac{d y}{d x}=0$ at $x=0$.
b) Sketch the graph of y.

The sketch must include ...

- the coordinates of any points where the graph meets the coordinate axes.
- the coordinates of any stationary points of the curye.
- clear indications of how the graph looks for large positive or negative values of x.

$$
y=\mathrm{e}^{3 x}\left(2 x^{2}-3 x+1\right)
$$

Question 18 (***+)
The curve with equation $y=f(x)$ is the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=8 \sin 2 x
$$

The first two non zero terms in Maclaurin series expansion of $f(x)$ are $x+k x^{2}$, where k is a constant.

Determine in any order the value of k and the exact value of $f\left(\frac{1}{4} \pi\right)$.
\square , $k=2, f\left(\frac{1}{4} \pi\right)=\frac{1}{2}(3 \pi-4) \mathrm{e}^{\frac{1}{2} \pi}$

Question 19 (***+)
The function $y=f(x)$ satisfies the following differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=2 \mathrm{e}^{-x}(\sin 2 x-2 \cos 2 x)
$$

subject to the boundary conditions $y=0, \frac{d y}{d x}=2$ at $x=0$.

Solve the differential equation to show that

$$
y=\cosh x \sinh 2 x .
$$

No credit will be given for verification methods.

Equativg Coeffictors wt ORThN
$\left.\left.\begin{array}{c}4 P+4 Q=2 \\ -8 P+2 Q=-4\end{array}\right\} \Rightarrow \begin{array}{l}Q P+8 Q=4 \\ -Q P+2 Q=-4\end{array}\right\} \Rightarrow Q=0 \quad 4 P=\frac{1}{2}$
\therefore Ginver soutcon is $y=e^{2}(A \cos x+B \sin x)+\frac{1}{2} e^{-x} \sin 2 x$

Ahey constans - fierry $x=0 \quad y=0$
$\Rightarrow O=A$

$$
\Rightarrow y=B e^{x} \sin 2 x+\frac{1}{2} e^{-x} \sin 2 x
$$

$$
\Rightarrow y=\left(B e^{2}+\frac{1}{2} e^{-x}\right) \sin 2 x
$$

$\Rightarrow \frac{d y}{d x}=\left(B e^{2}-\frac{1}{2} e^{-x}\right) \sin a x+\left(B e^{2}+\frac{1}{2} e^{-x}\right)(2 \cos 3 x)$

Created by T. Madas

Question $1 \quad{ }^{(* *)}$
Find the general solution of the following differential equation.

$$
4 t^{2} \frac{d^{2} x}{d t^{2}}+4 t \frac{d x}{d t}-x=0
$$

\square

$$
x=A t^{\frac{1}{2}}+B t^{-\frac{1}{2}}
$$

Question 2 (**+)
Find the general solution of the following differential equation.

$$
y=P \cos [\ln \sqrt{t}]+P \sin [\ln \sqrt{t}]
$$

$$
4 t^{2} \frac{d^{2} y}{d t^{2}}+4 t \frac{d y}{d t}+y=0
$$

Created by T. Madas

Question 3 (***)

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=9 x^{8}
$$

Determine the solution of the above differential equation subject to the boundary conditions

$$
y=\frac{3}{2}, \frac{d y}{d x}=2 \text { at } x=1
$$

\square

$$
y=\frac{1}{4} x^{4}\left(x^{4}+1\right)+\frac{1}{x}
$$

Question 4 (***)
Find the general solution of the following differential equation

Created by T. Madas

Question 5 (***+)
Given that if $x=\mathrm{e}^{t}$ and $y=f(x)$, show clearly that \ldots
a) $\ldots x \frac{d y}{d x}=\frac{d y}{d t}$.
b) $\ldots x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}$.

The following differential equation is to be solved

$$
x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 \ln x
$$

subject to the boundary conditions $y=\frac{1}{2}, \frac{d y}{d x}=\frac{3}{2}$ at $x=1$.
c) Use the substitution $x=\mathrm{e}^{t}$ to solve the above differential equation.

$$
y=\frac{1}{2}+\frac{1}{2}\left(2 x^{2}+1\right) \ln x
$$

Created by T. Madas

Question 6 (***+)

$$
x^{3} \frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}-4 x y=5
$$

Find the solution of the above differential equation subject to the boundary conditions $y=4, \frac{d y}{d x}=20$ at $x=0$.

Question $7 \quad(* * *+$)
Find the general solution of the following differential equation.

Question $8 \quad(* * *+)$
The curve with equation $y=f(x)$ satisfies

$$
x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}+13 y=0, x>0
$$

By using the substitution $x=\mathrm{e}^{t}$, or otherwise, determine an equation for $y=f(x)$, given further that $y=1$ and $\frac{d y}{d x}=-2$ at $x=1$.

$$
y=\frac{\cos (3 \ln x)}{x^{2}}
$$

\square
\square

Created by T. Madas

Question 9 (***+)

$$
x^{2} \frac{d^{2} y}{d x^{2}}-8 x \frac{d y}{d x}+9 y=0, x>0
$$

Question 10 (****)
Find the general solution of the following differential equation.

$$
x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=2 x, x>0 .
$$

$\square, y=A x+B \cos (\ln x)+C \sin (\ln x)+x \ln x$

Created by T. Madas

Question 11 (****)
Use variation of parameters to determine the specific solution of the following differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-7 x \frac{d y}{d x}+16 y=16 \ln x
$$

given further that $y=\frac{1}{2}, \frac{d y}{d x}=2$ at $x=1$.

$$
y=\frac{1}{2}+\left(1+x^{4}\right) \ln x
$$

\square So $y_{\mathrm{a}}^{y_{p}}=\underbrace{\left.\ln x+\frac{1}{2}\right\}}$ (GIN sowtian (3) APPY Condrans $x=1 \quad y=\frac{1}{2}$ $\frac{1}{2}=A+\frac{1}{2} \Rightarrow A=0$ - $y=B x^{4} \ln x+\ln x+\frac{1}{2}$ $\frac{d y}{d x}=4 B x^{3} \ln x+B x^{3}+\frac{1}{x}$ (0) Appy andital $x=1 \frac{d y}{d x}=2$ $2=B+$ $B=1$ $\therefore y=x^{4} \ln x+\ln x+\frac{1}{2}$ $y=\frac{1}{2}+\left(x^{4}+1\right) \ln x$

$2^{\text {ND }}$ ORDER ODEs

WITH MISSING

INDEPENDENT

VARIABLE

Question 1 (****+)
The curve C, has gradient $\frac{2}{9}$ at the point with coordinates $\left(\ln 2, \frac{2}{3}\right)$, and satisfies the differential relationship

$$
\frac{d^{2} y}{d x^{2}}=(1-2 y) \frac{d y}{d x}, \quad y<\frac{1}{2} .
$$

Find an equation for C, giving the answer in the form $y=f(x)$.

$$
y=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}=\frac{1}{\mathrm{e}^{x}+\mathrm{e}^{-x}}=\frac{1}{2} \operatorname{sech} x
$$

\square ALTGENATIUE HFRET
$\left\{\frac{d y}{d x^{2}}=(1-2 y) \frac{d y}{d x}\right\}$
数安
$\Rightarrow\left[\frac{d y}{d x}\right]_{2 / 4}^{x / 2}=[y-y]_{\xi}^{6}$
$\Rightarrow \frac{d y}{d x}-\frac{2}{9}=\left(y-y^{2}\right)-\left(\frac{2}{3}-\frac{4}{9}\right)$
$\Rightarrow \frac{d y}{d x}=y-y^{2}$
(SGPMCTCT OMRIBBLE) $\rightarrow \frac{1}{9-y^{2}} y^{2}=1 d x$
\qquad
 $\rightarrow\left[4 \| \frac{4}{9}\right]_{3}^{3}=[2]_{12}^{2}$ $\rightarrow \ln \left|\frac{0}{|n|}\right|-4 x=2-4 x^{2}$

Question 2 (****)
Use appropriate techniques to solve the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}=-\frac{144}{y^{3}}, \quad y(0)=6,\left.\quad \frac{d y}{d x}\right|_{x=0}=0 .
$$

\square

$$
\frac{x^{2}}{9}+\frac{y^{2}}{36}=1
$$

LCt $P=\frac{\text { du }}{6 T}$ So we tinve

$-\frac{d x}{2(x)}=-\frac{4}{5}$
$-\frac{d y}{\frac{d}{2}=-\frac{4}{5}}$
$\Rightarrow \frac{d p}{d y} \times \frac{d y}{d x}=-\frac{|w|}{y^{3}}$
$\Rightarrow \frac{d p}{d y} \times p=-\frac{144}{y^{3}}$
$\Rightarrow p d p=-\frac{144}{y^{3}}$
$\Rightarrow \int p d p=\int-\frac{144}{y^{3}} d y$

$\Rightarrow \frac{1}{2} p^{2}=\frac{-72}{y^{2}}+A$
$\Rightarrow p^{2}=\frac{144}{y^{2}}+B$
\qquad

$\Rightarrow p^{2}=\frac{144-4 y^{2}}{y^{2}}$
$\Rightarrow P= \pm \frac{\sqrt{1(4 x-4)^{2}}}{y}$
$\Rightarrow \frac{d y}{d x}= \pm \frac{\sqrt{144-4 y^{2}}}{y}$
MANIPOLATt ts Fowns
$\Rightarrow \frac{d x}{d y}= \pm \frac{y}{\left(144-\left(y^{2}\right)^{\frac{1}{2}}\right.}= \pm y\left(144-4 y^{2}\right)^{-\frac{1}{2}}$

$\Rightarrow \int 1 d x-\int \pm y\left(111+x-4 y^{2}\right)^{-\frac{1}{2}}$
$\Rightarrow x= \pm\left(144-4 y^{2}\right)^{\frac{1}{2}}+C$

Fiwtuy wo thet
$\rightarrow x^{2}=\left[\pm \frac{1}{4}\left(144-4 y^{2}\right)^{\frac{1}{2}}\right]^{2}$
$\Rightarrow x^{2}=\frac{1}{16}\left(144-4 y^{2}\right)$
$\Rightarrow 16 x^{2}=144-4 y^{2}$ $\Rightarrow \quad 46 x^{2}+4 y^{2}=144$ or $\frac{x^{2}}{9}+\frac{y^{2}}{36}=1$

Question 3 (****+)
The curve C, has a stationary point at $(0,2)$ and satisfies the differential relationship

$$
\frac{d^{2} y}{d x^{2}}=\frac{4}{y^{3}}, y \neq 0 .
$$

a) Given further that $\frac{d y}{d x} \geq 0$ along C, determine a simplified expression for the Cartesian equation of C.
b) Verify by differentiation the answer to part (a).

$$
y^{2}-x^{2}=4
$$

\square b) $\left\{\begin{array}{l}y^{2}-x^{2}=4 \\ y^{2}=x^{2}+4\end{array}\right\}$ Diffenteit wist x
$\Rightarrow 2 y \frac{d y}{d x}=2 x$ $\Rightarrow y \frac{d y}{d x}=x$
\qquad $\Rightarrow \frac{d y}{d x} \times \frac{d y}{d x}+y \frac{d y}{d x^{2}}=1$ $\Rightarrow\left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}=1$ $3 G T$
$\frac{d y}{d x}=\frac{x}{y}$ $\Rightarrow \frac{x^{2}}{y^{2}}+y \frac{d^{2} y}{d x^{2}}=1$ $\Rightarrow \frac{y^{2}-4}{y^{2}}+y \frac{d^{2} y}{d x^{2}}=1$ $\Rightarrow x-\frac{4}{y^{2}}+y \frac{d^{2} y}{d x^{2}}=x$ $\Rightarrow y \frac{d^{2} y}{d x^{2}}=\frac{4}{y^{2}}$ $\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{4}{y^{3}}$

Question $4 \quad(* * * *+)$
The curve C, has a stationary point at $(0,4)$ and satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}=\frac{2}{y^{2}}, y \neq 0
$$

a) Given further that $\frac{d y}{d x} \geq 0$ along C, determine a simplified expression for the Cartesian equation of C, giving the answer in the form $x=f(y)$.
b) Verify by differentiation the answer to part (a).

$$
x=4 \operatorname{arcosh}\left(\frac{1}{2} \sqrt{y}\right)+\sqrt{y^{2}-4 y}
$$

Created by T. Madas

Question 5 (****+)

The curve C with Cartesian equation $f(x, y)=0$, satisfies the differential equation

$$
(1-y) y^{\prime \prime}=(2-y)\left(y^{\prime}\right)^{2} .
$$

It is further given that $y(0)=0$ and $y^{\prime}(0)=1$
a) Determine a simplified expression for the Cartesian equation of C.
b) Verify by differentiation the answer to part (a).

$$
x=y \mathrm{e}^{-y}
$$

Question 6 (*****)

The function with equation $y=f(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}=2 y \ln 3, \quad y(0)=1, \quad \frac{d y}{d x}(0)=2 \ln 3
$$

Solve the above differential equation to show that $y=3^{x^{2}+2 x}$.

Created by T. Madas

Question 7 (*****)

The curve with equation $y=f(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}=6 y^{2}+4 y, \quad \frac{d y}{d x} \geq 0 .
$$

If $y=3, \frac{d y}{d x}=12$ at $x=-\frac{1}{2} \ln 3$, solve the differential equation to show that

$$
y=\operatorname{cosech}^{2} x
$$

Question 8 (******)
The curve with equation $y=f(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}=8 y
$$

Given further that the curve has a stationary point at $\left(\frac{1}{2}, \frac{1}{4}\right)$, solve the differential equation to show that

Question 9 (******)
The curve with equation $y=f(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\mathrm{e}^{-y}=0, \quad \frac{d y}{d x} \geq 0 .
$$

If $y=0, \frac{d y}{d x}=-1$ at $x=\frac{1}{2} \pi$, solve the differential equation to show that
\square , proof

$\Rightarrow \frac{d y}{d x}=+\frac{\sqrt{2-e^{y}}}{e^{t^{y}}}$
$\begin{aligned} & \Rightarrow \frac{e^{\frac{t y}{2 x}}}{\sqrt{2-e^{y}}} d y=1 d x \\ & \Rightarrow \int_{\frac{x}{2}}^{x} 1 d x=\int_{0}^{y} \frac{e^{t y}}{\sqrt{2-e^{y}}} d y \end{aligned}$
$\begin{aligned} & e^{y}=2 \sin ^{2} \theta \quad\left[e^{\frac{1 y}{2}}=\sqrt{2} \sin \theta \text { oe } \theta=\operatorname{arcsi}\left(\frac{e^{ \pm y}}{\sqrt{2}}\right)\right] \\ \Rightarrow & e^{y} d y=4 \operatorname{tsn} \theta \cos \theta d \theta \\ \rightarrow & d y=\frac{4 \sin \theta \cos \theta}{e^{y}} d \theta=\frac{4 \sin \theta \cos \theta}{2 \sin ^{2} \theta} d \theta=\frac{2 \cos \theta}{\sin \theta} d \theta \end{aligned}$
umits Transepoul to $\begin{array}{ll} y=0 & \longmapsto \theta=\frac{\pi}{4} \\ y & \longmapsto \theta=\operatorname{arcsm}\left(\frac{e t}{12}\right) \end{array}$
Recreanca to tef O.A.E

Question 10 ($* * * * * *)$
The curve C, has gradient 1 at the origin and satisfies the differential relationship

$$
\frac{d^{2} y}{d x^{2}} \sqrt{1-2 y}=\frac{d y}{d x}(3 y-2), \quad y<\frac{1}{2} .
$$

Find an equation for C, giving the answer in the form $y=f(x)$.

$$
y=\frac{\sin x}{1+\sin x}=(\sec x-\tan x) \tan x
$$

\square
\square thantur tive $\Rightarrow \sqrt{1-2 y}=\frac{1-\sin x}{\cos x}$ $\Rightarrow 1-2 y=\frac{(1-\sin x)^{2}}{\cos ^{2} x}$ $\Rightarrow 1-2 y=\frac{(1-\sin x)^{2}}{1-\sin ^{2} x}$ $\Rightarrow 1-2 y=\frac{(1-\sin x)^{2}}{(1-\cos }$ $\Rightarrow L-2 y=\frac{1-\sin x}{1+\sin x}$ $\Rightarrow 1-1-\sin x+2 y$ $1+\sin x=2 y$ $\Rightarrow 2 y=\frac{1+\sin x-1+\sin x}{1+\sin x}$ $\Rightarrow z y=\frac{2 \sin x}{1+\sin x}$ $\Rightarrow y=\frac{\sin x}{1+\sin x}$

Created by T. Madas

Question 11 (*****)

The curve C, has gradient $\frac{1}{8}$ at the point with coordinates $\left(1, \frac{1}{2}\right)$ and further satisfies the differential relationship

$$
2 y^{2} \frac{d^{2} y}{d x^{2}}+(2 y+1)(y-1)^{2} \frac{d y}{d x}=0, \quad y \neq 0
$$

Find an equation for C, giving the answer in the form $y=f(x)$.

$2^{\text {ND }}$ ORDER
BY

SUBSTITUTIONS

Created by T. Madas

Question 1 (***)

$$
2 y \frac{d^{2} y}{d x^{2}}-8 y \frac{d y}{d x}+16 y^{2}=\left(\frac{d y}{d x}\right)^{2}, y \neq 0,
$$

Find the general solution of the above differential equation by using the transformation equation $t=\sqrt{y}$.

Give the answer in the form $y=f(x)$.

$$
y=\left(A \mathrm{e}^{2 x}+B x \mathrm{e}^{2 x}\right)^{2}
$$

\square

Question 2 (***)
The differential equation

$$
x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=3 x, x \neq 0
$$

is to be solved subject to the boundary conditions $y=\frac{3}{2}, \frac{d y}{d x}=\frac{1}{2}$ at $x=1$.
a) Show that the substitution $v=\frac{d y}{d x}$, transforms the above differential equation into

$$
\frac{d v}{d x}+\frac{2 v}{x}=3
$$

b) Hence find the solution of the original differential equation, giving the answer in the form $y=f(x)$.

Question 3 (***)
The curve C has equation $y=f(x)$ and satisfies the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-2 y\left(2 x^{2}-1\right)=3 x^{3} \mathrm{e}^{x}, x \neq 0
$$

is to be solved subject to the boundary conditions $y=\frac{3}{2}, \frac{d y}{d x}=\frac{1}{2}$ at $x=1$.
a) Show that the substitution $y=x v$, where v is a function of x transforms the above differential equation into

$$
\frac{d^{2} v}{d x^{2}}-4 v=3 \mathrm{e}^{x}
$$

It is further given that C meets the x axis at $x=\ln 2$ and has a finite value for y as x gets infinitely negatively large.
b) Express the equation of C in the form $y=f(x)$.

Question $4 \quad(* * *+)$
The differential equation

$$
\left(x^{3}+1\right) \frac{d^{2} y}{d x^{2}}-3 x^{2} \frac{d y}{d x}=2-4 x^{3}
$$

is to be solved subject to the boundary conditions $y=0, \frac{d y}{d x}=4$ at $x=0$.

Use the substitution $u=\frac{d y}{d x}-2 x$, where u is a function of x, to show that the solution of the above differential equation is

$$
y=x^{4}+x^{2}+4 x .
$$

\square

Question 5 (****)

$$
\frac{d^{2} y}{d x^{2}}-\left(1-6 \mathrm{e}^{x}\right) \frac{d y}{d x}+10 y \mathrm{e}^{2 x}=5 \mathrm{e}^{2 x} \sin \left(2 \mathrm{e}^{x}\right)
$$

a) By using the substitution $x=\ln t$ or otherwise, show that the above differential equation can be transformed to

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+10 y=5 \sin 2 t
$$

b) Hence find a general solution for the original differential equation.
$y=\mathrm{e}^{-3 \mathrm{e}^{x}}\left[A \cos \left(\mathrm{e}^{x}\right)+B \sin \left(\mathrm{e}^{x}\right)\right]+\frac{1}{6} \sin \left(2 \mathrm{e}^{x}\right)-\frac{1}{3} \cos \left(2 \mathrm{e}^{x}\right)$

$x=\ln t$ DIFPGENTIATE W.R.T y	- 等 t 娔
SURSITVITNG INO THE O.D.E. AND SIMPEIFY, NOTINO Guathe That $e^{x}=t$	

b) Sowine THE retnspormod qavation

- _quxivatey Epuattons
- particurar initgeal

$$
\Rightarrow \lambda^{2}+6 \lambda+10=0
$$

$$
\Rightarrow(\lambda+3)^{2}-9+10=0
$$

$$
\Rightarrow(a+3)^{2}=-1
$$

$$
\Rightarrow \lambda+3= \pm i
$$

$$
\Rightarrow \lambda=-3 \pm i
$$

complimentrey functón $y=e^{-3 t}$ (Acost $\left.+\operatorname{Bon} t\right)$ $y=P \cos 2 t+\phi \sin 2 t$ $\dot{y}=-2 \sin 2 t+2 \varphi \cos 2 t$
$\ddot{y}=-4 P \cos 2 t-4 \varphi \sin 2 t$ SUB NOO THE O.D.E. $\ddot{y}=-4 \cos t-4 \sin 2 t$ $t 6 y=129 \cos t-12 p \sin 2 t$
$+10 y=100 \cos t+104 \sin 2 t$
 $(6 P+12 Q) \cos 2 t$ $\stackrel{+}{(69-127)} \sin 2$ $\equiv S \sin 2 t$ 6P+12P-0 $6 Q-12 P=5$ $\Rightarrow 6 Q+24 Q=5$
$\Rightarrow 30 Q=5$ $\Rightarrow Q=\frac{1}{6}$
$\Rightarrow P=-\frac{1}{3}$
Hance Tife gabloral Soution ann be ruind
$\Rightarrow y=e^{-3 t}(A \cos t+B \sin t)-\frac{1}{3} \cos 2 t+\frac{1}{6} \sin 2 t$ $\Rightarrow y=e^{-3 e^{x}}\left[A \cos \left(e^{x}\right)+B \sin \left(e^{x}\right)\right]-\frac{1}{3} \cos \left(2 e^{x}\right)+\frac{1}{6} \sin \left(2 e^{x}\right)$

Created by T. Madas

Question 6 (***+)
Solve the differential equation

$$
x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0
$$

Question $7 \quad(* * *+)$

$$
x \frac{d^{2} y}{d x^{2}}+(6 x+2) \frac{d y}{d x}+9 x y=27 x-6 y .
$$

Use the substitution $u=x y$, where u is a function of x, to find a general solution of the above differential equation.

$$
\text { Fiz } y=\frac{A}{x} \mathrm{e}^{-3 x}+B \mathrm{e}^{-3 x}+3-\frac{2}{x}
$$

Question $8 \quad(* * *+)$

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x} \tan x-y \sec ^{4} x=0
$$

The above differential equation is to be solved by a substitution.
a) If $t=\tan x$ show that \ldots
i. $\ldots \frac{d y}{d x}=\frac{d y}{d t} \sec ^{2} x$
ii. $\because \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}} \sec ^{4} x+2 \frac{d y}{d t} \sec ^{2} x \tan x$
b) Use the results obtained in part (a) to find a general solution of the differential equation in the form $y=f(x)$.
\square $y=A \mathrm{e}^{\tan x}+B \mathrm{e}^{-\tan x}$

Created by T. Madas

Question $9 \quad(* * *+$)
Show clearly that the substitution $z=\sin x$, transforms the differential equation

$$
\frac{d^{2} y}{d x^{2}} \cos x+\frac{d y}{d x} \sin x-2 y \cos ^{3} x=2 \cos ^{5} x
$$

into the differential equation

Question $10 \quad(* * *+)$
By using the substitution $z=\frac{d y}{d x}$, or otherwise, solve the differential equation

$$
\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=6 x^{2}+2
$$

subject to the conditions $x=0, y=2, \frac{d y}{d x}=1$

Created by T. Madas

Question 11 (****)
Use the substitution $z=\sqrt{y}$, where $y=f(x)$, to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-5 \frac{d y}{d x}+2 y=0
$$

subject to the boundary conditions $y=4, \frac{d y}{d x}=44$ at $x=0$.

$$
y=9 \mathrm{e}^{6 x}-6 \mathrm{e}^{x}+\mathrm{e}^{-4 x}
$$

Give the answer in the form $y=f(x)$.

Created by T. Madas

Question 12 (****)

$$
2 x \frac{d^{2} y}{d x^{2}}+\left(1-3 x^{\frac{1}{2}}\right) \frac{d y}{d x}+y=0
$$

The above differential equation is to be solved by a substitution.
a) Given that $y=f(x)$ and $t=x^{\frac{1}{2}}$, show clearly that \ldots
i. $\ldots \frac{d y}{d x}=\frac{1}{2 t} \frac{d y}{d t}$.
ii. $\Omega \frac{d^{2} y}{d x^{2}}=\frac{1}{4 t^{2}} \frac{d^{2} y}{d t^{2}}-\frac{1}{4 t^{3}} \frac{d y}{d t}$.
b) Hence show further that the differential equation

$$
2 x \frac{d^{2} y}{d x^{2}}+\left(1-3 x^{\frac{1}{2}}\right) \frac{d y}{d x}+y=0
$$

can be transformed to the differential equation

$$
\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=0
$$

c) Find a general solution of the original differential equation, giving the answer in the form $y=f(x)$.

Question 13 (****)
Show clearly that the substitution $z=y^{2}$, where $y=f(x)$, transforms the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-5 \frac{d y}{d x}+2 y=0
$$

into the differential equation

Question 14 (****)
Given that if $x=t^{\frac{1}{2}}$, where $y=f(x)$, show clearly that
a) $\frac{d y}{d x}=2 t^{\frac{1}{2}} \frac{d y}{d t}$.
b) $\frac{d^{2} y}{d x^{2}}=4 t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}$.

The following differential equation is to be solved

$$
x \frac{d^{2} y}{d x^{2}}-\left(8 x^{2}+1\right) \frac{d y}{d x}+12 x^{3} y=12 x^{5}
$$

subject to the boundary conditions $y=\frac{10}{3}, \frac{d^{2} y}{d x^{2}}=10$ at $x=0$.
c) Show further that the substitution $x=t^{\frac{1}{2}}$, where $y=f(x)$, transforms the above differential equation into the differential equation

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+3 y=3 t
$$

d) Show that a solution of the original differential equation is

$$
y=\mathrm{e}^{3 x^{2}}+\mathrm{e}^{x^{2}}+x^{2}+\frac{4}{3}
$$

Created by T. Madas

Question 15 (****)

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x} \cot x+2 y \operatorname{cosec}^{2} x=2 \cos x-2 \cos ^{3} x
$$

Use the substitution $y=z \sin x$, where z is a function of x, to solve the above differential equation subject to the boundary conditions $y=1, \frac{d y}{d x}=0$ at $x=\frac{\pi}{2}$.

Give the answer in the form

$$
y=a \sin ^{2} x+b(1-\sin x) \sin 2 x
$$

where a and b are constants to be found.

Question 16 （＊＊＊＊）

$$
x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-x^{3} y+x^{5}=0
$$

Use the substitution $x=z^{\frac{1}{2}}$ ，where $y=f(x)$ ，to find a general solution of the above differential equation．

$$
\mathrm{V}, y=A \mathrm{e}^{\frac{1}{2} x^{2}}+B \mathrm{e}^{-\frac{1}{2} x^{2}}+x^{2}
$$

$0^{-20 z^{k \prime}}$	
业＂ 0 发安	
$\frac{d y}{d x}=22^{\text {k }}$ 隹	
Naw servit tre of ois	
	为 $x^{4}+2^{4}=0$

\square

Question 17 (****)
Use a suitable substitution to solve the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-6 y=2-2 \ln x-6(\ln x)^{2}
$$

subject to the boundary conditions $y(1)=1, \frac{d y}{d x}(1)=3$

Give a simplified answer in the form $y=f(x)$.
\square

$$
y=x^{3}+(\ln x)^{2}
$$

$y=x^{3}+(\ln x)^{2}$

Question 18
(****)
Use a suitable trigonometric substitution to solve the following differential equation

$$
y=3 x-\cos (\arcsin x)
$$

Question 19 (****)

$$
4 x \frac{d^{2} y}{d x^{2}}+4 x\left(\frac{d y}{d x}\right)^{2}+2 \frac{d y}{d x}=1
$$

By using the substitution $t=\sqrt{x}$, or otherwise, show that the general solution of the above differential equation is

$$
y=A-\sqrt{x}+\ln \left[1+B \mathrm{e}^{2 \sqrt{x}}\right]
$$

where A and B are arbitrary constants.
\square , proof

Question 1 (**+)
Find the general solution of the following differential equation.

$$
\frac{d^{4} \psi}{d x^{4}}+2 \lambda \frac{d^{2} \psi}{d x^{2}}+\lambda^{4} \psi=0
$$

$$
\psi=A \cos \lambda x+B \sin \lambda x
$$

Question 2 (***)
Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=1
$$

given that $y=-\frac{1}{4}$ and $\frac{d y}{d x}=1$ at $x=0$, giving the answer in the form $y=f(x)$.

$$
y=\frac{1}{2}\left[2 x-\mathrm{e}^{-2 x}\right]
$$

\square

Question 3 (***+)
Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+4\left(\frac{d y}{d x}\right)^{2}=1
$$

given that $y=0$ and $\frac{d y}{d x}=\frac{1}{6}$ at $x=0$, giving the answer in the form $y=f(x)$.

$$
y=\frac{1}{4} \ln \left[\frac{1+2 \mathrm{e}^{4 x}}{3}\right]-\frac{1}{2} x
$$

Question $4 \quad(* * *+)$

$$
\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=1
$$

Given that $y=\frac{d y}{d x}=0$ at $x=0$, show that

$$
y=-x+\ln \left[\frac{1}{2}\left(1+\mathrm{e}^{2 x}\right)\right] .
$$

\square
-1 TAelation using hypergrul functows from - $1=\frac{1}{2}$
$\Rightarrow \frac{d y}{d x}=\frac{e^{2 x}-1}{e^{2 x}+1}$
$\Rightarrow \frac{d y}{d z}=\tanh x$
$\Rightarrow \int_{y=0}^{y} 1 d y=\int_{x=0}^{x} \frac{\sin h x}{\cos / 1 x} d x$ $\Rightarrow[y]_{0}^{y}=[\ln (\cosh x)]_{0}^{x}$ $\Rightarrow y=\ln ($ cosin $)-\operatorname{lin} t$ Whllat M+rCES Since $\rightarrow y=\ln \left[\frac{1}{2} e^{2}+\frac{1}{2} e^{x}\right]-\ln \left[e^{-2}\left[e^{2}+\frac{1}{2}\right]\right]$

Question 5 (***+)
The function with equation $y=f(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}=\frac{2}{2 x-1}\left(1-\frac{d y}{d x}\right), \quad y(0)=1, \quad \frac{d y}{d x}(0)=-1 .
$$

Solve the above differential equation giving the answer in the form $y=f(x)$.

$$
y=x+1+\ln |2 x-1|
$$

Created by T. Madas

Question 6 (****)

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\left(x^{2}+n^{2}\right) y=0
$$

The above differential equation is known as modified Bessel's Equation.

Use the Frobenius method to show that the general solution of this differential equation, for $n=\frac{1}{2}$, is

$$
y=x^{-\frac{1}{2}}[A \cosh x+B \sinh x] .
$$

Question 7 (****)
Use the Frobenius method to find a general solution, as an infinite series, for the following differential equation

$$
4 x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(3-4 x^{2}\right) y=0
$$

Give the final answer in terms of elementary functions.

$$
y=\sqrt{x}(A \cosh x+B \sinh x)
$$

\square

- Arscme A sfenes seumtan of The fell $y=\sum_{i o}^{\infty} a_{r} x^{1+p}, a_{0} \neq 0, p \in \mathbb{R}$
 fracy gomina mutres $\underbrace{4(T+p+2)(r+p+1)-4(1+p+2)+3 a_{\mathrm{C+1}}-4 a_{t}=0}$ $a^{a_{r-2}}=\underbrace{4(r+p+2)(r+e+1)-4 a^{4(5+++2)+3}}\}$ $\operatorname{TOY} A \mathrm{BH}-$ LT $\mathrm{C}+\mathrm{P}=\mathrm{K}_{\mathrm{B}}$
$\begin{aligned} & =4 k^{2}+2 k+8-(2 k+2)+3 \\ & 4 k^{2}+8 k+3-8+3\end{aligned}$
$=(2 k+3)(k+1$

$$
\therefore a_{r+2}=\frac{4 a_{n}}{[2(1++p)+3)][2(r+4)+1]}
$$

$$
\left\{a_{n_{2}}=\frac{4 a_{1}}{(2+2 p+3)(2 r+2 p+1)}\right.
$$

$$
\text { (a) Bow if } p=\frac{1}{2}
$$

\square
\square

$$
y_{2}=a x^{2}\left[x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{4!}+\cdots\right]
$$

$$
y_{2}=B \sqrt{x} \sinh x
$$

Question 8 (****)
Find the solution of following differential equation

$$
\left(\frac{d y}{d x}\right)\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

subject to the boundary conditions.

$$
y\left(-\frac{1}{2} \pi\right)=y^{\prime}\left(-\frac{1}{2} \pi\right)=0, \quad y^{\prime \prime}\left(-\frac{1}{2} \pi\right)=\frac{1}{2}
$$

Given the answer in the form $y=f(x)$.

Question $9 \quad(* * * *+)$
A curve has a stationary point at $\left(-\frac{1}{2},-\frac{1}{2}\right)$.

The rate of change of the gradient function of the curve is given by

$$
x+y+2
$$

where $x+y+2>0$.

Determine the equation of the curve, giving the answer in the form $y=f(x)$.

Smet witt to cevios sperstruas	
	$\rightarrow \frac{8^{\prime}}{\text { d }}$
ThTS O.D.E HAS THE INPEPANOANT UARIABCE MISSING, SO 	
$p=\frac{d v}{d x}$	
Diffeesmat math reser Tov	
\Rightarrow P枵 $=v$	
	$\Rightarrow p d p=v a v$

Question 10 (****+)
Solve the following differential equation

$$
y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d y}{d x}=0, \quad y(0)=2, \quad \frac{d y}{d x}(0)=-\frac{1}{2}
$$

Give the answer in the form $y^{2}=f(x)$.
\square $y^{2}=3+\mathrm{e}^{-2 x}$
$\int_{\frac{d y}{d x}}^{d x^{2}}+\left(\frac{d y}{x x}\right)^{2}+2 y \frac{d y}{d x}=0 \quad x=0, y=2, \frac{d y}{d x}=-\frac{1}{2}$
 0.0.6. Resmble Diffreriates
$\frac{d}{d x}\left(y \frac{d y}{d x}\right)=\frac{d y}{d x} \times \frac{d y}{d x}+y \times \frac{d^{2} y}{d x^{2}}=y \frac{d^{2}}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}$ $\frac{d}{d x}\left(y^{2}\right)=2 y \frac{d y}{d z}$

Henct we way Rewerte is
$\Rightarrow \frac{d}{d x}\left[y \frac{d y}{d x}+y^{2}\right]=0$
$\Rightarrow \quad y \frac{d y}{d x}+y^{2}=C$
Arey conotion $y=2, \frac{d y}{d 2}=-\frac{1}{2}$
$\Rightarrow 2\left(-\frac{1}{2}\right)+2^{2}=c$
$\Rightarrow c=3$
$\Rightarrow y \frac{d y}{d x}+y^{2}=3$
Plocees By Separeation of vadenelfes
$\Rightarrow y \frac{d y}{d x}=3-y^{2}$
$\Rightarrow \quad \frac{d y}{d t}=\frac{3-y^{2}}{y}$
$\Rightarrow \frac{y}{3-y^{2}} d y=1 d x$
$\rightarrow \int_{3-\frac{2}{3-9}}^{x} d=\int-2 d$

Question $11 \quad(* * * *+)$
By writing $\frac{d y}{d x}=p$ and seeking a suitable factorization find a general solution for the non linear differential equation

$$
\left(\frac{d y}{d x}\right)^{2}=\frac{d y}{d x}\left(\frac{x^{2}-y^{2}}{x y}\right)+1
$$

$$
(x y+A)\left(x^{2}-y^{2}+B\right)=0
$$

Give the solution in the form $F(x, y) G(x, y)=0$.

Question 12 (****+)
By writing $\frac{d y}{d x}=p$ and seeking a suitable factorization find a general solution for the non linear differential equation

$$
\left(\frac{d y}{d x}\right)^{2}+y \frac{d y}{d x}=x^{2}+x y
$$

Give the solution in the form $F(x, y) G(x, y)=0$.

$$
\left(2 y-x^{2}+A\right)\left(x+y-1+B \mathrm{e}^{-x}\right)=0
$$

Question 13 (*****)
A curve C is described implicitly by the equation

$$
x y^{2}=\mathrm{e}^{y}
$$

a) Show, by a detailed method, that

$$
\left(y^{2}-2 y\right) \frac{d^{2} y}{d x^{2}}+\left(y^{2}-2\right)\left(\frac{d y}{d x}\right)^{2}-4 y^{3} \frac{d y}{d x} \mathrm{e}^{-y}=0
$$

b) Use an analytical method, with suitable boundary conditions, to obtain the equation of C by solving the above differential equation.
\square
\square

$p=\frac{d y}{d x}$
$\frac{d p}{d y}=\frac{d}{d y}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}} \times \frac{d x}{d y}=\frac{d^{2} y}{d x^{2}} \times \frac{1}{P}$

Thasfori THE O.D.E
$\Rightarrow\left(y^{2}-2 y\right) \frac{d y}{d x^{2}}+\left(y^{2}-2\right)\left(\frac{d y}{d x}\right)^{2}-4 y^{3} e^{-y} \frac{d y}{d x}=0$
$\Rightarrow\left(y^{2}-2 y\right) p d p+\left(y^{2}-2\right) p^{2}-4 y^{3} e^{-y} p=0$
$\Rightarrow\left(y^{2}-2 y\right) \frac{d p}{d y}+\left(y^{2}-2\right) p-4 y^{3} e^{-y}=0$
$\Rightarrow \frac{d f}{d y}+\frac{y^{2}-2}{y^{2}-2 y p}=\frac{4 y^{3} e^{-y}}{y^{2}-2 y}$

$e^{\int \frac{y^{2}-2}{y^{2}-2 y} d y}=e^{\int \frac{y^{2}-2 y+2 y-2}{y^{2}-2 y} d y}=e^{\int 1+\frac{2 x-2}{y(y-2)} d y}$
$=e^{\int 1+\frac{1}{3}+\frac{1}{y-2} d y}=e^{y+\ln y+\ln (y-2)}$
$=e^{y} \times e^{\ln y} \times e^{\ln (y-2)}=e^{y}[y(y-2)]=e^{y}\left(y^{2}-2 y\right)$
$\Rightarrow \frac{d}{d y}\left[p e^{y}\left(y^{2}-2 y\right)\right]=\frac{4 y^{3} e^{2}-y}{y^{2}-2 y} \times e^{y}\left(y^{2}-2 y\right)$
$\Rightarrow \frac{d}{d y}\left[\operatorname{Pe}^{y}\left(y^{2}-2 y\right)\right]=4 y^{3}$

Question 14 (*****)
Find a general solution of the following differential equation.

$$
y=x \frac{d y}{d x}+\mathrm{e}^{\frac{d y}{d x}}
$$

	- $\frac{3}{13}=0 \Rightarrow \underline{y=A x+B}$
	- $x+y-2$ 霫 $=0$
	$\Rightarrow x$ ded $-y=x$
	$\Rightarrow \frac{d y}{a b}-\frac{u}{2}=1$

