Created by T. Macas DIFFERENTIAL FOUATIONS DIFFEREN I. EQUATIONS 1st order ASSINGUISCOUL I. Y.C.P. MARIASINGUISCOUL I. Y.C.P. MARIASING

SEPARATION OF VABLES SEPARA'I. OF VARIABLES

Question 1 (**)

²028m21

K.C.B. Madasm

I.C.B.

Show that if y = a at t = 0, the solution of the differential equation

$$\frac{dy}{dt} = \omega \left(a^2 - y^2\right)^{\frac{1}{2}}$$

where a and ω are positive constants, can be written as

KCP

- 4 <u>0</u>).
$\frac{dx}{dt} = \omega \left(a^{2} - x^{2}\right)^{\frac{1}{2}}$ $\frac{dx}{dt} = \omega \left(a^{2} - x^{2}\right)^{\frac{1}{2}}$ $\frac{dx}{dt} = \omega \left(a^{2} - x^{2}\right)^{\frac{1}{2}} \left(a^{2} - $	entropy from the or and a canada a canada 1 = sonc C = II 2 = a (Subtration + coastson II) 2 = a coast 4 Bayones

madasn.

200

COM

proof

(0.0

1+

COM

madasn.

I.G.p.

Created by T. Madas

00

Question 2 (**+)

Show that a general solution of the differential equation

$$5\frac{dy}{dx} = 2y^2 - 7y + 3$$

is given by

1.C.B.

I.C.P.

$$\frac{dy}{dx} = 2y^2 - 7y + 3$$
$$y = \frac{Ae^x - 3}{2Ae^x - 1},$$

where *A* is an arbitrary constant.

$S = \frac{dy}{dt} = 2y^2 - 7y + 3$
START BY SEPARATING UAPIARIES
⇒ 5 dy = (2y²-7y+3) dr
$\implies \frac{s}{2y^2 - 7y + 3} dy = 1 dx$
$= \frac{s}{(2y-1)(y-3)} dy = \int dy$
PARTIAL FRACTIONS ON THE LIFE OF THE O.D.E
$=\frac{5}{(2y-1)(y-3)} = \frac{P}{2y-1} + \frac{Q}{y-3}$
\Rightarrow $S \Rightarrow P(y-3) + Q(2y-1)$
● F {}=3 == 5 = 5\$ → Q=1
 IF y=0 ⇒ 5=-3P-Q ⇒ 5=-3P-1
→ 3P = -6 → P = -2
ETWENING TO THE O.D.E.
$\Rightarrow \int \frac{1}{y^{-3}} - \frac{z}{zy-1} dy = \int 1 dz$

F.G.B.

わっ

·C.

2017

proof

Ś

Question 3 (**+)

Show that a general solution of the differential equation

Ins.com

.Y.G.B.

I.Y.C.B

$$e^{x+2y}\frac{dy}{dx} + (1-x)^2 = 0$$

is given by

Ths.com

I.F.G.B

$$e^{x+2y} \frac{dy}{dx} + (1-x)^2 = 0$$
$$y = \frac{1}{2} \ln \left[2e^{-x} \left(x^2 + 1 \right) + K \right]$$

where K is an arbitrary constant.

I. C.B. Madasman

	10
12	,
- 9	2m
proof	Ng.

ths.com

I.G.B.

the COL

I.C.S.

· ·

.

112/2S112

. DD

$e^{-x(x^2+1)} + K$		1 A.
$e^{-x}\left(x^2+1\right)+K$,	
	<u>A.</u>	10
	n_{-}	
1	19. x	
	·9/1	
	"Un	1
O .		Luna e C
ľA –		proof
n - 1		
V9.		X.S.
STALL.		
· ()	$\Rightarrow e^{\frac{2}{6}\frac{183}{0\lambda}} \frac{dy}{dx} + (1-x) = 0$ (=)	129 -2 2
10	$\partial \lambda$ γ	$\frac{1}{2} = \frac{2}{4} = \frac{1}{4} (1-2)^2 = \frac{1}{2} = \frac{1}{4} (1-2)^2 = \frac{1}{4} $
	$= \frac{dx}{dx} = -\frac{(1-x)^2}{dx} dx \qquad (= \frac{1}{2})^2$	2 = e^[(-1) - 2(-1) + 2]+C
~ /	$\Rightarrow \int e^{24} dy = \int -e^{2} (1-x)^2 dx \qquad (\Rightarrow \frac{1}{2})^2$	$e^{23} = e^{2} \left[1 - 24 + \frac{3}{2} + \frac{3}{2}$
	C * BY PHC0	$e^{3} = 2e^{2}(a^{2}+1) + k (k + 2k)$
	$\begin{pmatrix} e^{-x} \rightarrow -2 \begin{pmatrix} t-x \\ e^{-x} \rightarrow -\frac{t^{2}}{2} \end{pmatrix}$	$2j = ln [2a^{2}(2+1) + k]$
	$= \frac{1}{2}e^{2} = e^{2}(1-x)^{2} - \left[-2(1-x)e^{2}\right]$	$y = \frac{1}{2} \ln \left[2e^{2}(2+1) + k \right]$
	$\Rightarrow \frac{1}{2}e^{2y} = e^{3}(1-x)^{2} + \int 2(1-x)e^{3}dx$	JEL CHOIL
	201-20-23	//
<u>k</u> .	(-e ² , e ²)	
	$\Rightarrow \frac{1}{2}e^{\frac{2y}{2}} = \frac{2}{e^{2}(1-1)^{2}} - 2e^{2}(1-1) - 2e^{2}d_{1}$	
1		5 K 5 1 1 1
- X. I.Y.		
<u> </u>		
		1 1 1 L
<u> </u>		
	100	
6	Vo .	
il n	Carl	
15		
Mon .	S	
018.2		I .
16		la
		ed at s
	_	
· · · · · · · · · · · · · · · · · · ·	n	41 A
	<i>.n</i> .	- MAR
	Un.	4.0
		C / /
-		
r.		
		1.

Created by T. Madas

Question 4 (**+)

$$x\frac{dy}{dx} = \sqrt{y^2 + 1}$$
, $x > 0$, with $y = 0$ at $x = 2$.

y =

Show that the solution of the above differential equation is

- 100	
$\begin{array}{c} x_{c} \frac{du}{dt} = \sqrt{y_{c}^{2} + 1} \\ \Rightarrow \int \sqrt{y_{c}^{2} + 1} dy = \int \frac{1}{\lambda} dx \\ \Rightarrow a conside = \ln \lambda + C \\ \Rightarrow \ln(y_{c} + \sqrt{y_{c}^{2} + 1}) = \ln \lambda + C \\ \Rightarrow \ln(y_{c} + \sqrt{y_{c}^{2} + 1}) = \ln \lambda + C \\ \Rightarrow \ln(y_{c} + \sqrt{y_{c}^{2} + 1}) = \ln \lambda + C \\ \Rightarrow (y_{c} + \sqrt{y_{c}^{2} + 1}) = \ln \lambda + C \\ \Rightarrow (y_{c} + \sqrt{y_{c}^{2} + 1}) = -\frac{1}{\lambda} \\ \Rightarrow (y_{c} + \sqrt{y_{c}^{2} + 1}) = -\frac{1}{\lambda} \\ \text{where } x \ge x_{c} = 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{4-\frac{1}{2}}$	/

proof

Question 5 (***

.....

$$\int \frac{dy}{dx} + y^2 = xy^2, \ x > 0, \ y > 0$$

Show that the solution of the above differential equation subject to y = e at x = 1, is

1	
$e^{\frac{1}{2}}\frac{du}{dt} + y^2 = 2y^2$ $e^{\frac{1}{2}}\frac{du}{dt} = -2y^2 - y^2$ $e^{\frac{1}{2}}\frac{du}{dt} = -y^2(x-1)$ $= -\frac{1}{(1+x)}dy = -\frac{x-1}{e^x}dy$	$\begin{cases} \Rightarrow -\frac{1}{y} \in (1-x)e^{-1} - e^{-x} + C \\ \Rightarrow -\frac{1}{y} = e^{-1}[(1-x)e^{-1} + C + C + C + C + C + C + C + C + C + $
$(1) \int_{-e^{2x}}^{2^{2}} dy = \int_{-e^{2x}}^{2^{2}} (x-i)e^{2x} dx$	$\frac{1}{y=e}$ $\frac{1}{e} = 1 \times e^{-1} + C$ $\frac{1}{e} = \frac{1}{e} + C$ $C = 0$
$\begin{array}{l} \begin{array}{l} \begin{array}{l} -y^{2} & -(x-1)e^{2\lambda} - \int -e^{2\lambda} dx \\ y & -\int & = (1-2)e^{2\lambda} + \int e^{2\lambda} dx \end{array} \end{array}$	$ \begin{array}{c} \therefore \frac{1}{y} = xe^{2} \\ y = \frac{1}{xe^{2}} \\ y = \frac{1}{x}e^{2} \end{array} $

proof

Question 6 (***)

A curve y = f(x) satisfies the differential equation

$$y = 1 - \frac{dy}{dx} \frac{x+1}{(x-1)(x+2)}, y > 1, x > -1$$

a) Solve the differential equation to show that

$$\ln(y-5) + \frac{1}{2}x^{2} + 4x - 2\ln(x+1) = C$$

When x = 0, y = 2.

Y.G.B. Madasm

I.C.P.

b) Show further that

$$y = 1 + (x+1)^2 e^{-\frac{1}{2}x^2}$$

(9)	$\begin{split} & \bigcup_{i=1}^{i} (-\frac{du}{dt}, \frac{2\pi i}{(2\pi i)^{2}(2\pi i)}) \\ \Rightarrow & \frac{du}{dt}, \frac{2\pi i}{(2\pi i)^{2}(2\pi i)} + (-y) \\ \Rightarrow & \frac{1-y}{dt}, \frac{dy}{dt}, = (-y) \\ \Rightarrow & \frac{1-y}{dt}, \frac{dy}{dt}, = (\frac{2\pi i)^{2}(2\pi i)}{2\pi i}, \frac{dy}{dt} \\ = \sqrt{\frac{1-y}{2}}, \frac{dy}{dt}, = (\frac{2\pi i}{2\pi i})^{2}, \frac{dy}{dt} \\ \Rightarrow & \frac{1-y}{dt}, \frac{dy}{dt}, = (\frac{2\pi i}{2\pi i})^{2}, \frac{dy}{dt} \\ \Rightarrow & \frac{1-y}{dt}, \frac{dy}{dt}, = (\frac{2\pi i}{2\pi i})^{2}, \frac{dy}{dt} \\ \Rightarrow & \frac{1-y}{1-y}, \frac{dy}{dt}, = (\frac{1}{2\pi i})^{2}, \frac{dy}{dt}, \frac{dy}{dt} \\ \end{cases}$	$\begin{split} &= - h [u_{3}^{2}] = \frac{1}{2}u^{2} - 2h xu + c, \\ &= \frac{3\pi}{9} (y_{3}) (u_{1} - 2y_{1}) - 1 \\ &= -h_{3}(y_{2} - 1) - \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{2} - 1) - \frac{1}{2}u^{2} + 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) = c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) = c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) = c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1}) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_{3}(y_{1} - 1) + \frac{1}{2}u^{2} - 2h(x_{1} - 1) + c, \\ &= h_$	
(b)	$\begin{array}{l} \label{eq:linear_states} \begin{split} \omega_{h1} & =0, \ g=2 \\ & h_1 + 0 - 3h l = c \\ & \mathbb{C} = \mathbb{O} \\ & \stackrel{*}{\sim} & h(g_{-1}) + \frac{1}{2} x^2 - 2h(g_{+1}) = 0 \\ & \implies & h(g_{-1}) = - 2h(x_{+1}) - \frac{1}{2} x^2 \\ & \implies & h(g_{-1}) = - h(g_{++1})^2 - \frac{1}{2} x^2 \end{split}$	$\begin{array}{cccc} \Rightarrow & \underline{\vartheta}_{-1} = & \underline{e}^{b} (3u)_{-\frac{1}{2}}^{2} \underline{\vartheta}^{2} \\ \Rightarrow & \underline{\vartheta}_{-1} = & \underline{e}^{b} (3u)_{-\frac{1}{2}}^{2} \underline{z}^{2} \\ \Rightarrow & \underline{\vartheta}_{-1} = & (zu)_{-\frac{1}{2}}^{2} \underline{e}^{\frac{1}{2}} \underline{z}^{2} \\ \Rightarrow & \underline{\vartheta}_{-1} = & (zu)_{-\frac{1}{2}}^{2} \underline{e}^{\frac{1}{2}} \underline{z}^{2} \\ \Rightarrow & \underline{\vartheta}_{-1} = & (zu)_{-\frac{1}{2}}^{2} \underline{e}^{\frac{1}{2}} \underline{z}^{2} \\ \Rightarrow & \underline{\vartheta}_{-1} = & (zu)_{-\frac{1}{2}}^{2} \underline{z}^{2} \\ \end{array}$	

COM

1120/281

Com

Madasn

F.C.P.

proof

3

F.G.B.

Created by T. Madas

2017

Question 7 (***)

, Y.G.B.

I.V.G.B.

$$\frac{dy}{dx} + \frac{y}{x} = \frac{5}{(x^2 + 2)(4x^2 + 3)}, \ x > 0$$

Given that $y = \frac{1}{2} \ln \frac{7}{6}$ at x = 1, show that the solution of the above differential equation can be written as

 $y = \frac{l}{2\pi} \ln \left(\frac{4\lambda^2 + 3}{2\lambda^2 + 4} \right)$

F.C.B.

madasn

7 = 74

R.

Question 8 (***)

ŀ.C.B.

I.C.B.

 $\frac{dy}{dx} = 1 - \sqrt{y} , y \ge 0, y \ne 1.$

Find the solution of the above differential equation subject to the condition y = 0 at x = 0, giving the answer in the form x = f(y).

F.G.B.

1+

nadasn.

 $x = 2 \ln x$

Question 9 (***)

0

SMaths.com

I.V.G.B.

2

Solve the differential equation

Madasmaths.com

I.G.B.

I.C.B.

I.C.B. Madasmaths.Com

 $\frac{dy}{dx} = 2$

subject to the condition y = 2 at x = 1, giving the answer in the form x = f(y).

madasma

lasmaths.com

aths.com

naths.col

1.G.D.

1.4

.

1.G.5.

1+

mana

 $y = \frac{1}{e^{\frac{1}{6}\pi}}$

Question 10 (***+) The function y = f(x) satisfies the differential equation $\frac{dy}{dx} = \frac{2xy(y+1)}{\sin^2\left(x+\frac{1}{6}\pi\right)}$ E.P. subject to the condition y = 1 at x = 0. Find the exact value of y when $x = \frac{\pi}{12}$. BOWE THE O.D.E. BY SEPARATING VARIABLES $\Rightarrow \frac{d_{2}}{d\lambda} = \frac{2\chi q(y_{+1})}{Sw^{2}(\chi + \frac{\pi}{2})}$ $n2 = 0 + 2\ln(Sm \mp) + 0$ $l_{12} = 2 l_{12} \frac{1}{2}$ $l_{12} = -2l_{12}$ $\frac{1}{g(q_{+1})} dq = \frac{2x}{s_{N}^{2}(x+\overline{x})} dt$ $\rightarrow \int \frac{1}{g(y+1)} dy = \int 22 \cos^2(x+\overline{x}) dx$ $h_2 - 2x\omega + (x+\overline{x}) + 2\ln |x_1(x+\overline{x})|$ THE L.H.S MERINALS DAD AZM 2.4.9 I.C.B. -cst(x+Ŧ) cosec²(x+Ŧ) $\rightarrow h\left|\frac{y}{y+1}\right|$ = $ly_2 - 2 \times (\overline{z}) at \overline{z} + 2h(an \overline{z})$ $+ 2h\left(\frac{1}{r_{\Sigma}}\right)$ h 4+1 $\implies \int \frac{1}{y} - \frac{1}{y^{**}} \, dy = -2\lambda \cot(x + \overline{x}) - \int -2\omega t(x + \overline{x}) \, dx$ + 2105 \implies $h[y] - h[y_{i1}] = -2iat(x_i = -2iat$ n(x+#) + C $\Rightarrow b_1[u_1] = b_1[u_{n+1}] = -2\pi cot(x+\overline{u}) + Db_1[$ El atridi= Inferent +C I.G.B. I.G.B. 1.02 Created by T. Madas

Question 11 (****+)

I.C.p

A curve passes through the point with coordinates $[1, \log_2(\log_2 e)]$ and its gradient function satisfies

Find the equation of the curve in the form y = f(x)

I.G.p.

$\frac{dy}{dx} = 2^y, \ x \in \mathbb{R}, \ x < 2.$	I.V. C.P. I.V.
in the form $y = f(x)$	
], $y = -\log_2[(2-x)\ln 2]$
asnath.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n Gp	······································

nn

mada

I.F.G.p.

2%

Created by T. Madas

2017

2

ins,

 $f(x) = \sqrt{3} + \sqrt{x^2 - 1}$

 $= \frac{\sqrt{x^2-1}}{2}$

I.F.G.B.

L.C.

Madasn

Question 12 (****)

I.G.B.

maths,

I.F.C.P.

$$\frac{dy}{dx} = \sqrt{\frac{y^4 - y^2}{x^4 - x^2}}, \ x > 0, \ y > 0.$$

Find the solution of the above differential equation subject to the boundary condition $y = \frac{2}{\sqrt{3}}$ at x = 2.

Give the answer in the form $y = \frac{2x}{f(x)}$, where f(x) is a function to be found.

 $\frac{dq}{d\lambda} = \sqrt{\frac{q^4 - q^2}{\alpha^4 - \chi^2}} = \frac{|q|}{|\alpha|} \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}} = \frac{|q|}{\alpha \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}}} = \frac{4}{\alpha \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}}} = 4t \ \lambda_1 q > 0$ secd e aicad $e \frac{1}{x}$ $\int \frac{1}{\sqrt{y^2 - 1}} \, dy = \int \frac{1}{2\sqrt{2^2 - 1}} \, dx$ 17-1 0 ecy)+ f $d_{\lambda} = \int \frac{1}{(sech \int sech \int sech$ 1 2472-1 $= \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{2^{k-1}}}{2} \times \frac{1}{2}$ $\frac{\sqrt{3^2}}{23}$ + $\frac{\sqrt{3^2-1}}{23}$ 13'+ 122-1' $y = \frac{2x}{\sqrt{5^{1} + \sqrt{3^{2} - 1^{2}}}}$ 化剂

Created by T. Madas

I.C.A

1ST ORDER V STANF GR/ HERSHIELING COM IN A COM IN A COM IN A COM **BY STANDARD** INTEGRATING T. I.Y.C.B. Madasmalls.Com I.Y.C.B. Madasa

Question 1 (**)

Solve the differential equation

 $\frac{dy}{dx}\sin x + 2y\cos x = 4\sin^2 x\cos x$, $y(\frac{1}{6}\pi) = \frac{17}{4}$.

20/2.51

Give the answer in the form y = f(x).

1.21

Com

100

1

$ \Rightarrow \frac{dy}{dt} + 2y \omega = 49 \pi \omega z $	$\langle \rightarrow g_{SW}^2 \hat{z} = SW^4_{42} + C$ $Mow g(\frac{\pi}{4}) = \frac{17}{4}$
$1.F. e^{\int 2\alpha dx} = e^{2\ln sm\alpha} = su^2 \alpha$	< == + c = + c
$\Rightarrow \frac{d}{dt} \left[y_{SW}^2 x \right] = (4s_{W}x_{cos})_{SW}^2$	$\frac{17}{16} = \frac{1}{16} + C$ C = 4
= d [yanz] = 4 suzzoz	$\therefore y_{SM}^2 = s_M + 4$
	y = suz + 40002

Question 2 (**)

I.C.p

$$\frac{dy}{dx}\sin x = \sin x \sin 2x + y \cos x$$

Given that $y = \frac{3}{2}$ at $x = \frac{\pi}{6}$, find the exact value of y at $x = \frac{\pi}{4}$

KR,

 $1 + \sqrt{2}$

$\frac{dq}{dy}$ and $x = z_{10}x_{20}y_{20} + y_{10}z_{20}$	$\rightarrow y = 2s_1 q_2 + Cs_1 q_2$
$=) \frac{dy}{dx} = SM2x + y cota$	when x=7; y = 3/2
$= \frac{dy}{dx} - y\omega dx = sw2x $ $ F = e^{\int -\omega dx dx} - \ln s \ln x = \frac{1}{s \ln x} $	$\frac{3}{2} = 2x\frac{1}{4} + Cx\frac{1}{2}$ = 1 + C
	C= 2 = 3= 251/2 + 251/2
$\Rightarrow \frac{d}{dt}\left(\frac{\theta}{\sin a}\right) = \frac{\sin 2\lambda}{\sin a} \qquad ($	S = amiltanic
A where a state of the state of	2 marten ze ze 2 3 = 2 × j + v2
= $\frac{9}{5002} = \int \frac{2802052}{5005} dz$	y=1+12
⇒ <u>4</u> = ∫ 2005x da	
$\Rightarrow \frac{y}{sm\lambda} = 2sm\lambda + C$	{

Question 3 (**)

I.Y.C.B. Madasman

Smarns com tro

I.C.B.

 $x\frac{dy}{dx} + 2y = 9x(x^3 + 1)^{\frac{1}{2}}, \text{ with } y = \frac{27}{2} \text{ at } x = 2.$ Aifferential equation is

I.V.C.B. III.21/35II.21/15.COM I.V.C.B. III.21/35II.21/15.COM

The Com

ths.col

I.Y.C.S.

N.C.

1.

Madasman

I.K.C.B. Madash

Created by T. Madas

l.Y.C.P.

Question 4 (**)

20 grams of salt are dissolved into a beaker containing 1 litre of a certain chemical.

The mass of salt, M grams, which remains undissolved t seconds later, is modelled by the differential equation

$$\frac{dM}{dt} + \frac{2M}{20-t} + 1 = 0, \ t \ge 0.$$

Show clearly that

 $M = \frac{1}{10} (10 - t) (20 - t) \, .$

Question 5 (**+)

m.

 $\frac{dy}{dx} + ky = \cos 3x$, k is a non zero constant.

By finding a complimentary function and a particular integral, or otherwise, find the general of the above differential equation.

h.

11. S. S.D.	$y = Ae^{-x} + \frac{k}{9+k^2}\cos 3x + \frac{3}{9+k^2}\sin 3x$
	$y = Ae^{-x} + \frac{k}{9+k^2}\cos 3x + \frac{5}{9+k^2}\sin 3x$
	VI. AN
D 12	
	$\frac{du}{dx} + ky = \cos x$
c dn 4	$\frac{o h_{2k}(\mu_k) + e_k m_0}{\lambda + k} = 0 \qquad (continuoney Factory)$
A. 00	Ar-k : g= Ae
n_{-} q_{0}	· Penual Weger TH
Valar Ola	4= Pice3a 402m3a
4/6 4/6	y'= -34mbr +34mbr
10 dx	S& KD THE O.D.E
	$(3\rho+kR)_{kac3a} + (k\rho-3R)_{kac3a} \equiv cac3a$
	$\frac{3\rho+k\rho=1}{k\rho-s\rho=0} \Rightarrow \frac{\rho=\frac{1}{2}k\rho}{\rho-s\rho=0}$
"Uh "un	$\Rightarrow 3\varphi + k(3k\varphi) = 1$
· · · · · · · · · · · · · · · · · · ·	$\Rightarrow \varphi(3+\frac{1}{2}t^2)=1$
	$- \varphi = \frac{1}{3+\frac{1}{2}t}$
	$ = \frac{1}{q_{+k}} d \left[\frac{1}{q_{+k}} \right] $
	* Gringe Scenar
	$y = 4e^{2k} + \frac{k}{14k^2} \cos 2k + \frac{3}{14k^2} \cos 2k$
	VI SIY.
SO 50	
n in the second se	
	N 112 V22
2 d_{n} $($	
Ph Un	190. 190 <u>.</u> 19
The de	Nn. 42. 9
V2. VA	
911 410	
	1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Che Con	
~/h ~()	
	2 V V/2
SD SA	
40 W	10 M
	a h Va
VI.	7N 10. Ida
Creat	ed by T. Madas

Question 6 (**+)

F.G.B.

I.G.B.

Given that z = f(x) and y = g(x) satisfy the following differential equations

$$\frac{dz}{dx} + 2z = e^{-2x}$$
 and  $\frac{dy}{dx} + 2y = z$ .

- **a**) Find z in the form z = f(x)
- **b)** Express y in the form y = g(x), given further that at x = 0, y = 1,  $\frac{dy}{dx} = 0$





F.C.B.

3

G,

### Created by T. Madas

2

### Question 7 (***)

A curve C, with equation y = f(x), passes through the points with coordinates (1,1) and (2,k), where k is a constant.

Given further that the equation of C satisfies the differential equation

+ 24 (2+3)=1

 $+ \mathcal{Y}\left(\frac{\mathcal{J}_{s}^{2}+3\mathcal{I}}{\mathcal{J}_{s}^{2}}\right) = \frac{1}{14}$ 

 $+ \Im \left(\frac{3+3}{2}\right) = \frac{1}{32}$ 

 $e_x \times e_{\mu \chi} = 3_e f_{\chi}$ 

⇒ de [yarer] = fraser

 $\Rightarrow yz^{e^{1}} = \int ze^{2} dx$ 

+ 4 23

 $x^2 \frac{dy}{dx} + xy(x+3) = 1,$ 

determine the exact value of k.

F.G.B.

I.C.B.



e +1

E.C.A.

### Question 8 (***)

A curve C, with equation y = f(x), meets the y axis the point (0,1).

It is further given that the equation of C satisfies the differential equation

$$\frac{dy}{dx} = x - 2y.$$

**a**) Determine an equation of C.

**b**) Sketch the graph of C.

The graph must include in exact simplified form the coordinates of the stationary point of the curve and the equation of its asymptote.

<u> </u>	n
$e) \underbrace{WHT THE OASE BY THE "WARK FOOD" AND WERE FOR AN INDIFFERENCE FOR THE PROPER \Rightarrow \frac{dd}{dt} = 2 - 2y \Rightarrow \frac{dd}{dt} + 2y = 2x \Rightarrow \frac{dd}{dt} + 2x$	b) $(\frac{1}{2} + \frac{1}{2} + $
$\Rightarrow g = \pm x - \pm + Ce^{2x}$ $\Rightarrow Here (and max) (q_1) \Rightarrow find C$ $\Rightarrow 1 - 0 - \pm + C$ $\Rightarrow C = \frac{\pi}{2}$ $\therefore \underline{g} = \pm 2 - \pm \pm \frac{\pi}{2}e^{2x}$	$\frac{100}{452 \rightarrow +\infty}, y \sim \frac{1}{2}e^{\frac{1}{2}}$ $\frac{452 \rightarrow -\infty}{9}, y \sim \frac{5}{2}e^{\frac{1}{2}}$ $\frac{1}{9}e^{\frac{1}{2}e^{\frac{1}{2}}}$
$\begin{array}{c} \underline{\operatorname{ATICATUL SOUTION }} \\ \operatorname{ATICATU$	(9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9.8) (9

v =



### **Question 10** (***)

The general point P lies on the curve with equation y = f(x).

The gradient of the curve at P is 2 more than the gradient of the straight line segment OP.

 $y = 2x(1 + \ln x)$ 

 $lma = \frac{1}{x}$ 

Given further that the curve passes through Q(1,2), express y in terms of x.

**Question 11** (***)

I.G.B.

I.F.G.B.

 $x\frac{dy}{dx} + 3y = xe^{-x^2}, \ x > 0.$ 

Show clearly that the general solution of the above differential equation can be written in the form

 $2yx^{3} + (x^{2} + 1)e^{-x^{2}} = \text{constant}.$ 

Y.G.P

 $\begin{array}{c} (1) \quad (1) \quad$ 

proof

ŀ.G.p.

3

1

nadası,

### **Question 11** (***+)

Ĉ,

I.G.B.

The curve with equation y = f(x) passes through the origin, and satisfies the relationship

$$\frac{d}{dx}\left[y\left(x^2+1\right)\right] = x^5 + 2x^3 + x + 3xy$$

Determine a simplified expression for the equation of the curve.

 $\int \alpha_{-}(x^{2}+1)^{\frac{1}{2}} dx$ (3C+1)2 = y(x+1)  $2^{2} + 23^{2} + 3 + 3300$  $\frac{\alpha}{(2^{2}+1)^{\frac{1}{2}}} = \frac{1}{3} \left( 2^{2}+1 \right)^{\frac{1}{2}} + 4$  $\Rightarrow \frac{du}{dx}(x^2+1) + 2xy$  $= 3^{4} + 23^{3} + 31 + 334$  $y = \frac{1}{3} (x^{2} + t)^{2} + A(x^{2} + t)^{\frac{1}{2}}$  $\frac{dq}{dx}(x^2+1) - xq = x^2 + 2x^3 + 3x$  $- \frac{\mathcal{I}_{s+1}}{\mathcal{I}_{s+1}} = \frac{\mathcal{I}_{s+1}}{\mathcal{I}_{s+1}}$  $\rightarrow \frac{\partial g}{\partial a} - \left(\frac{\chi^2 + 1}{\chi^2 + 1}\right) g = \frac{\chi(\chi^{k} + 2\chi + 1)}{\chi^2 + 1}$ . ∍ A=-<u>+</u>  $\implies \underbrace{y = \frac{1}{3}(x^{2}+1)^{2} - \frac{1}{3}(x^{2}+1)^{\frac{1}{2}}}_{=}$  $\rightarrow \frac{du}{dt} - \left(\frac{x}{x^{2+1}}\right)y = -\frac{x(x^{2+1})^2}{x^{2+1}}$  $\rightarrow \frac{d_1}{d\chi} - \left(\frac{\chi}{\chi^2 + 1}\right) y = \chi(\chi^2 + 1)$ LOCK POR AN INTHERATING FACTOR  $\int -\frac{2t+1}{x} dt = \int -\frac{1}{x} \frac{2t+1}{x} dt$ [h (x71)]2  $= (x^2+i)^{-\frac{1}{2}} \sim \frac{l}{\sqrt{x^2+i^{-1}}}$ WE NOW HAVE  $\implies \frac{d}{d\lambda} \left[ -\frac{1}{\sqrt{\lambda^2 + i}} \right] = -\mathcal{A}(\lambda^2 + i) \times \frac{1}{\sqrt{\lambda^2 + i}}$  $\Rightarrow \frac{d}{da} \left[ \frac{q}{\sqrt{a^2 + 1^2}} \right] =$ 2.(x²+1)^½

 $y = \frac{1}{3}(x^2 + 1)^2$ 

 $\frac{1}{3}(x^2 +$ 

F.C.P.

Question 12 (***+)

I.C.B.

I.C.B.

$$\frac{dy}{dx} + \frac{y}{x} = \frac{5}{\left(x^2 + 2\right)\left(4x^2 + 3\right)}, \ x > 0$$

Given that  $y = \frac{1}{2} \ln \frac{7}{6}$  at x = 1, show that the solution of the above differential equation can be written as



WEITH THE O.D.E IN THE WORL ORDER
$ = \frac{du}{dx} + \frac{y}{2} = \frac{z}{(z^2+z)(4z^2+z)} $
INTERATING FROTOL CAN BE FOULD
e ta la = a
that we derthin
$\longrightarrow \frac{d}{dt}(yx) = \frac{5x}{(x^2t_2)(4t_2)}$
$\therefore \implies y_2 = \int \frac{s_x}{(\vec{x} + z)(\vec{y}_1^2 + \bar{z})} dz$
PACTAL FRACTIONS ARE NEEDED
$\frac{5\alpha}{(\lambda^{2}\varrho)(k^{2}+3)} \equiv \frac{4\alpha+\beta}{\alpha^{2}+2} + \frac{C\alpha+\beta}{4\alpha^{2}+3}$
$\int_{D_{\alpha}} \equiv (A_{\alpha+\beta})(A\hat{x}+3) + (G^{2}+2)(C_{\alpha+\beta})$
$5\alpha = \frac{4A\alpha^3 + 4B\alpha^2 + 3A\alpha + 3B}{C\alpha^3 + D\alpha^2 + 2C\alpha + 2D}$
$5\Delta \equiv (4A+C)\chi^3 + (4B+D)\chi^2 + (3A+2C)\chi + (3B+2D)$
$\begin{array}{ccc} 4A+C=0 & 2 \rightarrow & 8A+2C=0 & 2 \rightarrow & \frac{A=-1}{C=4} \\ 3A+2C=S & 3A+2C=S & 3A+2C=S & 2 \rightarrow & \frac{A=-1}{C=4} \end{array}$
$48+D = 0$ 2 = $88+2D = 0$ 2 = $\frac{B=0}{38+2D = 0}$ 3 = $\frac{B=0}{D=0}$

The second second
CARRYING ON THE REPUISIO INTERATION
$= y_{2} = \int \frac{4x}{4x^2 + 3} - \frac{\alpha}{3x^2 + 2} dx$
$\implies 2u_1 a = \int \frac{8a}{4x^2+3} - \frac{2a}{x^2+2} dx$
$= 2y_2 = \ln(42+3) - \ln(2+2) + \ln 4$
$\rightarrow 20^{2} - \ln \left[\frac{4(32+3)}{2^{2}+2}\right]$
APPO CONDITION a=1, g= ±1m7
$= 2 \times \frac{1}{2} \ln \frac{7}{4} \times 1 = \ln \left(\frac{74}{3}\right)$
$\implies \ln \frac{7}{4} = \ln \frac{74}{3}$
$\rightarrow$ $\frac{7}{6} = \frac{74}{3}$
Finitury we there
$\implies 2ijx = \ln \left[ \frac{4z^2 + 3}{2(z^2 + 2)} \right]$
$\implies \Im = \frac{1}{2L} \ln \left[ \frac{4^2 + 3}{2^2 + 4} \right]$
75 84401860

I.C.B.

nadasn.

proof

Created by T. Madas

R.

Question 13 (***+)

i.G.p.

. F.G.B.  $\left(2x-4y^2\right)\frac{dy}{dx}+y=0\,.$ 

By reversing the role of x and y in the above differential equation, or otherwise, find its general solution.

21/201

$ \qquad \qquad$
USING THE SUGGESTION GIVEN
$\implies (zz - (y^2) \frac{dy}{dz} + y = 0$
$ H  Y  y  \times $
$\Rightarrow (2Y - 4X^2) \frac{dX}{dY} + X = 0$
$\Rightarrow \frac{dx}{dy} = -\frac{x}{2y-4x^2}$
$\rightarrow dY = \frac{4x^2 - 2y}{4x^2 - 2y}$
$\Rightarrow \frac{dY}{dx} = 4x - \frac{2Y}{x}$
$\Rightarrow \frac{dY}{dX} + \frac{2}{x}Y = 4x$
$\frac{\text{Nitgetino Factor}}{e^{\int_{-\infty}^{\infty} dx}} = e^{2hX} = e^{\ln X^2} \times X^2$
NUCTIFICING THEOREM BY THE INTEGRATING FACTOR TO MAKE THE
$\Rightarrow \frac{d}{dx}(\gamma X^2) = 4\chi^3$
$\Rightarrow \gamma x^2 = \sqrt{4\chi^3 dX}$
$\Rightarrow$ $YX^2 = X^4 + C$
$\Rightarrow 2y^2 = y^4 + C$

C.P.

### **Question 14** (****)

F.G.B.

I.G.B.

It is given that a curve with equation y = f(x) passes through the point  $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$  and satisfies the differential equation

 $\left(\frac{dy}{dx} - \sqrt{\tan x}\right)\sin 2x = y \,.$ 

Find an equation for the curve in the form y = f(x).



3

5

 $y = x\sqrt{\tan x}$ 

I.C.B.

### **Question 15** (****)

Find a simplified general solution for the following differential equation.



### **Question 16** (****)

in C.B.

The curve with equation y = f(x) has the line y = 1 as an asymptote and satisfies the differential equation

$$x^3 \frac{dy}{dx} - x = xy + 1, \ x \neq 0$$

Solve the above differential equation, giving the solution in the form y = f(x).



ろっ

### Question 17 (****)

I.F.G.B

It is given that a curve with equation x = f(y) passes through the point  $\left(0, \frac{1}{2}\right)$  and satisfies the differential equation



2

 $\overline{x} = 4y^3 - y$ 

Find an equation for the curve in the form x = f(y)

10

EARD A IDE & 24+32  $\propto N(x)$ ⇒(?y+3x)& = : Va)+ 2號 · 24+32 = 4 a 24V + 33 y gette 32 = 20  $\frac{\sqrt{3}}{3+2} = \frac{1}{4}$  $y^{2} = y + 2$   $y^{2} = 4y^{2} - y$   $y = 4y^{2} - y$   $y = 4y^{2} - y$   $y = 4y^{2} - y$ 21+3  $\frac{-2v^2 - 2v}{2v+3} = \frac{-2v(v+1)}{2v+3}$ UNBLES - 4 J - z dr (PMETIAL REACTIONS  $= 2 \cdot \frac{1}{y}$  $\ln \left| \frac{\sqrt{3}}{\sqrt{1+1}} \right| = \ln \left| \frac{-4}{3^{2}} \right|$  $\frac{V^3}{V^2} = \frac{A}{\chi^2}$ = 0 - A = A = 4 a = 4y3-y

### **Question 18** (****)

It is given that a curve passes through the point (-2,0) and satisfies the ordinary differential equation



asuiduis.com

Y.G.B.

16

R

17.30.3ST1.2T

nadasmaths.com

L. C.B. Madasn

Question	19	(***
Question	1/	( T

11202

'udsj

281721

asmaths.com

adasmaths.com

20

na

The variables x and y satisfy

fy  

$$(2y-x)\frac{dy}{dx} = y, y > 0, x > 0.$$

I.F.C.P. If y = 1 at x = 2, show that x = y + 1



adasmaths.com

I.G.B.

I.V.G.

proof

Created by T. Madas

I.F.C.B.

18.CD

IS.COM

proof

I.C.P.

Madasn,

### **Question 20**

F.G.B.

I.C.P.

The variables x and y satisfy

$$\frac{dy}{dx} = \frac{y(y+1)}{y-x-xy-1}, \quad y > 0.$$

If y = 1 at  $x = 1 - \ln 4$ , show that  $y + \ln(y+1) = 0$  at x = 3.

$\frac{STHET}{du} = \frac{g(y_{H})}{g_{-1} - xg_{-T}} = -\frac{1}{4}$		$\Rightarrow 2y = \int 1 - \frac{2}{y+1} dy$
42 y-1-2y-J		$\Rightarrow xy = y - 2b(y+i) + A$
$\rightarrow \frac{dx}{dy} = \frac{(y-1) - x(y+1)}{y(y+1)}$	A MINAGER MANAGER	APPLY BOUNDARY CINDUTON G160
a set from the second start of and the		a=1- hut, y=1
$\frac{39000000  0.4.5}{90000  0.4.5}$ $\frac{dx}{dy} = \frac{y-1}{y(y_{11})} - \frac{x}{y}  C$ $\Rightarrow y \frac{dx}{dy} = \frac{y-1}{y_{11}} - x$	5>01	$\Rightarrow (\lfloor -l_{4} \#) \times l \Rightarrow l - 2l_{12} + A$ $\Rightarrow l - h \# = l - h \# + A$ $\Rightarrow A = 0$
$\Rightarrow y \frac{dy}{dy} + x = \frac{y-1}{y+1}$		$\frac{4y - y - 2h(y+1)}{2}$
NOW THE LYS IS BOAR IN &	(OR INTEGRATING ANCIDE.)	WH64 2=3
and the state of the second state of the second state of the		-> 3y = y - 2h(y+1)
• $\frac{d}{dy}(\lambda y) = \frac{dx}{dy} \cdot y + 3 \cdot 1$	• y = + + + + + + + + + + + + + + + + + +	$\Rightarrow 2y = -2h(y+i)$ $\Rightarrow y = -h(y+i)$
는 쇼(14)~ <u>위~1</u> 는 석북 + 1		$\Rightarrow$ y + ln(y+1) = 0
01 13 1 - 8H	and the second	
	$\frac{q}{q}(2\overline{n}) = \frac{\overline{A}(n+1)}{\overline{A}(n+1)}  (A > 0)$	
	and (24) = 4-1 At OPASITE	ايىغ يەرەپ ۋېلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە ب بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە بىلىغانىيە ب
WITH SELATING W. R. T Y		
⇒ उध्र ≈ ∫ <u>थ-</u> 1 सम		(4) A second day was as by the plan management of the second day of the second da

Created by T. Madas

21/15.COM

N,

### Question 21 (*****)

I.G.B.

I.F.G.B

Use suitable manipulations to solve this **exact** differential equation.

2112

$$4x\frac{dy}{dx} + \sin 2y = 4\cos^2 y, \quad y\left(\frac{1}{4}\right) = 0.$$

Given the answer in the form y = f(x).



I.C.P.

À.G.D.

.

11₂₀₂51

Created by T. Madas

D

R.

### AST ORDER OMOGEN

# AST ORDER HOMOGENEOUS ASTRAILS COLL 1. Y. C.B. TRAILS STRAILS COLL 1. Y. C.B. TRAILS COLL 1. Y. C.B. TRAILS COLL 1. Y. C.B. TRAILS COLL

asmaths.com

х

 $1 + \ln x$ 

y =

I.C.P.

I. C.B. Madasmaths.Com

asmans.com

. K.G.D.

4.6.

Madasman

I.V.C.B. Madasm

# Question 1 (**+)

asmaths.com

ISMATHS.COM

I.V.G.B

>

20

Solve the differential equation

$$\frac{dy}{dx} = \frac{y}{x} - \left(\frac{y}{x}\right)^2, \ x > 0,$$

madasm.

subject to the condition y = 1 at x = 1.

madasmaths.com

I.G.B.

I.F.C.B.

L.C.B. Madasmaths.Com

11₂₁₂₈₇

Created by T. Madas

madasmaths.com

Question 2 (**+)

$$\frac{dy}{dx} = \frac{(4x+y)(x+y)}{x^2}, \ x > 0$$

**a**) Use a suitable substitution to show that the above differential equation can be transformed to

$$x\frac{dv}{dx} = \left(v+2\right)^2.$$

- **b**) Hence find the general solution of the original differential equation, giving the answer in the form y = f(x).
- c) Use the boundary condition y = -1 at x = 1, to show that a specific solution of the original differential equation is

 $y = \frac{x}{1 - \ln x} - 2x.$ 



		A DECK		
(a) $\frac{du}{d2} = \frac{(4\chi + \chi)(\pi + y)}{\chi^2}$			y = 1	2
$\implies \frac{dy}{dx} = \frac{4x^2 + Sxy + y^2}{x^2}$			$\frac{dy}{dx} = \frac{dy}{dx}$	
$ V + x \frac{dy}{dx} = \frac{4x^2 + 5x(\sqrt{x}) + (\sqrt{x})^2}{x^2}$			$V = \frac{9}{2}$	
$= 9 V + \infty \frac{dy}{d\lambda} = \frac{4\lambda^2 + 5V\lambda^2 + V_{\lambda}^2}{\chi^2}$			en tent	~ 5
$\implies V \vdash \propto \frac{d_V}{d\alpha} = 4 \pm SV \pm V^2$				
$\Rightarrow$ $\int \frac{dx}{dx} = A_5 + ffA + \frac{1}{2}$				
=> 2 dv = (v+2)2 ds equips				
$\int \frac{1}{(v+2)^2} dv = \int \frac{1}{2v} dx \qquad ($		$= \frac{1}{A - M}$	- 2	
$\Rightarrow \int \frac{1}{(v+2)^2} dv = \int \frac{1}{x} dx$		$A - Iux$ $= \frac{1}{A - Iux}$		
$\implies -\frac{1}{\sqrt{2}} = \ln x + c$	) ⇒ ु	=	- 2x //	
$\Rightarrow \frac{1}{v+2} = A - \ln \alpha$		- ( - u)-c		
$\Rightarrow$ V+2 = $\frac{1}{4 - \ln x}$				$\gamma \in$
(c) x=1 y=-1				
-1= 1 - 2				
A = 1	$g \in \frac{\infty}{(-1)}$	22/		
AND ADDRESS OF THE OWNER.				Contract of Contract

# Question 3 (**+)

By using a suitable substitution, solve the differential equation

$$y\frac{dy}{dx} = x^2 + y^2, \ x > 0,$$

subject to the boundary condition y = 1 at x = 1.

120.	
$\begin{array}{c} 3y \frac{dy}{dx} = x^2 + y^2 \\ \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{xy} \\ \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{xy} \end{array}$	$\begin{array}{c} \underbrace{\forall j. = -\frac{1}{2}; \chi_{\perp}} \\ \underbrace{dy}_{d\chi} = -\frac{dz}{d\chi}; \chi_{\perp} + \frac{1}{2}; \end{array}$
$\Rightarrow 2\frac{dz}{dz} + 2 = \frac{\chi^2 + \frac{2\chi^2}{2}}{\chi^2 + 2}$ $\Rightarrow 2\frac{dz}{dz} = \frac{1+2^2}{2} - 2$ $\Rightarrow 2\frac{dz}{dz} = \frac{1+2^2}{2} - 2$	$\begin{cases} \Rightarrow \frac{y^2}{2x} = A + 2lya\\ \Rightarrow \left[y^2 = 4x^2 + 2zlyx\right] \end{cases}$
$\Rightarrow z dz = \frac{1}{x} dx$ $\Rightarrow \int z dz = \int \frac{1}{x} dx$ $\Rightarrow \frac{1}{x} z dz = \ln z  + x$	• Apply constition 1 = A $\Rightarrow y^2 = x^2 + 2x \ln x$
$\Rightarrow z^2 = .3 \ln x + A$	ζ

 $y = x^2 \left(1 + 2\ln x\right)$ 

# Question 4 (**+)

By using a suitable substitution, or otherwise, solve the differential equation

$$\frac{dy}{dx} = x^2 + 2xy + y^2,$$

subject to the condition y(0) = 0.



de la

|--|

# Question 5 (**+)

, Y.G.B.

I.V.G.B.

By using a suitable substitution, solve the differential equation

$$\frac{dy}{dx} = \frac{xy + y^2}{x^2}, \ x > 0,$$

21/201

subject to the condition y = -1 at x = 1.

$$\begin{array}{l} \underbrace{dx}_{1} \text{ Trick is A friker series dynomenous control, site, } y = x \text{ Vin} \\ \underbrace{dy}_{2} = (x \vee 0) + x \frac{d \vee 0}{dx} = v + x \frac{d y}{dx} \\ \underbrace{dy}_{2} = (x \vee 0) + 2 \frac{d \vee 0}{dx} = v + x \frac{d y}{dx} \\ \underbrace{dy}_{2} = \frac{d \vee 0}{dx} + \frac{d \vee 1}{2x} \\ \Rightarrow \frac{d \vee 1}{dy} = \frac{d \vee 0}{2x} + \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 0}{2x} + \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{dy} = \frac{d \vee 1}{2x} \\ \Rightarrow \sqrt{x} \frac{d \vee 1}{2x} \\$$

200

I.V.G.B.

COM

x

 $1 + \ln x$ 

y =

3

madasn.

Created by T. Madas

2017

50



# Question 7 (***)

By using a suitable substitution, solve the differential equation



subject to the condition y = 1 at x = 1.

$y^3$	$^{3}=x^{3}\left( 3\ln x+1\right)$
22.5	19
$\frac{dy}{dx} = \frac{2^3 + y^3}{2y^2}$ $\Rightarrow v + x \frac{dv}{dx} = \frac{x^3 + x^3 y^3}{2(x^2 v^3)}$ $\Rightarrow v + x \frac{dv}{dx} = \frac{1 + y^3}{2(x^2 v^3)}$	$\begin{cases} d_{2} = \Delta V \\ d_{3} = \Delta V \\ d_{4} = (xV + \chi dV) \\ V = \frac{y}{\chi} \end{cases}$
$\Rightarrow x \frac{dw}{dx} = \frac{1}{\sqrt{2}} + $	$\begin{cases} \implies \frac{y^3}{x^3} = 3hy x  + B \\ \implies y^3 = 3x^3 h x  + Bx^3 \end{cases}$
$\Rightarrow \int v^{2} du = \int \frac{1}{x} dx$ $\Rightarrow \int v^{2} du = \ln u  + A$	$ =B \le u_{\alpha} = 3u^{2}  u_{\alpha} + x^{3} $ $\Rightarrow u^{3} = 3u^{3}  u_{\alpha} + x^{3} $
31 - 11101 - 11	

 $v^3 = 3|h|a| + B$ 

Question 8 (***)

By using a suitable substitution, solve the differential equation

 $2x^2 \frac{dy}{dx} = x^2 + y^2, \ x > 0,$ 

subject to the condition y(1) = 0.



-y= 2 - 22

# Question 9 (***)

F.G.B.

I.C.P.

By using a suitable substitution, solve the differential equation

$$x\frac{dy}{dx} - y = x\cos\left(\frac{y}{x}\right), \ x \neq 0,$$

subject to the condition  $y(4) = \pi$ .

The final answer may not involve natural logarithms.



C.B.

madası,

Com

Question 10 (***)

nadasmaths.

I.G.B.

I.Y.C.B.

I.C.B. Madasman

naths.com

I.V.G.B.

 $y\frac{dy}{dx} = (x - y)^2 + xy, \quad y(1) = 0.$ 

Show that the solution of the above differential equation is

11202.81

 $(x-y)e^{\frac{y}{x}}=1.$ 

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{cases} \implies \int \frac{V}{1-V} du = \int \frac{L}{2} di \end{cases}$
$\Im_{\frac{1}{2}} \frac{du}{dt} = \Im_{\frac{1}{2}} - \Im_{\frac{1}{2}} + \partial_{\frac{1}{2}}$	$= \int \frac{(-(-v))}{(-v)} dv = \int \frac{1}{x} dx$
$\frac{dy}{dx} = \frac{x^2 - xy + y^2}{xy} \qquad ($	$ = \int \frac{1}{1-v} - 1  \text{alv} = \int \frac{1}{2}  \text{cl} $ $ = \int \frac{1}{1-v} - 1  \text{alv} = \int \frac{1}{2}  \text{cl} $ $ = \int \frac{1}{1-v} - 1  \text{alv} = \int \frac{1}{2} \int \frac{1}{2}  \text{cl} $
$ \begin{array}{c} (1.\varepsilon + stansyle i i hand more Bill.S.) \\ (1.\tau + g = x V (u) \end{array} $	$-\left(\frac{h}{h}\right) - \left(\frac{h}{h}\right) + \frac{h}{h} e^{\frac{h}{2}} = \frac{h}{h} \left(\frac{h}{h}\right)$ $-\frac{h}{h} \left[\frac{h}{h}\right] + \frac{h}{h} \left[\frac{h}{h}\right]$
$ = \frac{du_{i}}{d\chi} = V + 2 \frac{dV}{d\chi} $ $ = \frac{\chi^{2} - 2 (\chi V) + (\chi V)^{2}}{2 (\chi V)} $	$\left  h \left[ \left( -v \right) e^{v} \right] = - \left  h \right] A x \right $
	$\left  \begin{array}{c} \left  h \right  (l-v) e^{v} \right  = \left  h \left( \frac{l}{Az} \right) \right  \\ \hline \left( (l-v) e^{v} = \frac{C}{z} \right) \\ \end{array} \right $
$\Rightarrow v + x \frac{dv}{dx} = \frac{(-v+v^2)}{v}$	$\left(1 - \frac{y}{x}\right)e^{\frac{y}{x}} = \frac{C}{x}$
$\Rightarrow \alpha \frac{dv}{dq} = \frac{1 - v + v^2}{v} - v$	$(x-y)e^{\frac{N}{2}} = C$
$\Rightarrow \frac{dy}{d\chi} = \frac{(-v+v^2-v^2)}{v}$	$ \begin{pmatrix} NOW & Y(1) = 0 \\ (1 - 0) e^{0} = C \end{pmatrix} $
$\Rightarrow \mathcal{X} \frac{d\mathcal{Y}}{d\lambda} = \frac{1-\mathcal{V}}{\mathcal{V}}$	$(z-y)e^{\frac{y}{2}}=1$
$\Rightarrow \frac{\sqrt{1-y}}{1-y} dy = \frac{1}{\chi} dy$	

the col

.C.5.

The Com

proof

asmaths.com

I.V.C.B. Madasn

./

Created by T. Madas

Smaths,

# (***) **Question 11**

Use the substitution y = xv, where v = v(x), to solve the following differential equation



· ·

.

# **Question 12** (***)

I.V.G.P.

Solve the following differential equation

$$\frac{dy}{dx} = \frac{3x + 2y}{3y - 2x}, \ y(1) = 3.$$

6%

2

 $3y^2 - 4xy - 3x^2 = 12$ 

F.C.P.

1720251

Give the final answer in the form F(x, y) = 12



# Question 13 (***+)

Y.G.B. M.

I.G.B.

Find a general solution for the following differential equation

$$(2x+y)\frac{dy}{dx} + x = 0$$

20/20

The final answer must not contain natural logarithms.



COM

2017

Mada

F.G.B.

 $\underline{y + x} = A \, \mathrm{e}^{\frac{x}{x + y}}$ 

10.0

Created by T. Madas

2017

2

# (***+) **Question 14**

Mada

I.F.G.B.

dasmaths.com

Smaths.com

I.F.G.B.

Solve the following differential equation.

 $(xy+4x^2)\frac{dy}{dx} = 2y^2 + 9xy + 6x^2, y(\frac{4}{3}) = 0.$ .K.

ths.com

 $\overline{\left(y+2x\right)^2 = x^2}\left(y+3x\right)$ 

las + las

Madası,

naths.com

I.Y.C.B.

(=)2= + (=)2 [3x =]

I.C.S.

1.4

1.

Madasm.

Ins,

nn

I.Y.C.B. Madasn



Created by T. Madas

COM

I.V.C.P.

(****) **Question 15** 

Solve the differential equation

$$\frac{d}{dx}(xy^2) = \frac{x^4 + x^2y^2 + y^4}{x^2}, \ y(e) = \sqrt{2}e$$

COM

 $x^{2}(1+\ln x)$ 

 $\ln x$ 

I.F.G.B.

 $y^{2} =$ 

4.65

4.4

.

1720251

Give the answer in the form  $y^2 = f(x)$ .



Created by T. Madas

0

I.C.B.

1,1,0,0

9



# Question 17 (****)

Ċ,Ŗ

in the

It is given that a curve with equation f(x, y) = 0 passes through the point (0,1) and satisfies the differential equation

$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}.$$

By solving the differential equation, show that an equation for the curve is

 $y = \exp\left[\frac{x^2}{2y^2}\right].$ 

TITUS IS A FIRST ORDIRE O.D.E WITH 4	shuceshare 245 what is
SOUCED BY THE STANDARD SUBSTITUT	
$\frac{\partial}{\partial x} = x v(x) + \frac{\partial}{\partial x} = v(x) + \frac{\partial}{\partial x}$	
TRANSFORMING THE O.D.E. AND SOU	
$\implies \frac{du}{dx} = \frac{xu}{x^2 + y^2}$	$\implies h_N v - \frac{1}{2v^2} = -h\alpha + A$
$\Rightarrow \forall + x \frac{dy}{dx} = \frac{x(xy)}{x^2 + x^2y^2}$	$= \ln v + \ln x = A + \frac{1}{2v^2}$
$\Rightarrow V + 3 \frac{du}{dx} = \frac{V}{1+V^2}$	$\implies \ln(xv) = A + \frac{1}{2v^2}$
$\implies x \frac{dx}{dx} = \frac{v}{1+v^2} - v$	$\implies \ln y = A + \frac{1}{2(\frac{y}{x})^2}$
$\implies x \frac{dM}{dx} = \frac{V - (\hat{y} + v^2)}{V + v^2}$	$\implies$ lny = A + $\frac{a^2}{2y^2}$
$\implies \lambda \frac{du}{dx} = \frac{-V^3}{1+V^2}$	$= \underbrace{y}_{2} = \underbrace{x}_{4} + \frac{2^{2}}{3^{2}}$
$\Rightarrow x \frac{du}{dx} = - \frac{v^3}{v^2 + v}$	$\Rightarrow y = e^{A} e^{\frac{2^{A}}{2y^{2}}}$ $\Rightarrow y = B e^{\frac{2^{A}}{2y^{2}}}$
$\Rightarrow \frac{v^2+1}{v^3} dv = -\frac{1}{x} dx$	when a=o y=1
$\Rightarrow \int_{V}^{1} \frac{1}{V} + \frac{1}{V^{4}} dv = \int_{V}^{1} -\frac{1}{x} dx$	$\therefore  Q = e^{\frac{2}{3} \frac{1}{3}}$

proof

# AST ORDER ERNOUL

# The second secon BASINALISCON I. Y. G.B. MARIASINALISCON I. Y. G.B. MARIASINA

Question 1 (**+)

Ĉ.

I.C.P.

 $\frac{1}{y}\frac{dy}{dx} = 1 + 2xy^2, \ y > 0.$ 

a) Show that the substitution  $z = \frac{1}{y^2}$  transforms the above differential equation

into the new differential equation

 $\frac{dz}{dx} + 2z = -4x.$ 

b) Hence find the general solution of the original differential equation, giving the answer in the form  $y^2 = f(x)$ .

0.	0	~(/)>	
	() $(z_{1}, z_{2}, z_{3}) = \frac{1}{2} \frac{\partial (z_{1})}{\partial z_{1}} = \frac{\partial (z_{1})}{\partial z_{1}} = \frac{\partial (z_{1})}{\partial z_{1}} = \frac{\partial (z_{1})}{\partial z_{1}} = \frac{\partial (z_{1})}{\partial z_{2}} = \frac{\partial (z_{1})}{\partial z_$	$\frac{1}{2} \frac{1}{2} \frac{1}$	<u>λ</u> -μ e ^{2λ} 9 ² λ
	$\begin{array}{c} \frac{1}{2} \frac{d3}{d3} = 1 + 2xy^{2} \\ \frac{dy}{d3} = y + 2xy^{2} \\ \frac{dy}{d3} = y + 2xy^{2} \\ \frac{dy}{d3} = -\frac{1}{2x} - 4x \\ \frac{dy}{d3} = -\frac{1}{2x} - 4x \end{array} \right)  \times \begin{pmatrix} -\frac{3}{2y} \\ -\frac{1}{2y} \\ -\frac{1}{2y} \\ \frac{dy}{d3} \\ \frac{dy}{d3} = -2x - 4y \end{array}$	$\frac{24^{2\lambda}}{2} = \frac{e^{2\lambda}}{2} - 2x\frac{e^{2\lambda}}{4} + C$ $\frac{2}{e} = 1 - 2x + Ce^{-2\lambda}$ $\frac{1}{4} = 1 - 2x + Ce^{-2\lambda}$ $\frac{1}{1 - 2x + Ce^{2\lambda}}$	
ų	$\begin{aligned} \frac{d\hat{z}}{d\hat{x}} + \Omega z = -\frac{V_A}{K}  & \text{Signed} \\ \hline & & \text{Signed} \\ & & \text{Signed}$		
	47.0		

Ae

C.P.

# Question 2 (***)

a) Use the suitable substitution to solve the differential equation

$$x^2 \frac{dy}{dx} + xy = y^2$$
,  $y(\frac{1}{2}) = 2$ .

Give the answer in the form y = f(x).

**b**) Verify the answer of part (**a**) by solving the above differential equation with an alternative method.



# Question 3 (***)

2

Solve the differential equation

R,

$$x\frac{dy}{dx} + y = 4x^2y^2$$
,  $y(\frac{1}{2}) = 2$ .



$\Im \frac{dg}{d\chi} + \dot{\eta} = \hbar \partial_{\chi}^2 \dot{g}^2$	< NOW ej-ton = e-m/2/= to
$\Rightarrow \frac{dy}{da} + \frac{y}{a} = 4ay^2$	} THUS >=\$a[₹]= -\$X(\$)
2= y= y = -9 ² #	$\begin{cases} \Rightarrow \underbrace{\mathbb{R}}_{=} = \int_{-4}^{-4} b \\ \Rightarrow \underbrace{\mathbb{R}}_{=} = -i x + \lambda \end{cases}$
$\begin{pmatrix} \frac{dy}{dx} = -\frac{y^2}{dx} \\ \frac{dz}{dx} = -\frac{y^2}{dx} \\ \frac{dz}{dx} \\ dz$	>= == h2-422
$ \Rightarrow -\frac{y^2 dz}{dx} + \frac{y}{x} = 4xy^2 $ $ \Rightarrow -\frac{dz}{dx} + \frac{1}{xy} = 4x$	$\begin{cases} \Rightarrow \frac{1}{y} = A_2 - \frac{1}{y^2} \\ \Rightarrow \frac{1}{y^2} = \frac{1}{A_2 - \frac{1}{y^2}} \\ \end{cases}  \textcircled{0}  2 = \frac{1}{2} \cdot \frac{y}{y^2} 2 = \frac{1}{2} \cdot \frac{y}{y^2} =$
=> \$2 - 2y = -42	$\begin{cases} 2 & \frac{1}{24} \\ 4 - 2 = 1 \\ 4 - 3 \end{cases}$
$\Rightarrow \frac{dx}{dz} - \frac{x}{z} = -4x$	: y= 1 3x-4x2

# Question 4 (***)

I.C.B.

By using a suitable substitution, solve the differential equation

21/2

 $xy\frac{dy}{dx} + 2y^2 = x$ , y(1) = 0.

Give the answer in the form  $y^2 = f(x)$ .



35

1

Created by T. Mada
--------------------

# (***) **Question 5**

Solve the differential equation

$$\frac{dy}{dx} + y = 4xy^3, \ y(0) = \frac{1}{\sqrt{2}}.$$

1.V.G.B

asmaths.com

ISMAINS.COM

Solve the differe	ntial equation	"Con	0
	$\frac{dy}{dx} + y = 4xy^3, \ y(0) = \frac{1}{\sqrt{2}}.$	1.2 1.	X
Give the answer	in the form $y^2 = f(x)$ .	GB 'K	2
C.B.	-13 · 5 · 17	$y^2 = \frac{1}{4x+2}$	0
asin ada		$ \begin{array}{c} \left( \begin{array}{c} +y = (t_{2}y)^{2} \\ t = \frac{1}{y} = y^{2} \\ t = -2i\frac{3}{2}\frac{4}{2} \\ t = -2i\frac{3}{2}\frac{4}{2}\frac{4}{2} \\ t = -2i\frac{3}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2} \\ t = -2i\frac{3}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}{2}\frac{4}$	
Valle S		$\begin{cases} \frac{1}{2} \frac{df}{dt} + \frac{1}{2} = \frac{1}{4} \frac{1}{2} \frac{1}$	
- COM	$\neq \frac{dt}{du}$	$\begin{array}{c} \frac{dk}{dk} + \frac{1}{y_{1}} = \frac{1}{kx} \\ -\frac{dk}{2k} + \frac{1}{y_{2}} = -\frac{k}{k} \\ -\frac{dk}{2k} + \frac{1}{y_{1}} = \frac{1}{kx_{1}+2} + \frac{1}{k}e^{2k} \\ +\frac{1}{kx_{1}}e^{2k} - \frac{1}{k}e^{2k} \\ -\frac{1}{k}e^{2k} - \frac{1}{k}e^{2k} \\ -\frac{1}{k}e^{2k} - \frac{1}{k}e^{2k} \\ -\frac{1}{k}e^{2k} + \frac{1}{k}e^{2k} \\ -\frac{1}{k}e^{2k} \\ -$	
1.1.	Ko. I.L.	1.1. 1.	5
S.G.B	SB CP	GB .	9
		had hada	
nath.	Mari Math	43sm2- 48m	2
COD		n "Ins	~
		1. 2. 10	×.
G.D	CB CB	S.G.p. S.	Ľ
n in	Crustellet Make	no nad	
adash ad	Created by T. Madas	alas as	n.



## (***+) **Question 7**

'smaths.com

Solve the differential equation

$$\frac{dy}{dx} + \frac{xy}{1+x^2} = y^3, \ y(0) = 1.$$
  
$$^2 = f(x).$$

Give the answer in the form  $y^2 = f(x)$ 

madasmaths.com

I.Y.C.B. Madasman

11₂₀₂₈₁

I.F.G.B.

$$\frac{dy}{dx} + \frac{xy}{1+x^2} = y^3, y(0) = 1.$$
swer in the form  $y^2 = f(x)$ .
$$y^2 = \frac{1}{(1+x^2)(1-2\arctan x)}$$

$$= \frac{y^2}{(1+x^2)(1-2\arctan x)}$$

$$= \frac{y^2}{(1+x^2)(1-2\arctan x)}$$

$$= \frac{y^2}{(1+x^2)(1-2\arctan x)}$$

Smaths.com

nains.col

1.4.6.6

Madasmaths.com

I.V.C.B. Madasm

# Created by T. Madas

I.V.G.P.

# (***+) **Question 8**

Solve the differential equation

Created by T. Madas  

$$\frac{dy}{dx} = y(1+xy^4), \ y(0) = 1.$$

Note the differential equation  

$$\frac{ds}{dt} = y(t + so^{t}), y(0) = 1.$$

$$\begin{bmatrix} \frac{1}{y} = \frac{1}{4}(t + so^{-4}) - s \\ \frac{1}{y} =$$

asmans.com

1. K. G.B.

**Question 9** (****)

A curve C passes through the point (1,1) and satisfies the differential equation

$$\frac{dy}{dx} - \frac{y}{x} = \frac{x^3}{4y^3}, \ x > 0, \ y > 0,$$

subject to the condition y = 1 at x = 1.

**a**) Find an equation of C by using the substitution  $z = y^4$ .

**b**) Find an equation of C by using the substitution  $v = -\frac{\lambda}{2}$ 

Give the answer in the form  $y^4 = f(x)$ .

(b)  $\frac{dy}{dt} - \frac{y}{x} = \frac{x}{4y^3}$  $\frac{1}{u-4} = 9^4$ a = y = a  $\frac{d_{\theta}}{d t} = dy^3 \frac{dy}{d t}$  $\Rightarrow \frac{d\tilde{u}}{d\tilde{u}} = v^{-1} + \Omega (-v^{-2}) \frac{dv}{d\tilde{u}}$  $\Rightarrow \frac{dy}{dy} = \frac{1}{\sqrt{-\frac{x}{x}}} - \frac{dy}{dy}$ 9 = 23 2 = 443  $\Rightarrow \left(\frac{1}{V} - \frac{x}{V^2} \frac{dv}{dx}\right) - \frac{1}{V} = \frac{1}{4}V^3$  $\frac{49^4}{2} = x^3$  $e^{-\frac{1}{h}} = e^{-\frac{1}{h}x} = \frac{1}{2t}$ the For =  $\frac{d}{dt}\left(\frac{2}{2t}\right) = \frac{2^3}{2^4}$ lnx + B 1 to da  $\frac{u^4}{x^4} = \ln x + B$  $\frac{z}{at} = ha + A$  $= x^{4}(hx + B)$  $\mathfrak{X}^{q}(\operatorname{Inx}{}^{\mu}\mathsf{A})$ y4 = 24 (lnx++)  $a_{1=1} g_{=1}$  $a_{1=1} (J_{MT} + A) \Rightarrow A_{=1}$ : y= x+(1+ lhx)

 $y^4 = x^4 (1 + \ln x)$ 

asmaths.co Created by T. Madas asmaths.com

ISMAINS.CO.

# 1ST ORDER

# BY

23ST121/15.COJ

0

# PARTIAL

# K.C.B. Madasmaths Com I.Y.C. DIFFERENTIATION I.F.G.B. TECHNIQUES

madasmaths.com

Madasmaths Com I.Y. C.B. Madasm

Question 1 (**+)

Ċ,Ŗ

Y.G.B.

 $\frac{dy}{dx} = \frac{12x + 7y}{6y - 7x}, \ y(1) = 1.$ 

Use a method involving partial differentiation to show that the solution of the above differential equation can be written as

(ax+by)(cx+dy)=10,

where a, b, c and d are integers to be found.



32/ = 34/2x

 $\tilde{F(q_1y_1)} = 7xy - 3y^2 + \psi(x)$ 

Ĉ.

5 (6y-72)dy = (l2x+74) da 1 (l2x+74)da + (7a-64) dy

 $\frac{\partial^2 f}{\partial x \partial q} = 7$ 

 $\frac{\partial F}{\partial x} = 12x + 7y$ 

 $\frac{\partial E}{\partial q} = 7x - 6q$ 

 $\begin{array}{l} \frac{\partial F}{\partial a} = 12 \times + 7 y \\ F(3 + y) = 6 x^2 + 7 a y + \varphi(y) \end{array}$ 

iso dF=0 F= coustoof. ∴ Git +7ay -3y²= C

· 6x2+724-342= 1



# Question 2 (***)

I.C.B.

I.V.G.B

Solve the differential equation

$$\frac{dy}{dx} = \frac{2xy + 6x}{4y^3 - x^2},$$

20/201

subject to the boundary condition y = 1 at x = 1.

 $x^2y + 3x^2 - y^4 = 3$ 

COM

.G.D.

1+



 $\begin{array}{cccc} \frac{\partial F}{\partial ty} = & & & & & \\ \partial y = & & & & & \\ \partial y = & & & & & \\ \partial z = & & & & \\ \frac{\partial F}{\partial t} = & & & & & \\ \partial z = & & & & \\ \frac{\partial F}{\partial t} = & & & & \\ \frac{\partial F}{\partial t} = & & & & \\ \frac{\partial F}{\partial t} = & \\ \frac{\partial F$ 

 $\begin{array}{c} \underset{\mathcal{A}_{3}}{\overset{}{\underset{\mathcal{A}_{3}}}} = \underbrace{\mathcal{A}_{3}}_{\mathcal{A}_{3}} \underbrace{\mathcal{A}_{3}} \underbrace{\mathcal{A}_{3}} \underbrace{\mathcal{A}_{3}}_{\mathcal{A}} \underbrace{\mathcal{A}_{3}} \underbrace{\mathcal{A}_{$ 

ŀ.G.p.

nadası,

7/4 23y+32-44=3

9 12

·Gp

Created by T. Madas

D

C,

## (***) **Question 3**

I.F.G.B.

Smaths.com

Smaths.com

I.V.G.B

0

Find a general solution of the following differential equation

nadasmaths.com

I.F.G.B.

I.F.C.B.

m21

COM





COMPARINE

11₂₀₂₈₁

2017

F.C.P.

 $\phi(x_{1}g) = x_{1}g + y_{2}^{3}x - x_{2}^{3}g +$  $\sup \left[ y^2 - x^2 + 1 \right] = A$ 

 $\frac{\partial \phi}{\partial x} = -x^2 + 3$ 

 $xy(x^2-y^2)$ 

The Com

-1) = constant

I.C.S.

6

1.

Madasm.

2010

The.

Created by T. Madas

I.F.G.B.

## (***) **Question 4**

1202

Smaths.com

I.F.G.B.

SMaths.com

0

Find the solution of the following differential equation

 $\frac{dy}{dx} = \frac{1 - 3x^2y}{x^3 + 2y}$ 

I.F.G.p.

112d28

subject to the boundary condition y = 1 at x = 1.

I.G.B.

I.C.B.

 $\frac{dy}{dx} = \frac{1-3x_{y}^{2}}{x^{2}+2y}$  $(x^{3}+2y)dy = (1-3x_{y}^{2})dz$  $(1-3x_{1}^{2})dx + (-x^{2}-2x)c$ - 3- (1-32) = -3  $F(\alpha_{ij}) = \alpha - \alpha_{ij}^3 + F(y)$  $\varphi(x_{ij}) = -x_{ij}^3 - y^3 + G(x)$ 

madasn.

2017

Ths.com

 $x^3y + y^2 - x = 1$ 

1.6.5

6

2

nadasm.

COM

I.V.C.B. Madasn

21/18

Created by T. Madas

COM

# Question 5 (***)

I.C.B.

I.G.B.

Solve the differential equation

$$\frac{dy}{dx} = \frac{4e^{2x} - y(2e^{2x} + 1)}{e^{2x} + x},$$

2112

subject to the boundary condition y = 2 at x = 0.

 $\frac{\mathrm{d}g}{\mathrm{d}\lambda} = \frac{4e^{2\lambda} - g(2e^{2\lambda} + 1)}{e^{2\lambda} + \lambda} \quad \text{subset to} \quad (0,2)$  $\left(e^{2k}+\lambda\right)dy = \left[4e^{2k}-y(2e^{2k}+1)\right]dx$  $0 = \left[4e^{2x} - y(2e^{2x} + 1)\right]dx - \left(e^{2x} + 2\right)dy$  $(4e^{2x} - 3ye^{2x} - y)dx + (-e^{2x} - x)dy = 0$ St. da + St. dy = dF 3F = -2e-1  $\frac{\partial^2 F}{\partial y \partial x} = -2e^{2x} - 1$  $\cdot \frac{\partial f}{\partial x} = 4e^{2x} - 2ge^{2x} - g \Rightarrow f(xy) = 2e^{2x} - ge^{2x} - 2g + f(y)$  $\cdot \frac{\partial f}{\partial y} = -e^{2x} \implies f(y) =$ Jy + g(a) : F(xy)= 2e²²-ye²²- xy SINCE OF = 0  $f(G_{ij}) = c$  $2e^{2x} - ye^{2x} - xy = C$ MY (0,2) ⇒ 2-2-0=C  $2e^{2k} = \tilde{y}(e^{2k}+3)$ 

COM

 $2e^{2x}$ 

 $e^{2x}$ +

K.G.B.

madasn

y = -

Ś

5

Created by T. Madas

0

R.

## **Question 6** (***+)

2

Find a general solution of the following differential equation

 $\cos x \cos y + \sin^2 x$ dy $\sin x \sin y + \cos^2 y$ dx

Com



# Question 7 (***)

Determine the solution of the following differential equation by looking for a suitable integrating factor.



# Question 8 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.



2

**Question 9** (***+)

 $\frac{dy}{dx} = \frac{2xy}{3x^2 - y^2}, \ y(0) = 1.$ 

a) Find an integrating factor for the above differential equation and hence show

 $y^3 = y^2 - x^2.$ 

b) Verify the answer of part (a) by a solving the differential equation by a suitable substitution.





MULTRY THE O.D.E BY THE HOLSEATTING PAROR

 $\frac{2\pi}{y_3} dx + (\frac{1}{y_2} - \frac{3\pi^2}{y_4}) dy = 0$ 

I.C.B.

 $\begin{bmatrix} 2x \\ y_2 \\ y_3 \\ y_4 \\ y_4$ WHERATING (BY INSPECTION)  $\frac{2^2}{y^3} - \frac{1}{y} = C$  $x^2 - y^2 = Cy^3$ APPLY CONDITION (O(1) TO TRAM C=-1  $a^2 - y^2 = -y$  $y^2 - \alpha^2 = y^3$ dy = 200 1 200 1 208000 to g=1 AT 2=0 DOUND AT 2.H.S. BHT BAu = x V(x) $\frac{dy}{dx} = V + 2 \frac{dy}{dx}$ O.D.E NOW BECOMES  $\Rightarrow \forall + \mathfrak{X} \frac{\mathrm{d} \mathfrak{u}}{\mathrm{d} \mathfrak{x}} = \frac{2\mathfrak{X}(\mathfrak{g} \mathfrak{n})}{3\mathfrak{t}^2 - \mathfrak{I}^2 \mathfrak{v}^2} = \frac{2\mathfrak{I}^2}{3\mathfrak{t}^2 - \mathfrak{I}^2 \mathfrak{v}^2}$  $\Rightarrow$  V+ 2  $\frac{dv}{d2} = \frac{2v}{3 - v^2}$  $\Rightarrow i \frac{dv}{di} = \frac{2v}{3-v^2} - v$ 

 $=3\frac{du}{d2} = \frac{2v - 3v + v^3}{3 - v^2}$ 

 $\exists \exists \frac{dy}{dx} = \frac{\sqrt{3} - \sqrt{2}}{3 - \sqrt{2}}$  $\Rightarrow \frac{3-v^2}{v^2-v} dv = \frac{1}{2} dz$  $\Rightarrow \frac{3-\gamma^2}{V(\gamma-1)(y+1)} dy = \frac{1}{2} dx$ BY PHETTAL REATTLONS (LOVINE UP)  $\frac{3-v^2}{v(v-i)(v+i)} = \frac{\frac{3}{-i}}{v} + \frac{\frac{2}{2}}{v-i} + \frac{\frac{2}{2}}{\frac{2}{v+i}}$  $= \frac{1}{v-1} + \frac{1}{v+1} - \frac{2}{v}$  $\Rightarrow \int \frac{1}{V-1} + \frac{1}{V+1} - \frac{3}{V} dV = \int \frac{1}{2} dz$  $= \ln |\dot{v} - \iota| + \ln |v + \iota| - 3\ln |v| = \ln |x| + \ln 4$  $\Rightarrow$   $\left|h\right| \left|\frac{y^2 - 1}{y^3}\right| = \left|h\right| + x$  $\Longrightarrow \frac{\lambda_{\tau}}{\lambda_{\tau}} = \forall x$  $\frac{\frac{42}{2}-1}{\frac{42}{2}} = Az$ 

$$y^{2} - a^{2} = Ay^{3}$$
  $APAY (0,1)$ 

C.P.

# Question 10 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.



# Question 11 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.

 $\frac{dy}{dx} = \frac{2y - 2y^2}{2xy - x}$ 



# Question 12 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.



2

11202

Question 13 (***+)

5.

 $\left(2x-4y^2\right)\frac{dy}{dx}+y=0\,.$ 

By finding a suitable integrating factor for the above differential equation determine its general solution.

 $xy^2 - y^4 = C$ 

20/2517

	· · · /›	
$\left\{\begin{array}{c} (2a - U_{4}^{2}) \frac{\partial U_{4}}{\partial u} + y = 0 \\ \end{array}\right\}$	• User is the control of the transmin set is the control of $y^{\alpha}$ due to $(2y_{\alpha} - 4y_{\beta}^{2})$ due to $y^{\alpha}$ due to $(2y_{\alpha} - 4y_{\beta}^{2})$ due to $(2y_{\alpha} - 4y_{\beta}^{2})$	$\frac{(\alpha_2 - u_1^2) \frac{dy}{dz} + y = 0}{B_2}$
$(2x - 4y^2)dy + y dz = 0$ $(4) dz + (2x - 4y^2)dy = 0$	· ?? - ?? · ?? - ?? - ??	$\implies (2x - 4y^2) \frac{dy}{dt} = -y$
↑ ↑ M(6(8) N(0(8))	$ \begin{array}{c} \partial \mathcal{L} \\ \partial $	$ \begin{array}{ccc} \longrightarrow & \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = $
$ \frac{\partial M}{\partial W} = 7 $ $ \begin{cases} \frac{\partial A}{\partial W} \neq \frac{\partial A}{\partial W} & \frac{\partial A}{\partial W} \neq \frac{\partial A}{\partial W} & \frac{\partial A}{\partial W} + \frac{\partial A}{\partial W} & \partial A$	242- 4 = contant	- de = 4y - 22
OLOCK BU POSSIBLE INHERATING ACCORD TO MAKE IT BAAT		⇒ da, + 22, = 4y dy + y = X
• IF $\frac{2M-2M}{N} = \int_{0}^{\infty} d_{1} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} d_{2} \int_{0}^{\infty} \int_{$		$\implies \frac{dV}{dX} + \frac{2Y}{X} = 4\chi$ We are thus how the hotoer
<ul> <li>Alle face we finde</li> <li>Alle face we finde</li> </ul>		$I.F = e^{\frac{12}{3} - dX} = e^{2h/X} = e^{\ln X^2} = X^2$ $\implies \frac{d}{dx} \left[ \forall X^2 \right] = \frac{1}{4} \sqrt{3}$
$\frac{\partial u}{\partial u} - \frac{\partial u}{\partial u} = \frac{1}{1-2} = -\frac{1}{2} = -\frac{1}{2}$		$\Rightarrow \gamma \chi^2 = \int 4\chi^3 d\chi$
e [-99] dy = e ] f-dy = e = 4		$\Rightarrow \chi X^{2} = \chi^{4} + A$ $- \Im \chi^{2} = \chi^{4} + A$

#### Question 14 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.



#### Question 15 (***+)

.C.

I.F.G.B.

I.G.B.

I.C.B.

Determine the solution of the following differential equation by looking for a suitable integrating factor.

 $x\frac{dy}{dx}(x+y)+y(3x+y)=0, y(1)=1.$ 

mada



I.F.G.B.

 $v^2 = 3$ 

 $2yx^{3} + x^{3}$ 

3

# Created by T. Madas

NO,

#### **Question 16** (***+)

Determine the solution of the following differential equation by looking for a suitable integrating factor.



2

ing,

 $=6x^4 - 2x^3$ 

LET V= g

 $\underline{U}=2^{2}V$ 

 $\frac{dy}{dx} = 22x + 3\frac{2}{dy}$ 

(antitutes)

+ <u>29</u> 1 9(1)=2

=  $C - \frac{2}{\infty}$ 

23

Ca4-223

. G.D.

1

.

211201

nn

Madasn,

I.F.G.B.

#### (***+) **Question 17**

I.F.C.P.

SM3/IS-COM

I.V.G.B.

2012

Determine the solution of the following differential equation.

 $\frac{dy}{dx} = \frac{x^2}{y} + \frac{2y}{x}, y(1) = 2.$ 



Created by T. Madas

00

I.C.B.

#### Question 18 (****)

Determine a general solution of the following differential equation by looking for a suitable integrating factor.



uasinaths.com Jas Created by T. Madas

# 1-BY

asmaths.com

# 1st Ok. BY VARIOUS TECHNIQUES TI I.Y.C.B. Madasmalls.Com I.Y.C.B. Madasu A. I.Y.C.B. Malasmanni Malasmanni Malasm

#### **Question 1** (**)

By using a suitable substitution find a general solution of the differential equation



 $\frac{dy}{dx} = x + y,$ <br/>giving the answer in the form y = f(x).



(**) Question 2

N.C.

 $\frac{dy}{dx} = x + 2y$ , with  $y = -\frac{1}{4}$  at x = 0.

By using a suitable substitution, show that the solution of the differential equation is

 $y = -\frac{1}{4}(2x+1).$ 

$\begin{array}{l} \frac{k_{1}}{22} = \infty + 2g \\ \frac{k_{2}}{24} - i \end{pmatrix} = \vee \\ \frac{k_{2}}{24} - i &= 2v \end{array}$	$ \begin{array}{c} V = 2 + 2 \\ d u = 1 + 2 \frac{d u}{d u} \\ d u = \frac{1 + 2 \frac{d u}{d u}}{d u} \\ 2 \frac{d u}{d u} = \frac{d u}{d u} - 1 \\ \end{array} $
$ \frac{dv}{2w+1} = 2w+1 $ $ \frac{1}{2w+1} \frac{dv}{dv} = \int I \frac{dv}{dt} $ $ \frac{1}{2} \frac{1}{2w+1} \frac{1}{2w+1} = 2w+C $ $ \frac{1}{2} \frac{1}{2w+1} = 2w+C $	$\begin{array}{l} +my\ (\text{and} \text{irron})  \left(\circ_{i} \frac{-1}{4}\right) \\ -\underline{J} = -\underline{J}  \left(-1 + Ae^{*}\right) \\ -\underline{J} = -\underline{J}  \left(-\frac{1}{2} + \frac{1}{2}A\right) \\ \underline{A} = 0 \end{array}$
$2r+i = 4e^{2q}$ $V = \frac{1}{2}(-i + Ae^{2q})$ $\boxed{2 + 2y} = \frac{1}{2}(-i + Ae^{2q})$	$\begin{array}{c} \therefore & x+2y = -\frac{1}{2} \\ & \Rightarrow & 2y = -\frac{1}{2} - x \\ & \Rightarrow & 2y = -\frac{1}{2} (1+2x) \\ & \Rightarrow & y = -\frac{1}{4} (2x+1) \end{array}$

Activitative	Sye= - 12= - J-1== ad	
	ye2 = -122e2 + 4 e2 + 4	
	$\int y = -\frac{1}{2}x - \frac{1}{4} + \frac{1}{4}e^{2x}$	
$\Rightarrow \frac{d}{du} \left( \frac{e^{2u}}{2} \right) = x e^{-2u}$	( *# (a	
⇒yen= Jaend	$\begin{array}{c} \therefore y = -\frac{1}{2}x - \frac{1}{4} \\ y = -\frac{1}{4}(2x+1) \end{array}$	
W Mall X (1 -1eth )eth	AS BHEORE	

proof

aths Col

. G.D.

5

.

COM

I.V.C.B. Madash

 $\underline{y=9}e^x - 6e^{\frac{1}{2}x}$ 

t= vg t²= y

dy = 2t dt

\$<u>8</u> = 3+ NG

27

.G.p

= t²+t

(t40) dt = 1 dt

#### **Question 3** (**)

2011

3

I.G.p.

0

Use the substitution  $t = \sqrt{y}$  to solve the following differential equation.

nadasn.

$$\frac{dy}{dx} = y + \sqrt{y}, \quad y > 0, \quad y(0) = 4$$

Given the answer in the form y = f(x)

nadasmaths.com

i-G.p.

·GA

2

2011

#### Question 4 (***)

Solve the differential equation

$$\frac{dy}{dx} = (9x + 4y + 1)^2, \quad y(0) = -\frac{1}{4}$$

Give the answer in the form y = f(x).

# $y = -\frac{1}{4} - \frac{9}{4}x + \frac{3}{8}\tan 6x$

Car ( strip Strip 4	2
$ \begin{aligned} &                                  $	
=9 $4 \frac{dy}{dx} = 4(q_{x+ly+l})^2$ (	=> artin(Ge+&y+z) = Ge + A
$\Rightarrow 4 \frac{d_{4}}{dk} + 9 = 4(9x+l(g+l)^{2}+9)$ (	$= 6x + \frac{2}{3}y + \frac{2}{3} = tan (6x + 4)$
$= \frac{du}{dx} = 4u^2 + g$	$\Rightarrow$ $[18x + 8y + 2 = 3\tan(6x + 4)]$
$\Rightarrow \frac{1}{4q^2+q} du \approx 1 dx$	When are gr-4
$\Rightarrow \frac{4}{4u^2+9} du = 4 dz$	0-2+2=3tourt
$\rightarrow \frac{l}{u^2 + \frac{q}{4}} du = 4 du$	tun A = 0 -A = 0 182+ 83+ 2 = 3tun 62
$\implies \int \frac{1}{u^2 + \left(\frac{\lambda}{2}\right)^2} du = \int 4 d\lambda$ (	$8g = -2 - 18\lambda + 3 \tan 62$
$\implies \frac{1}{\frac{3}{2}} \operatorname{orden}\left(\frac{u}{\frac{3}{2}}\right) = 4u + A$	$y = -\frac{1}{4} - \frac{q}{4}x + \frac{3}{9}\tan 6x$
$= \frac{2}{3} \operatorname{anzbar}(\frac{2}{3}a) = 4a + A$	<
-> -3 arctou [2(9x+4y+1)] = 4x +4	(
$\Rightarrow \frac{2}{3} \operatorname{antim} \left[ 61 + \frac{8}{3}9 + \frac{2}{3} \right] = 4\chi + A$	(

#### Question 5 (***)

2

Use a suitable substitution to solve the differential equation

$$\frac{dy}{dx} = \frac{x+y}{4-3(x+y)}, \ y(0) = 1.$$

# $2\ln|x+y-2| = 3 - x - 3y$

$\frac{dy}{dx} = \frac{x+y}{4-3(x+y)}$	$\begin{cases} \Rightarrow \int \frac{4-3\epsilon}{4-3\epsilon} d\epsilon = \int   d\lambda \end{cases}$
(Z=x+y @ y=2-2)	$\begin{cases} \Rightarrow \int \frac{8-62}{4-22} = \int 2 dx \end{cases}$
$\left\langle \frac{dz}{dz} = 1 + \frac{dy}{dx} \right\rangle$	$ \rightarrow \int \frac{3(4-2\epsilon)-4}{4-2\epsilon} d\epsilon \int 2 d\epsilon$
( da - da - )	$3 - \frac{4}{4-22} d_2 = \int 2 d_1$
$= \frac{dz}{dx} - 1 = \frac{z}{4-3z}$	$\Rightarrow 32 + 2\ln 2-2z  = 2z + C$
$\Rightarrow \frac{dz}{da} = \frac{z}{4-3z} + 1$	2=01 y=1 =9 Z=1 3+2bt = 0+C
$=\frac{d2}{d1}=\frac{2+4-32}{4-32}$	C=3
$\Rightarrow \frac{dz}{d\lambda} = \frac{4-2z}{4-3z}$	$\Rightarrow 3(2x+y) + 2\ln[2-x-y] = 2x + 3$ $\Rightarrow -x - 3y + 3 = 2\ln[2-x-y]$
	(or 3-x-3y=2h   x+y-2   )

#### Question 6 (***)

Use the substitution  $y = e^{z}$  to solve the differential equation

 $x\frac{dy}{dx} + y\ln y = 2xy, \ y(1) = e^2.$ 

ر ا		+
J.	y = e	x
	, i i i i i i i i i i i i i i i i i i i	L

$\begin{array}{c} x \frac{dy}{dt} + y \ln y = 2ay \\ & y = e^{2} \\ & \frac{dy}{dt} = e^{2} \frac{dy}{dt} \\ & \Rightarrow x \frac{d^{2}}{dt} + e^{2} \ln e^{2} \\ & \Rightarrow x \frac{d^{2}}{dt} + z = 2x \\ & If information the set of the set o$	$ \begin{array}{c} \Rightarrow 32 = \int 2x \ dz, \\ \Rightarrow 32 = 2^{1} + d \\ \Rightarrow \frac{1}{2} \frac{1}{$

#### Question 7 (***)

.K.C.

Use the substitution  $z = \sin y$  to solve the differential equation

 $x\frac{dy}{dx}\cos y - \sin y = x^2 \ln x, \ y(1) = 0$ 

subject to the condition y = 0 at x = 1.

 $\sin y = x^2 \ln x - x^2 + x$ 

1+

• $a\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{dt}\frac{dy}{d$	
$ \begin{cases} z = smy \\ dz = cosy dy \\ dx \end{cases} = \begin{cases} z = zma - z + c \\ z = zma - z + c \\ z = zma - z + c \end{cases} $	
(du = L dt ) di = (ay dt ) Ptaur	
$\frac{x}{\cos y} \frac{dx}{dx} \cos y - z = x^2 \ln x$	1-
$\frac{1}{ch} - z = \frac{1}{c^2} \ln a$ $\Rightarrow \sin y = \frac{1}{c^2} \ln a - x^2 + Ca$	_
$\frac{de}{da} - \frac{2}{a} = a ha$ $if_{i} = e^{i - \frac{1}{a}} = e^{i ha} = \frac{1}{a}$ $if_{i} = e^{i - \frac{1}{a}} = e^{i - \frac{1}{a}}$ $if_{i} = e^{i - \frac{1}{a}} = e^{i - \frac{1}{a}}$	
$\frac{d}{dt} \left( \frac{\partial x L}{\partial x} \right) = \ln 2, \qquad $	

#### **Question 8** (***+)

I.G.B.

I.F.C.B

I.F.C.P.

I.V.G.B. Inal

I.V.G.B

nn

Use a suitable substitution to find the solution of the following differential equation.





I.C.B.

.G.D.

N.C.

1.

2017

I.V.C.B. Madasn

Created by T. Madas

2017

I.V.G.B.

23

2

#### **Question 9** (***+)

I.G.B.

I.C.B

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} + \sqrt{y+1} = y+1, \quad y > -1, \quad y(0) = 3.$$

1.0.

 $\underline{y} = e^x \pm 2e^{\frac{1}{2}x}$ 

THE RESOLUTION TIDY I

J.941

y= e' ±2e2

ろ

Com

madasn

I.C.P.

Given the answer in the form y = f(x).

	The second second second
$ \Rightarrow \frac{\partial g}{\partial x} + \sqrt{g_{(1)}} = \frac{g_{(1)}}{g_{(2)}} + \frac{g_{(2)}}{g_{(2)}} + \frac{g_{(2)}}{g$	Getting the trace was the $\sqrt{\frac{1}{2}}$
$\Rightarrow 2\frac{d_1}{d_2} + 1 = V \qquad \qquad$	$\sqrt{g+i^{2}} - i = e^{\frac{1}{2}x}$ $\sqrt{g+i^{2}} = e^{\frac{1}{2}x} + i$
$\Rightarrow 2 \frac{du}{d\lambda} = V - 1$ $\Rightarrow \frac{V - 1}{\sqrt{1 - 1}} \frac{dv}{dv} = \frac{1}{\sqrt{2}} \frac{d\lambda}{d\lambda}$	$\left(\sqrt{\frac{1}{2}}\right)^2 = e^{\lambda} + 3e^{\frac{1}{2}\lambda} + 1$ $\frac{1}{2}$
$\frac{1}{2}$ $\frac{1}$	y= e ² + 2e ² } ∴ y= e
$\Rightarrow  h  v-1  = \frac{1}{2}x + D$ $\Rightarrow  v-1  = e^{\frac{1}{2}x+D}$	
$= \frac{ V-1  = \lambda e^{\frac{1}{2}\lambda}}{ V-1 ^{2} ^{2}}  (\text{olinax saminal})$	
$\begin{array}{ccc} \underbrace{\operatorname{AVR}}_{Q(c) \cup \operatorname{STral}} & & & \\ \underbrace{\operatorname{J}}_{(c) = \Im} & \longrightarrow & [2 - 1] = A \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$	

Created by T. Madas

2017

N.C.

#### Question 10 (***+)

a) By using the substitution  $z = x^2 + y^2$ , solve the following differential equation

$$2xy\frac{dy}{dx} + y^2 = 2x - 3x^2,$$

subject to the condition y = 1 at x = 1.

**b**) Verify the answer to part (a) by using the substitution  $z = y^2$  to solve the same differential equation and subject to the same condition.



#### Question 11 (***+)

Сŀ,

C.P.

A curve with equation y = f(x) passes through the point with coordinates (0,1) and satisfies the differential equation

$$y^2 \frac{dy}{dx} + y^3 = 4e^x$$

By finding a suitable integrating factor, solve the differential equation to show that

$y^3 = 3e^x - 2e^{-3x}$ .	$\gamma_2$ $\langle \eta_2 \rangle$
13sn	, proof
"alls.c.	BE RECOVERED THE Differentiation of $Q^3$ in the first than $\Rightarrow q^3 \frac{dy}{dt} + q^3 = 4z$ $\Rightarrow \frac{1}{3} \frac{dy}{dt} (q^3) + q^3 = 4z$ $\Rightarrow \frac{dy}{dt} (q^3) + 3q^3 = 12z^2$ $\Rightarrow \frac{dy}{dt} + 3y' = 12z^2$ $[\forall_x \ g^3]$
	$\begin{array}{rcl} \underline{\text{Introductions}} & \underline{\text{Protive}} \\ \hline e & \begin{bmatrix} J_3 & d_3 & \\ & e \end{bmatrix} & e^{\frac{3}{2}A} \\ \hline \frac{116}{2} \underbrace{\text{Max}}_{A} & \underline{\text{Introductions}}_{A} \\ \hline \frac{116}{2} \underbrace{\text{Max}}_{A} \\ \hline \frac{116}{2} \underbrace{\text{Max}}_{A} & \underline{\text{Introductions}}_{A} \\ \hline \frac{116}{2} \underbrace{\text{Max}}_{A} & \text{Intr$
· K.C.	$y^{3} = 3e^{2} + Ae^{2e}$ $-\frac{1}{2}R_{2}r}$ (a) $t_{R(a)}$ (4)) Gives $1^{3} = 3x^{6} + Ax^{6}$ 1 = 3 + A A = -2 $\therefore y^{3} = 3e^{2} - 2e^{-3e}$

C.H

1+

#### Question 12 (***+)

I.G.B.

I.C.B.

A curve with equation y = f(x) passes through the origin and satisfies the differential equation

 $2y(1+x^{2})\frac{dy}{dx} + xy^{2} = (1+x^{2})^{\frac{3}{2}}.$ 

 $y^2 = \frac{x^3 + 3x}{3\sqrt{x^2 + 1}}.$ 

By finding a suitable integrating factor, or otherwise, show that



I.C.p.



0

SMaths.com

L.C.B. Madasm

Smaths.com

I.V.G.B.

0

Solve the differential equation

$$\frac{dy}{dx} = \frac{x+y-3}{x+y-5},$$

nadasm.

11202

aths com

I.F.C.B.

Smaths,

subject to the condition  $y = \frac{5}{2}$  at  $x = \frac{5}{2}$ 

madasmaths.com

I.G.B.



nadasn.

i C.B.

naths.col

Y.G.B.

4.6

2

Madasma

aths.com

I.V.C.B. Madasn

Ths.com

#### Question 14 (****)

1.1

х. Х.

I.C.B.

I.C.p.

Find a general solution of the following differential equation

5

 $y\frac{dy}{dx} + x = 2y.$ 

 $(x-y)e^{\frac{y}{x-y}}$ 

I.C.B.

B+1-2=0 B=1

• [A=1] • - A+C=0

RETURNING TO THE O.D.E.

= i = Ae

=) (2-y)e =

 $= \int \frac{1}{x} dx = \int \frac{1}{y} + \frac{1}{(x-1)^{k}} - \frac{1}{y-1} dy$   $\Rightarrow h[x] = h[y] - \frac{1}{y-1} - h[y-1] + C$   $\Rightarrow h[x] = h[\frac{y}{y-1}] - \frac{1}{y-1} + C$   $\Rightarrow h[x] = h[\frac{x}{3} - 1] - \frac{1}{x-3} + C$   $\Rightarrow h[x] = h[\frac{x}{3} - 1] - \frac{1}{x-3} + C$   $\Rightarrow h[x] = h[\frac{x}{3} - 1] - \frac{1}{x-3} + C$   $\Rightarrow h[x] = h[\frac{x}{3} - 1] - \frac{1}{x-3} + C$   $\Rightarrow \frac{y}{3-3} + C = h[\frac{x}{3-3}] - h[x]$   $\Rightarrow \frac{y}{3-3} + C = h[\frac{1}{3-3}] + h[\frac{1}{3}]$   $\Rightarrow \frac{y}{3-3} + C = h[\frac{1}{3-3}]$ 

=C

9	SP
$\begin{array}{c} \begin{array}{c} y \frac{\partial y}{\partial z} + x = 2y \\ \overrightarrow{y}  \frac{\partial y}{\partial x} + \frac{x}{y} = 2 \\ \hline \\$	
• WUTTHEN THE ONCE BY V REFORE SUBSTITUTING-IN $\Rightarrow V \frac{dy}{dx} + \frac{x}{3}v = 2v$ $\Rightarrow (1-3)\frac{dy}{dx} + V^2 = 2v$	
$ \Rightarrow 1 - \frac{\gamma}{2} \frac{\partial g}{\partial x} + V^2 = 2V $ $ \Rightarrow V^2 - 2V + 1 = \frac{\gamma}{2} \frac{\partial g}{\partial x} $ $ \Rightarrow (V - 1)^2 = \frac{\gamma}{2} \frac{\partial g}{\partial x} $	
$\Rightarrow \forall (v-1)^{2} = 3, \frac{dy}{dx}$ $\Rightarrow \frac{1}{2} dx = \frac{1}{v(v-1)^{2}} dV$ $\Rightarrow \frac{1}{2} dx = \frac{1}{v(v-1)^{2}} dV$ $\Rightarrow \frac{1}{2} dx = \frac{1}{2}, \frac{1}{2} + \frac{1}{$	

Av2-24V+A+Bv+Cv2-C

= (A+c)v²+ (8-C-2A)V +

R.

Question 15 (****)

$$\frac{dy}{dx} = \tan(x^2 + 2y + \pi) - x, \quad y(0) = \frac{1}{4}\pi$$

Solve the above differential equation to show that ŀ.C.B.

nadasmaths.com

I.C.B.

I.F.C.B.

I.V.C.B. Madasman

naths com

I.F.G.B.

 $\frac{1}{2} \left[ x^2 + \pi + \arcsin\left(e^{2x}\right) \right].$ 

120/2SM

	4/10	
m	熱	$= \frac{\lambda^2 + \lambda_2}{2} + \pi$ $= \lambda x + 2 \frac{dy}{dx}$ $= \frac{1}{2} \frac{dx}{dx} - 3.$
alls.	$\begin{split} \frac{\partial t}{\partial t} & = \int t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t$	$\begin{array}{l} \begin{array}{l} \displaystyle \operatorname{APry} \; \operatorname{Conductar} \; & 2 + 0 \; , g = \frac{\pi}{4} \\ \displaystyle \begin{array}{l} \Rightarrow \; & 5 \; \operatorname{in} \; \left( \frac{\pi}{4} \right) = \; \mathcal{A} e^{2} \\ \displaystyle \begin{array}{l} \Rightarrow \; & -1 = \; \mathcal{A} \end{array} \end{array}$ $\begin{array}{l}  & \vdots \; \; & \operatorname{Sin} \left( \frac{\pi}{4} \right)^{2} + \pi \right) = \; -e^{-2k} \\  & \frac{\pi}{4} + \frac{\pi}{4} + \pi \right) = \; \operatorname{cons} \left( e^{2k} \right) \\  & \frac{\pi}{4} + \frac{\pi}{4} + \pi \right) = \; \operatorname{cons} \left( e^{2k} \right) \\  & \frac{\pi}{4} = \; -2^{k} - \pi - \operatorname{cons} \left( e^{2k} \right) \\  & \frac{\pi}{4} = \; - \frac{1}{2} \left( \frac{\pi}{4} + \pi + \operatorname{cons} \left( e^{2k} \right) \right) \end{array}$
, F.G.J.	100 ×	C.B.

nadasmaths,

(n)

. G.B.

Ths.com

proof

I.C.S.

Madasma

./

COM

I.V.C.B. Madasa

Created by T. Madas

madasmaths,

Question 16 (****)

R.

I.C.P.

$$\frac{dy}{dx}\left(x+y^2\right) = y\,.$$

- a) Solve the above differential equation, subject to y=1 at x=1 by considering  $\frac{dx}{dy}$ , followed by a suitable substitution.
- b) Verify the validity of the answer obtained in part (a).



Ĉ.

nadasn

 $y^2 = x$ 

**Question 17** (****)

>

0

Smaths.com

I.V.C.P

 $\frac{dy}{dx} = \frac{x+y+3}{x+y-1}, \ y(0) = 0.$ 

I.V.G.B. Show that the solution of the above differential equation is

Madasmaths.com

I.G.p.

I.C.B.

I.C.B. Madasman

 $y - x - 2\ln(x + y + 1) = 0.$ 

madasn



i versionalis marine de la companya de la

COM

naths.com

proof

ISMATHS.COL

. K.G.B.

6

2

11212SI121

COM

I.V.C.B. Madasn

Created by T. Madas

lasmaths,

**Question 18** (****)

I.G.B.

I.G.B.

Given that  $v = yx^{-2}$  find a general solution for the following differential equation.

$$\frac{dy}{dx} - \frac{2y}{x} = \log_v e, \quad u > 0, \quad u \neq 1$$

Given the answer in the form f(x, y) = constant.



F.G.P.

11₂₀₂

3

2

Created by T. Madas

R.

#### Question 19 (****)

I.C.B.

I.V.G.p

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} + 8xy = y^2 + 16x^2, \quad y(0) = -6$$

Given the answer in the form y = f(x).



 $4x(2e^{4x}-$ 

-1

 $2e^{4x}-1$ 

 $-2(2e^{4x}+1)$ 

F.G.B.

1720251

1+

Created by T. Madas

N.C.

#### Question 20 (****)

Sketch the curve which passes through the point with coordinates (1,2) and satisfies



**Question 21** (****)

I.G.B.

I.C.B.

Use a suitable substitution to solve the following differential equation.

$$\frac{dy}{dx} = (x - y + 2)^2, \quad y(0) = 4.$$

Given the answer in the form y = f(x).



1.

1+

I.C.B.

Mada

Created by T. Madas

NO,

Question 22 (****+)

13

I.V.C.B. III.

I.C.B.

 $\frac{d^2y}{dx^2} + \frac{xy+4}{x^2} = y^2, \ x \neq 0.$ 

Find a general solution for the above differential equation.



Ś

1+

.

COM

madasn

I.F.G.B.

Created by T. Madas

2017

E.A.







Solve the following differential equation

$$\frac{dy}{dx} = \frac{2x+y-1}{x+2y+1},$$

to show that

K.C.B. Madasm

SM3/AS.COM

I.F.G.B.

0

$$\frac{dy}{dx} = \frac{2x + y - 1}{x + 2y + 1},$$
$$(x - y)(x + y - 2)(x - y - 2)^2 = \text{constant}.$$

2x+9-1 TO TRANSU = X + i, dx = dy= Y - i dy = dy $\Rightarrow \frac{dY}{dx} = \frac{2(\chi+1) + (\gamma-1) - 1}{\chi+1 + 2(\gamma-1) + 1}$  $\Rightarrow \frac{dY}{dX} = \frac{2\chi + Y}{\chi + 2\gamma}$  $\implies \forall + X \frac{dV}{dX} = \frac{2\chi + XV}{\chi + 2XY}$  $\frac{dY}{dX} = V + X \frac{dV}{dX}$  $\implies$  V + X  $\frac{dV}{dX} = \frac{2+V}{1+2V}$  $\Rightarrow \chi \frac{dV}{d\chi} = \frac{V+2}{2V+1} - V$  $\Rightarrow \times \frac{dV}{dX} = \frac{\sqrt{+2-2N^2}-\sqrt{N}}{2N+1}$  $\Rightarrow \times \frac{dV}{dx} = \frac{2(1-V^2)}{2V+1}$  $= \frac{2\nu+1}{1-\nu^2} d\nu = \frac{2}{\times} d\lambda$  $\implies \int \frac{2\nu+1}{(1-\nu)(1+\nu)} d\nu = \int \frac{2}{x} dx$ 

() BY FARTIAL FRATIONS
$\implies \int \frac{\frac{3}{2}}{\frac{1}{1-V}} - \frac{\frac{1}{2}}{\frac{1}{1+V}} dV = \int \frac{2}{N} dX$
$\implies \int \frac{3}{1-v} = \frac{1}{1+v} dv = \int \frac{4}{x} dx$
$\implies -3h[1-v[-h[+v] = 4h\chi + hA$
$\implies 3\ln 1-v  + \ln 1+v  = \ln A - 4\ln X$
$\longrightarrow$ $\ln\left[\left(\left(-v\right)^{3}\left(1+v\right)\right] = \ln\left(\frac{A}{\times^{4}}\right)$
$\longrightarrow$ $(I-V)^{3}CI+V) = \frac{A}{X^{4}}$
$\Rightarrow (1-v)^2(1-v^2) = \frac{4}{\times^4}$
REVERSING THE TRANSPERATIONS
$2(k_0)T+k_0QR(k_0x, T+k-a_{NL})R = \frac{2}{N} = \frac{4}{N} = \frac{2}{N} =$
$\implies  \frac{1}{X^4} \left( X - Y \right)^2 \left( X^2 - Y^2 \right) = \frac{A}{X^4}$
$\implies \left[ (\alpha - 1) - (\eta + 1) \right]^{2} \left[ (\alpha - 1)^{k} - (\eta - 1)^{k} \right] = A$
$(\alpha - 9 - 2)^{2} (\alpha - 1 + 1 - 1) (\alpha - 1 - 9 + 1) = A$

The Com

proof

e.

ne,

nn

I.V.C.B. Madasa

N.G.S.

4.4

.

 $(x-y-2)^{2}(x+y-2)(x-y) = A$ 

20

Created by T. Madas

CO11

I.F.G.B.

#### Question 26 (****+)

I.G.B.

Solve the following differential equation

$$\frac{dy}{dx} = \frac{2x + 3y - 7}{3x + 2y - 8}, \quad y(1) = 1$$

Give the answer in the form  $(y-x-1)^5 = f(x, y)$ , where f(x, y) is a function to be found.

 $\left(y-x-1\right)^5 = y+x$ 

i.C.B.

nana,



The s

ŀGp.

M2(12

2

N.C.

Question 27 (****+)

I.G.B.

 $\frac{dy}{dx}\left(x+y^2\right) = y\,.$ 

- **a**) Solve the above differential equation, subject to y = 1 at x = 1.
- b) Verify the validity of the answer obtained in part (a).



Created by T. Madas

2



Des

Question 29 (****+)

£

I.V.G.B. May

I.F.G.B.

nn

 $2+(x+1)\frac{dy}{dx}=x(x+2)+y.$ 

Solve the above differential equation, subject to y(2) = 0.

I.G.B.

112/2



Com

 $y = x^2 - 2x$ 

4.65

1+

./

COM

madasn,

I.F.C.B.

Created by T. Madas

2017

E.A.

#### Question 30 (****+)

Smaths.co

I.V.C.P

Use the substitution  $v = \frac{y-x}{y+x}$ ,  $y + x \neq 0$ , to solve the following differential equation

 $x\frac{dy}{dx} - y = \frac{(1-x)(x^2 - y^2)}{x^3 + x^2 + x + 1}, y(0) = 1.$ 

4.6.5

1.4

 $y = x^2 + x + 1$ 

I.V.C.B. Madası

Give the answer in the form y = f(x).

1.1.



#### **Question 31** (*****)

274

ISMaths.com

I.V.C.P

Solve the differential equation

$$\frac{dy}{dx} = \frac{1 - xy + x^2 y^2}{x^2 - yx^3}, \ x > 0,$$

nadasman

subject to the condition y(1) = 0.

nadasmaths.com

Y.G.B.

I.Y.C.B.

I.Y.C.B. Madasmaths.Com

112028

			00.
	$ \begin{array}{l} \displaystyle \Rightarrow \begin{array}{l} \displaystyle \overrightarrow{qt} - \overrightarrow{\lambda} & = \frac{1}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow \begin{array}{l} \displaystyle \overrightarrow{qt} - \overrightarrow{\lambda} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow \begin{array}{l} \displaystyle \overrightarrow{qt} - \overrightarrow{\lambda} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow \begin{array}{l} \displaystyle \overrightarrow{qt} - \overrightarrow{\lambda} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow r \frac{qt}{qt} - \overrightarrow{\lambda} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow r \frac{qt}{qt} - \frac{r}{r} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \Rightarrow r \frac{qt}{qt} - \frac{r}{r} & = \frac{r}{r} \frac{r(r, r)}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{qt} - \overrightarrow{qt} & \tau \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{qt} - \overrightarrow{qt} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{r} - \overrightarrow{qt} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{r} - \frac{r}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{r} - \frac{r}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{r} - \frac{r}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{qt}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{r}{r} \\ \hline \overrightarrow{qt} & = \frac{r}{r} \\ \displaystyle \overrightarrow{qt} & = \frac{r}{r} \\ \hline \overrightarrow{qt} & = \frac{r}{r} \\ \overrightarrow{qt} & = \frac{r}{r} \\ \hline \overrightarrow{qt} & = \frac{r}{r} \\ \overrightarrow{qt} & = \frac{r}{r} \\ \hline \overrightarrow{qt} & = \frac{r}{r} \\ $	$ \Rightarrow x \frac{dy}{d\lambda} = \frac{1}{1-\sqrt{4}} \frac{\sqrt{4}}{\sqrt{4}} \frac{\sqrt{4}}{\sqrt{4}} \frac{\sqrt{4}}{\sqrt{4}} \frac{\sqrt{4}}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{\sqrt{4}}{\sqrt{4}} \frac{1}{\sqrt{4}} \frac{1}{4$	<i>4511</i>
1.4.6	$\begin{array}{l} \Rightarrow a_{dx}^{dy} - v = \frac{1 - v_1 x v^2}{1 - v} \\ \Rightarrow a_{dx}^{dy} = \frac{1 - v_1 x v^2}{1 - v} + v \end{array}$	ŀG.p.	
3SM21		asmark.	12025
, .)			2017

naths.col

I.G.S.

· Car

11212SM21

I.V.C.B. Madasm

naths.com

 $2xy - x^2y^2 = 2\ln x$ 

Created by T. Madas

Madasmaths.com

#### Question 32 (*****)

I.V.G.B.

I.G.B.

I.V.G.B

Find a simplified general solution for the following differential equation.

 $\left(x^2 - 1\right)\left(\frac{dy}{dx}\right)^2 - 2xy\left(\frac{dy}{dx}\right) + y^2 = 1.$ 5



 $\left(A+y\sqrt{x^2-1}\right)\left(y+Bx+C\right)=0$ 

I.Y.G.B.

4

11₂₀₂

Created by T. Madas

I.C.

#### (*****) **Question 33**

$$\frac{dy}{dx} = \frac{y - xy^2}{x + yx^2}, \ x \neq 0.$$

Question 33 (*****)	18
Find a general solution for the differential equation	
$\frac{dy}{dx} = \frac{y - xy^2}{x + yx^2}, \ x \neq 0.$	L. V. Y.
	1. C V.
AP CD CD	$y e^{xy} = Cx$
SP The SP	$\begin{cases} dt & \frac{1}{2} - \frac{1}{2} - \frac{1}{2} dt \\ dt & \frac{1}{$
	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
352 402 4202	$\begin{array}{l} \lim_{n \to \infty} \max_{x \in [N]} \alpha_{x}  \  \  \  \  \  \  \  \  \  \  \  \  \$
Mare Sm. Mars	$ = \frac{1}{24} - \frac{1}{24} - \frac{1}{24} - \frac{1}{24} = \frac{1}{24} - \frac{1}{2$
as ath as	$\Rightarrow x \frac{\partial}{\partial t} = v + \frac{v - v^2}{(+v)} \qquad \qquad$
10m 18.00 10	n com
Le Va In	1. J J.
Ch Gp Kn	· G 2 · C
S. S. S.	
10 102 420 V	n Mari
asp ala asp	* do _ * das_
19/2 300 19/2	Sh Sh
us allo us	Nath Sal
	m s.c.
	Y J. COD
le la la	No 1
Ch GA GA	1 GD 1
	· · · · ·
12 120	no. an
Created by T. Madas	190/2 1985
The Up and	Sh V

asmaths.com

asmans.com

Question 34	(*****
Question 54	- <b>L</b>

'uasina

281721

ation  

$$\frac{dy}{dx} = -\frac{xy^2 + y}{x + yx^2 + x^3y^2}, x \neq 0, y > 0,$$

$$y(\frac{1}{2}) = 1.$$

$$\boxed{2x^2y^2 \ln y = 2xy + 1}$$

Solve the differential ague	tion	"Con	100	· · C.
Solve the differential equa	5	1	, "Op	
$\frac{d}{d}$	$\frac{y}{x} = -\frac{xy^2 + y}{x + yx^2 + x^3y}$	$\frac{1}{y^2}, x \neq 0, y > 0,$	L. Y	×.
1. 4.1.			50.	1.1
subject to the condition y	$\left(\frac{1}{2}\right) = 1$ .	62	58	- G
60 0		5		L 7
	Do.	12	$2x^2y^2\ln y = 2xy + 1$	0
a. ant	1905		$ \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Sm
	Sh - Sh	● V= ay or g the = 1×g + a dy	$=\frac{1}{\sqrt{2}} \frac{1+v+v^2}{v^3} dv = \frac{1}{x} dx$	121
The Var	, Y	$\frac{dt}{dt} = \frac{v}{X} + z \frac{dz}{dt}$ $\frac{dt}{dt} = \frac{dv}{X} - \frac{v}{X}$ $\frac{du}{dt} = \frac{dv}{dt} - \frac{v}{X}$	$\left  h \left[ \frac{V}{2L} \right] \right  = \frac{1}{2h^2} + \frac{1}{V} + c$	
· · · · · · · · · · · · · · · · · · ·	0	$\begin{array}{c} \bullet \text{ Linguightarrow } \\ \bullet \text{ Linguightarrow } \\ \Rightarrow  \frac{d t}{d t} = \frac{-t^2}{2 + t^2} \\ \Rightarrow \frac{d t}{d t} = \frac{-t^2}{2 + t^2} \\ \Rightarrow \frac{d t}{d t} = \frac{-t^2}{2 + t^2} \\ \Rightarrow \frac{d t}{d t} = \frac{-t^2}{2 + t^2} \\ \end{array}$	-V ARRY CONDITION 21 2, Mail	
	Con	$ \Rightarrow \frac{dt}{dt} - \frac{1}{y} = \frac{-v^2}{z(y)} $ $ \Rightarrow \frac{dt}{dt} - \frac{1}{y} = \frac{-v^2}{z(y)} $ $ \Rightarrow \frac{dt}{dt} - v = \frac{-v^2}{1+y} $ $ \Rightarrow \frac{2}{dt} = v = \frac{-v}{(y)} $	$\frac{v}{v^2}$ $\therefore \frac{2}{2} \frac{1}{2} \frac{1}{2$	2
	~77	04, 144	) 1	1
1.1 ·Kn		1.	S.F.	N.
Ch Ch	þ ~	50.	62	- G
- B	<i>b</i>	48	· · · ·	
d Da.	420	in.		2.
ash ads	120	1	0	·420.
and the spe		lars	Sp.	~ D_
· · · · · · · · · · · · · · · · · · ·	8.	20	1212	
Con	Sec	"Con	-Is	'n
7	OB			Dr.
1. 62	×.	×.	6.12	V x
S.F. S.	$\gamma_{\lambda} \prec \gamma_{\lambda}$	J.	1.O.	1
16'D 4	8	62	48	1
	'D-	· .		m. `
2. 12.	Created by		2	120
U2. 402.	Created by	1. 1/1auas	92.	des n
The the	1	12.	10/2	

#### Question 35 (*****)

The positive solution of the quadratic equation  $x^2 - x - 1 = 0$  is denoted by  $\phi$ , and is commonly known as the golden section or golden number.

a) Show, with a detailed method, that  $F(x) = f(\phi)x^{g(\phi)}$  is a solution of the differential equation,

$$F'(x)=F^{-1}(x),$$

- where f and g are constant expressions of  $\phi$ , to be found in simplified form.
- **b**) Verify the answer obtained in part (**a**) satisfies the differential equation, by differentiation and function inversion.

 $\frac{1}{\phi}$ 

F(x) =

 $x^{\phi}$ 

[You may assume that F(x) is differentiable and invertible]

DIFFERENTIATING FG) -· + 2 + LET TOO F'(a) = \$ \$ \$ rA2 F-1 du -R, AS IN THE O.D.E ATA STREEN G MOTH F(x) = 61-4 2 : q 2 + 2 + 1 = + + 2 +

STRATISCOTT F.Y.G.R. MARIASTRATISCOTT F.Y.G.R. MARIASTRATISCOTT

TATER MARINERSMANNERSCOM LAKER MARINERSCOM LAKE ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST