DIFFERENTIAL

EQUATIONS

$1^{\text {st }}$ order

SEPARATION

OF

VARIABLES

Created by T. Madas

Question 1 (**)
Show that if $y=a$ at $t=0$, the solution of the differential equation

$$
\frac{d y}{d t}=\omega\left(a^{2}-y^{2}\right)^{\frac{1}{2}}
$$

where a and ω are positive constants, can be written as

$$
y=a \cos \omega t
$$

Created by T. Madas

Question 2 (**+)
Show that a general solution of the differential equation

$$
5 \frac{d y}{d x}=2 y^{2}-7 y+3
$$

Question 3 (**+)
Show that a general solution of the differential equation $\mathrm{e}^{x+2 y} \frac{d y}{d x}+(1-x)^{2}=0$
$y=\frac{1}{2} \ln \left[2 \mathrm{e}^{-x}\left(x^{2}+1\right)+K\right]$,
where K is an arbitrary constant.

Created by T. Madas

Question $4 \quad(* *+)$

$$
x \frac{d y}{d x}=\sqrt{y^{2}+1}, x>0, \text { with } y=0 \text { at } x=2 .
$$

Show that the solution of the above differential equation is

$$
y=\frac{x}{4}-\frac{1}{x}
$$

Question 5 (***)

$$
\mathrm{e}^{x} \frac{d y}{d x}+y^{2}=x y^{2}, x>0, y>0
$$

Show that the solution of the above differential equation subject to $y=\mathrm{e}$ at $x=1$, is

Question 6 (***)
A curve $y=f(x)$ satisfies the differential equation

$$
y=1-\frac{d y}{d x} \frac{x+1}{(x-1)(x+2)}, y>1, x>-1
$$

a) Solve the differential equation to show that

$$
\ln (y-5)+\frac{1}{2} x^{2}+4 x-2 \ln (x+1)=C
$$

When $x=0, y=2$.
b) Show further that

Created by T. Madas

Question 7 (***)

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{5}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)}, x>0 .
$$

Given that $y=\frac{1}{2} \ln \frac{7}{6}$ at $x=1$, show that the solution of the above differential equation can be written as

Created by T. Madas

Question 8 (***)

$$
\frac{d y}{d x}=1-\sqrt{y}, y \geq 0, y \neq 1 .
$$

Find the solution of the above differential equation subject to the condition $y=0$ at $x=0$, giving the answer in the form $x=f(y)$.
$\left.x=2 \ln \left|\frac{1}{1-\sqrt{y}}\right|-2 \sqrt{y} \right\rvert\,$

Question 9 (***)
Solve the differential equation

$$
\frac{d y}{d x}=2-\frac{2}{y^{2}}
$$

subject to the condition $y=2$ at $x=1$, giving the answer in the form $x=f(y)$.

Question $10 \quad(* * *+)$
The function $y=f(x)$ satisfies the differential equation

$$
\frac{d y}{d x}=\frac{2 x y(y+1)}{\sin ^{2}\left(x+\frac{1}{6} \pi\right)},
$$

subject to the condition $y=1$ at $x=0$.

Find the exact value of y when $x=\frac{\pi}{12}$.

$$
y=\frac{1}{\mathrm{e}^{\frac{1}{6} \pi}-1}
$$

\square

Question 11 (****+)
A curve passes through the point with coordinates $\left[1, \log _{2}\left(\log _{2} \mathrm{e}\right)\right]$ and its gradient function satisfies

$$
\frac{d y}{d x}=2^{y}, \quad x \in \mathbb{R}, \quad x<2 .
$$

Find the equation of the curve in the form $y=f(x)$

Question 12 (****)

$$
\frac{d y}{d x}=\sqrt{\frac{y^{4}-y^{2}}{x^{4}-x^{2}}}, x>0, y>0
$$

Find the solution of the above differential equation subject to the boundary condition $y=\frac{2}{\sqrt{3}}$ at $x=2$.

Give the answer in the form $y=\frac{2 x}{f(x)}$, where $f(x)$ is a function to be found.
\square , $f(x)=\sqrt{3}+\sqrt{x^{2}-1}$

$1^{\text {ST }}$ ORDER

BYSTANDARD

INTEGRATING

Question 1 (**)
Solve the differential equation

$$
\frac{d y}{d x} \sin x+2 y \cos x=4 \sin ^{2} x \cos x, \quad y\left(\frac{1}{6} \pi\right)=\frac{17}{4} .
$$

Give the answer in the form $y=f(x)$.

Created by T. Madas

Question 3 (**)
$x \frac{d y}{d x}+2 y=9 x\left(x^{3}+1\right)^{\frac{1}{2}}$, with $y=\frac{27}{2}$ at $x=2$.

Show that the solution of the above differential equation is

Created by T. Madas

Question $4 \quad{ }^{(* *)}$
20 grams of salt are dissolved into a beaker containing 1 litre of a certain chemical.

The mass of salt, M grams, which remains undissolved t seconds later, is modelled by the differential equation

$$
\frac{d M}{d t}+\frac{2 M}{20-t}+1=0, t \geq 0
$$

Show clearly that

Question 5 (**+)

$$
\frac{d y}{d x}+k y=\cos 3 x, k \text { is a non zero constant. }
$$

By finding a complimentary function and a particular integral, or otherwise, find the general of the above differential equation.

$$
y=A \mathrm{e}^{-x}+\frac{k}{9+k^{2}} \cos 3 x+\frac{3}{9+k^{2}} \sin 3 x
$$

Question 6 (**+)
Given that $z=f(x)$ and $y=g(x)$ satisfy the following differential equations

$$
\frac{d z}{d x}+2 z=\mathrm{e}^{-2 x} \text { and } \frac{d y}{d x}+2 y=z
$$

a) Find z in the form $z=f(x)$
b) Express y in the form $y=g(x)$, given further that at $x=0, y=1, \frac{d y}{d x}=0$

$$
z=(x+C) \mathrm{e}^{-2 x}, y=\left(\frac{1}{2} x^{2}+2 x+1\right) \mathrm{e}^{-2 x}
$$

9) $z=(x+C) \mathrm{e}^{-2 x}, y=\left(\frac{1}{2} x^{2}+2 x+1\right) \mathrm{e}^{-2 x}$

Question 7 （＊＊＊）
A curve C ，with equation $y=f(x)$ ，passes through the points with coordinates $(1,1)$ and $(2, k)$ ，where k is a constant．

Given further that the equation of C satisfies the differential equation

$$
x^{2} \frac{d y}{d x}+x y(x+3)=1
$$

$$
k=\frac{\mathrm{e}+1}{8 e}
$$

determine the exact value of k ．

	$e^{2} \times e^{3 x}$
	$\frac{2}{z} \frac{1}{a^{2}}$

Finter tre $a=2$
$y=\frac{1}{x^{2}}-\frac{1}{x^{2}}+\frac{e}{x^{2}} \vec{e}^{-2}$
$k=\frac{1}{2^{2}}-\frac{1}{2^{2}}+\frac{e x x^{2}}{2}{ }^{2}$
$k-\frac{1}{6}\left({ }^{(k+1)}\right.$
L＝（比り）

Question 8 (***)
A curve C, with equation $y=f(x)$, meets the y axis the point $(0,1)$.

It is further given that the equation of C satisfies the differential equation

$$
\frac{d y}{d x}=x-2 y .
$$

a) Determine an equation of C.
b) Sketch the graph of C.

The graph must include in exact simplified form the coordinates of the stationary point of the curve and the equation of its asymptote.
\square

$$
y=\frac{1}{2} x-\frac{1}{4}+\frac{5}{4} \mathrm{e}^{-2 x}
$$

Question 9 (***)

$$
\left(1-x^{2}\right) \frac{d y}{d x}+y=\left(1-x^{2}\right)(1-x)^{\frac{1}{2}},-1<x<1 .
$$

Given that $y=\frac{\sqrt{2}}{2}$ at $x=\frac{1}{2}$, show that the solution of the above differential equation can be written as

$$
y=\frac{2}{3} \sqrt{\left(1-x^{2}\right)(1+x)}
$$

\square , proof
\square
$\left[1-x^{2}\right) \frac{b_{0}}{x^{2}+3=(1-x)^{2}(1-x)^{2}}$
 AN INTESRATING FACTOR
$\Rightarrow \frac{d y}{d x}+\frac{1}{1-x^{2}} \frac{d y}{d x}=(1-x)^{\frac{1}{2}}$
 $=e^{\int \frac{x}{1+2}+\frac{t}{1-x} d x}=e^{\frac{1}{2 x}\left|\frac{1+x}{1-x}\right|}=e^{\ln \sqrt{\frac{1+x}{1-x}}=\frac{\sqrt{1+x}}{\sqrt{1-x}}}$ $\left.\Rightarrow \frac{d}{d x}\left[y\left(\frac{\sqrt{1+x}}{\sqrt{1-x}}\right)\right]=\sin x\right)^{\frac{1}{2}}\left(\frac{\sqrt{1+x}}{\sqrt{1+x}}\right)$
$\Longrightarrow \frac{y(1+x)^{\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}=\int(1+x)^{\frac{1}{2}} d x$
$\Rightarrow \frac{y(1+x))^{\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}=\frac{2}{3}(1+x)^{\frac{3}{2}}+A$
$\Rightarrow y=\frac{2}{3}(1+x)^{1}(1-x)^{\frac{1}{2}}+A \frac{(1-x)^{\frac{1}{2}}}{(1+2)^{\frac{1}{2}}}$ APPCY $z=\frac{1}{2}, y=\frac{\sqrt{2}}{2}$ $\Rightarrow \frac{\sqrt{2}}{2}=\frac{2}{3} \times \frac{3}{2} \times \frac{\sqrt{2}}{2}+A \frac{\sqrt{3 / 2}}{3 / 2}$ $\Rightarrow \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}+A \frac{\sqrt{2}}{3}$ $\Rightarrow A=0$

Question 10 (***)
The general point P lies on the curve with equation $y=f(x)$.

The gradient of the curve at P is 2 more than the gradient of the straight line segment $O P$.

Given further that the curve passes through $Q(1,2)$, express y in terms of x.

$$
y=2 x(1+\ln x)
$$

Created by T. Madas

Question 11 (***)

$$
x \frac{d y}{d x}+3 y=x \mathrm{e}^{-x^{2}}, x>0 .
$$

Show clearly that the general solution of the above differential equation can be written in the form

Question 11 (***+)
The curve with equation $y=f(x)$ passes through the origin, and satisfies the relationship

$$
\frac{d}{d x}\left[y\left(x^{2}+1\right)\right]=x^{5}+2 x^{3}+x+3 x y
$$

Determine a simplified expression for the equation of the curve.
$\square, y=\frac{1}{3}\left(x^{2}+1\right)^{2}-\frac{1}{3}\left(x^{2}+1\right)^{\frac{1}{2}}$

\square

Question 12 (***+)

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{5}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)}, x>0 .
$$

Given that $y=\frac{1}{2} \ln \frac{7}{6}$ at $x=1$, show that the solution of the above differential equation can be written as

$$
y=\frac{1}{2 x} \ln \left(\frac{4 x^{2}+3}{2 x^{2}+4}\right)
$$

Werte THE O.D.E WN THe OPSML OROST
$\rightarrow \frac{d x}{d x}+\frac{y}{x}=\frac{5}{\left(x^{5}+2\right)\left(x^{2}+3\right)}$
INTHeting fictor and Bt frand
$e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
thace we osth
$\Rightarrow \frac{d}{d l}(y x)=\frac{5 x}{\left.\left(x^{2}+2\right)(4 x+1]\right)}$
$\Rightarrow y x=\int \frac{5 x}{(x+2)\left(x^{2}+3\right)} d x$
Prenal ferctions ter Nespseo
$\frac{5 x}{\left(x^{2}+2\right)\left(2 x^{2}+3\right)}=\frac{4 x+B}{x^{2}+2}+\frac{C x+D}{4 x^{2}+3}$
$5 x=(1 x+8)\left(1 x^{2}+3\right)+\left(x^{2}+2\right)($ (xati) $)$
$\left.52=(4+C C)^{3}+(48+1)\right)^{2}+(3+2 C) x+(38+2 D)$
$\left.\left.\begin{array}{r} 4 A+C=0 \\ 13 A+2 C=5 \end{array}\right\} \rightarrow \begin{array}{l} 8+2 C=0 \\ 3 A+2 C=5 \end{array}\right\} \Rightarrow \begin{aligned} & \frac{x-1}{}=-1 \\ & s=4 \end{aligned}$
$\left.\left.\begin{array}{l} 4 B+D=0 \\ 3 B+2 D=0 \end{array}\right\} \Rightarrow \begin{array}{l} 8 B+2 D=0 \\ 3 B+2 D=0 \end{array}\right\} \Rightarrow \begin{aligned} & \frac{B=0}{D=0} \\ & D=0 \end{aligned}$

cherying or the revineo mitseation)
$\begin{aligned} & \Rightarrow y x=\int \frac{4 x}{4 x^{2}+3}-\frac{x}{x^{2}+2} d x \\ & \Rightarrow 2 y x=\int \frac{8 x}{4 x^{2}+3}-\frac{2 x}{x^{2}+2} d x \end{aligned}$
$\begin{aligned} & \Rightarrow 2 y x=\ln \left(4 x^{2}+3\right)-\ln \left(x^{2}+2\right)+\ln A \\ & \rightarrow 2 y x-\ln \left[\frac{t\left(4 x^{2}+3\right)}{x^{2}+2}\right] \end{aligned}$
HPPQ Condition $x=1, y=\frac{1}{2} \ln \frac{7}{5}$
$\Rightarrow 2 \times \frac{1}{2} \frac{1}{2} \frac{7}{6} \times 1=\ln \left(\frac{74}{3}\right)$
$\Rightarrow \ln \frac{7}{6}-\ln \frac{74}{3}$
$\rightarrow \frac{7}{6}=\frac{7 A}{3}$
$\Rightarrow A=\frac{1}{2}$
Gintuy we that
$\Rightarrow 2 y x=\ln \left[\frac{4 x^{2}+3}{2\left(x^{2}+2\right)}\right]$
$\Rightarrow y=\frac{1}{22} \ln \left[\frac{4 x^{2}+3}{22^{2}+4}\right]$
As resurem

Question 13 (***+)

$$
\left(2 x-4 y^{2}\right) \frac{d y}{d x}+y=0
$$

By reversing the role of x and y in the above differential equation, or otherwise, find its general solution.

Question 14 (****)
It is given that a curve with equation $y=f(x)$ passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ and satisfies the differential equation

$$
\left(\frac{d y}{d x}-\sqrt{\tan x}\right) \sin 2 x=y
$$

Find an equation for the curve in the form $y=f(x)$.
\square ,$y=x \sqrt{\tan x}$

Question 15 (****)
Find a simplified general solution for the following differential equation.

Question 16 (****)
The curve with equation $y=f(x)$ has the line $y=1$ as an asymptote and satisfies the differential equation

$$
x^{3} \frac{d y}{d x}-x=x y+1, x \neq 0
$$

Solve the above differential equation, giving the solution in the form $y=f(x)$.

Question 17 (****)
It is given that a curve with equation $x=f(y)$ passes through the point $\left(0, \frac{1}{2}\right)$ and satisfies the differential equation

$$
(2 y+3 x) \frac{d y}{d x}=y .
$$

Find an equation for the curve in the form $x=f(y)$.

$$
2, \square, x=4 y^{3}-y
$$

\square

Question 18 (****)
It is given that a curve passes through the point $(-2,0)$ and satisfies the ordinary differential equation

$$
\frac{d y}{d x}=\frac{1}{x+y^{2}}
$$

Show that an equation of C is
proof
\square

Created by T. Madas

Created by T. Madas

Question 19 (****)
The variables x and y satisfy

$$
(2 y-x) \frac{d y}{d x}=y, y>0, x>0 .
$$

Question 20
The variables x and y satisfy

$$
\frac{d y}{d x}=\frac{y(y+1)}{y-x-x y-1}, \quad y>0 .
$$

If $y=1$ at $x=1-\ln 4$, show that $y+\ln (y+1)=0$ at $x=3$.
\square , proof

$\Rightarrow x y=\int 1-\frac{2}{y+1} d y$ $\Rightarrow x y=y-2 \ln (y+1)+A$
APry banserey gnotitai Gita
$a=1-\ln 4, y=1$
$\Rightarrow(1-\ln 4) \times 1=1-2 \ln 2+4$
$\Rightarrow 1-\ln 4=1-\ln 4+4$
$\Rightarrow A=0$
$2 y=y-2 \ln (y+1)$
Whet $2=3$
$\Rightarrow 3 y=y-2 \ln (y+1)$
$\Rightarrow 2 y=-2 \ln (y+1)$
$\Rightarrow y=-\ln (y+1)$
$\rightarrow y+\ln (y+1)=0$

Question 21 (*****)
Use suitable manipulations to solve this exact differential equation.

$$
4 x \frac{d y}{d x}+\sin 2 y=4 \cos ^{2} y, \quad y\left(\frac{1}{4}\right)=0
$$

Given the answer in the form $y=f(x)$.

Created by T. Madas

Question 1 (**+)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}-\left(\frac{y}{x}\right)^{2}, x>0
$$

subject to the condition $y=1$ at $x=1$.

Created by T. Madas

Question 2 (**+)

$$
\frac{d y}{d x}=\frac{(4 x+y)(x+y)}{x^{2}}, x>0
$$

a) Use a suitable substitution to show that the above differential equation can be transformed to

$$
x \frac{d v}{d x}=(v+2)^{2}
$$

b) Hence find the general solution of the original differential equation, giving the answer in the form $y=f(x)$.
c) Use the boundary condition $y=-1$ at $x=1$, to show that a specific solution of the original differential equation is

$$
y=\frac{x}{A-\ln x}-2 x
$$

$$
y=\frac{x}{1-\ln x}-2 x .
$$

Question 3 (**+)
By using a suitable substitution, solve the differential equation

$$
x y \frac{d y}{d x}=x^{2}+y^{2}, x>0
$$

subject to the boundary condition $y=1$ at $x=1$.

$$
y=x^{2}(1+2 \ln x)
$$

Question 4 (**+)
By using a suitable substitution, or otherwise, solve the differential equation
subject to the condition $y(0)=0$.

$$
\frac{d y}{d x}=x^{2}+2 x y+y^{2}
$$

$$
y=-x+\tan x
$$

Question 5 (**+)
By using a suitable substitution, solve the differential equation

$$
\frac{d y}{d x}=\frac{x y+y^{2}}{x^{2}}, x>0
$$

subject to the condition $y=-1$ at $x=1$.

$$
\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{x y}, x>0, y>0 .
$$

Given the boundary condition $y(1)=\frac{1}{\sqrt{2}}$, show that

$$
y^{2}=x^{6}-\frac{1}{2} x^{2}
$$

\square , proof

	$(\mathrm{a})=2 \mathrm{~V}(\mathrm{~F})$
$\frac{d y}{x}=\frac{1}{d x}(x v a)=$	V(x) $+x \frac{d V(x)}{d x}$
1.6 $\frac{d y}{d x}=v+x \frac{d v}{d x}$	
SRSTTVT WTO THe O.D.E.	
$\Rightarrow \frac{d u}{d x}=\frac{x^{2}+3 y^{2}}{2 y}$ $\Rightarrow y+2 d u=a^{2}+3(a, y)^{2}$	$\begin{aligned} & \Rightarrow \frac{1}{4}\left(1+2 x^{2}\right)=\ln \|x\|+\ln A x \\ & \Rightarrow \ln \left(1+2 x^{2}\right)=4 \ln (x) x \end{aligned}$
$x+x \frac{d x}{d x}=\frac{x^{2}}{x(x) y}$	$\Rightarrow \ln \left(1+22^{2}\right)=\ln \left(8 x^{4}\right)\left(8-44^{4}\right)$
$\Rightarrow v+x \frac{y}{d x}=\frac{x^{2}+33^{2} v^{2}}{x^{3}}$	$\Rightarrow 1+2 x^{2}=3 x^{4}$
$\Rightarrow x \frac{d y}{d x}=\frac{x^{2}\left(1+3 z^{2}\right)^{2}}{x^{2} v}-v$	$\Rightarrow 1+2\left(\frac{y}{(x)}\right)^{2}=3 x^{4}$ $\Rightarrow 2^{2}+2 y^{2}=B x^{5}$
$\Rightarrow x_{\frac{d v}{d z}}=\frac{1+s^{2}}{v}-v$	
	$\Rightarrow 1+1=8$
$\rightarrow a \frac{d \nu}{\text { a }}$ - $\frac{1+v)^{2}}{v}$	$\Rightarrow B=2$
Scerchanc- Unembes.	$\begin{aligned} \therefore x^{2}+2 y^{2} & =2 x^{6} \\ 2 y^{2} & =x^{4}-x^{2} \end{aligned}$
$\rightarrow \frac{y}{12,22^{2}} d=\frac{1}{4}$ de	$y^{2}=x^{4}-\frac{1}{2} x^{2}$.
$\Rightarrow \int \frac{v}{1022} d u=\int \frac{1}{x} d x$	toemme

Question 7 (***)
By using a suitable substitution, solve the differential equation

$$
\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}
$$

subject to the condition $y=1$ at $x=1$.

Question 9 (***)
By using a suitable substitution, solve the differential equation

$$
x \frac{d y}{d x}-y=x \cos \left(\frac{y}{x}\right), x \neq 0
$$

subject to the condition $y(4)=\pi$.

The final answer may not involve natural logarithms.

$$
\sec \left(\frac{y}{x}\right)+\tan \left(\frac{y}{x}\right)=\frac{1}{4} x(1+\sqrt{2})
$$

Created by T. Madas

Created by T. Madas

Question 10
(***)

$$
x y \frac{d y}{d x}=(x-y)^{2}+x y
$$

$$
y(1)=0 .
$$

Show that the solution of the above differential equation is

$$
(x-y) \mathrm{e}^{\frac{y}{x}}=1
$$

Created by T. Madas

Question 11 (***)
Use the substitution $y=x v$, where $v=v(x)$, to solve the following differential equation

Created by T. Madas

Question 12 (***)

Solve the following differential equation

$$
\frac{d y}{d x}=\frac{3 x+2 y}{3 y-2 x}, y(1)=3 .
$$

Give the final answer in the form $F(x, y)=12$
\qquad $3 y^{2}-4 x y-3 x^{2}=12$

Question 13 (***+)
Find a general solution for the following differential equation

$$
(2 x+y) \frac{d y}{d x}+x=0 .
$$

The final answer must not contain natural logarithms.

Question $14 \quad\left({ }^{* * *}+\right.$)
Solve the following differential equation.

$$
\left(x y+4 x^{2}\right) \frac{d y}{d x}=2 y^{2}+9 x y+6 x^{2}, \quad y\left(\frac{4}{3}\right)=0 .
$$

$$
(y+2 x)^{2}=x^{2}(y+3 x)
$$

\square

Question 15 (****)
Solve the differential equation

$$
\frac{d}{d x}\left(x y^{2}\right)=\frac{x^{4}+x^{2} y^{2}+y^{4}}{x^{2}}, y(\mathrm{e})=\sqrt{2} \mathrm{e}
$$

Give the answer in the form $y^{2}=f(x)$.
\square $y^{2}=\frac{x^{2}(1+\ln x)}{\ln x}$

$\Rightarrow x \frac{d v}{d u}=\frac{1+v^{4}}{2 v}$
$\Rightarrow x \frac{d v}{d x}=1+v^{4}$

Created by T. Madas

Question 16 (****)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{x-y}{x+y}, y(1)=1
$$

\square

$$
y^{2}+2 x y-x^{2}=2
$$

Question 17 (****)
It is given that a curve with equation $f(x, y)=0$ passes through the point $(0,1)$ and satisfies the differential equation

$$
\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}} \text {. }
$$

By solving the differential equation, show that an equation for the curve is
$y=\exp \left[\frac{x^{2}}{2 y^{2}}\right]$.

, proof

Created by T. Madas

Created by T. Madas

Question $1 \quad\left({ }^{(* *)}\right.$

$$
\frac{1}{y} \frac{d y}{d x}=1+2 x y^{2}, y>0 .
$$

a) Show that the substitution $z=\frac{1}{y^{2}}$ transforms the above differential equation into the new differential equation

$$
\frac{d z}{d x}+2 z=-4 x
$$

b) Hence find the general solution of the original differential equation, giving the answer in the form $y^{2}=f(x)$.

Created by T. Madas

Question 2 (***)
a) Use the suitable substitution to solve the differential equation

$$
x^{2} \frac{d y}{d x}+x y=y^{2}, \quad y\left(\frac{1}{2}\right)=2 .
$$

Give the answer in the form $y=f(x)$.
b) Verify the answer of part (a) by solving the above differential equation with an alternative method.

Question 3 (***)
Solve the differential equation

$$
x \frac{d y}{d x}+y=4 x^{2} y^{2}, \quad y\left(\frac{1}{2}\right)=2
$$

$$
y=\frac{1}{3 x-4 x^{2}}
$$

Question 4 (***)
By using a suitable substitution, solve the differential equation

$$
x y \frac{d y}{d x}+2 y^{2}=x, y(1)=0
$$

Give the answer in the form $y^{2}=f(x)$.

Question 5 (***)
Solve the differential equation

$$
\frac{d y}{d x}+y=4 x y^{3}, y(0)=\frac{1}{\sqrt{2}} .
$$

Give the answer in the form $y^{2}=f(x)$.

Question 6 (***+)

$$
\frac{d y}{d x}+\frac{2 y}{x}=y^{4}, x>0, y>0 .
$$

Given that $y(1)=1$, show that

Question 7 (***+)
Solve the differential equation

$$
\frac{d y}{d x}+\frac{x y}{1+x^{2}}=y^{3}, y(0)=1 .
$$

Give the answer in the form $y^{2}=f(x)$.

Question 8 (***+)
Solve the differential equation

Question 9 (****)
A curve C passes through the point $(1,1)$ and satisfies the differential equation

$$
\frac{d y}{d x}-\frac{y}{x}=\frac{x^{3}}{4 y^{3}}, x>0, y>0,
$$

subject to the condition $y=1$ at $x=1$.
a) Find an equation of C by using the substitution $z=y^{4}$.
b) Find an equation of C by using the substitution $v=\frac{x}{y}$.

Give the answer in the form $y^{4}=f(x)$.

$1^{\text {ST }}$ ORDER

BY

PARTIAL

DIFFERENTIATION

TECHNIQUES

Created by T. Madas

Question $1 \quad(* *+)$

$$
\frac{d y}{d x}=\frac{12 x+7 y}{6 y-7 x}, y(1)=1 .
$$

Use a method involving partial differentiation to show that the solution of the above differential equation can be written as

$$
(a x+b y)(c x+d y)=10
$$

where a, b, c and d are integers to be found.

$$
(3 x-y)(2 x+3 y)=k
$$

Created by T. Madas

Question 2 (***)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{2 x y+6 x}{4 y^{3}-x^{2}}
$$

subject to the boundary condition $y=1$ at $x=1$.

Question 3 (***)
Find a general solution of the following differential equation

$$
\frac{d y}{d x}=\frac{y\left(y^{2}-3 x^{2}+1\right)}{x\left(x^{2}-3 y^{2}-1\right)}
$$

Question 4 (***)
Find the solution of the following differential equation

$$
\frac{d y}{d x}=\frac{1-3 x^{2} y}{x^{3}+2 y}
$$

subject to the boundary condition $y=1$ at $x=1$.

Question 5 (***)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{4 \mathrm{e}^{2 x}-y\left(2 \mathrm{e}^{2 x}+1\right)}{\mathrm{e}^{2 x}+x}
$$

subject to the boundary condition $y=2$ at $x=0$.

Question 6 (***+)
Find a general solution of the following differential equation

$$
\frac{d y}{d x}=\frac{\cos x \cos y+\sin ^{2} x}{\sin x \sin y+\cos ^{2} y}
$$

$$
\sin x \cos y-\frac{1}{4}(\sin 2 x+\sin 2 y)+\frac{1}{2}(x-y)=\text { constant }
$$

Created by T. Madas

Question 7 (***)
Determine the solution of the following differential equation by looking for a suitable integrating factor.

$$
x^{3}-3 y+3 x y(x+y)=4
$$

Question 8 (***+)
Find a general solution of the following differential equation by looking for a suitable integrating factor.

$$
\frac{d y}{d x}+\frac{x+y}{x \ln x}=0
$$

$$
x+y \ln x=C
$$

$\frac{d y}{d x}+\frac{x+y}{x \ln x}=0$
SURSTGUTIONS, So wt Gege Br examentss, By Rtwriting in Differgntal form O look tor possisle initarating fatuors to make it exact IF $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial z}}{N}=f(x)$, THftw $e^{\int f(x) d x}$ is कo NIt fratinc. Fancose $\text { If } \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=g(y) \text {, Thtw } e^{\int-g(y) d y} \text { is An insitreatins frctor }$ O. Hree we costitin $\begin{aligned} & \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=-\ln x \\ & \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{-\ln x}{x \ln x}=-\frac{1}{x} \end{aligned}$ O Thus we OAN Find An ingigenting fatior $e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}$

Question $9 \quad(* * *+)$

$$
\frac{d y}{d x}=\frac{2 x y}{3 x^{2}-y^{2}}, y(0)=1 .
$$

a) Find an integrating factor for the above differential equation and hence show

$$
y^{3}=y^{2}-x^{2}
$$

b) Verify the answer of part (a) by a solving the differential equation by a suitable substitution.

Created by T. Madas

Question 10 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.

$$
\frac{d y}{d x}\left(x^{2}+2 y^{2}+2\right)-x y=0
$$

$$
x^{2}=-2+4 y^{2} \ln y+C y^{2}
$$

Question 11 (***+)

Find a general solution of the following differential equation by looking for a suitable integrating factor.

Question 12 (***+)
Find a general solution of the following differential equation by looking for a suitable integrating factor.

$$
\frac{d y}{d x}=\frac{6 x y}{4 y+9 x^{2}}
$$

$$
3 x^{2} y^{3}+y^{4}=C
$$

Created by T. Madas

Question 13 (***+)

$$
\left(2 x-4 y^{2}\right) \frac{d y}{d x}+y=0 .
$$

By finding a suitable integrating factor for the above differential equation determine its general solution.

$$
x y^{2}-y^{4}=C
$$

Question 14 (***+)
Find a general solution of the following differential equation by looking for a suitable integrating factor.

$$
\frac{d y}{d x}=\frac{y^{2}+x y+y}{x+2 y} .
$$

Question 15 (***+)
Determine the solution of the following differential equation by looking for a suitable integrating factor.

Created by T. Madas

Question 16 (***+)
Determine the solution of the following differential equation by looking for a suitable integrating factor.

Question 17 (***+)
Determine the solution of the following differential equation.

$$
\frac{d y}{d x}=\frac{x^{2}}{y}+\frac{2 y}{x}, \quad y(1)=2 .
$$

$$
y^{2}=6 x^{4}-2 x^{3}
$$

\square

Question 18 (****)
Determine a general solution of the following differential equation by looking for a suitable integrating factor.

$$
x^{2} \mathrm{e}^{y}+\frac{x^{2}}{y}+\frac{x}{y^{3}}=C
$$

\square

$\Rightarrow\left(2 x+2 y^{2}-x y^{2} e^{3} d y=\left(2 y^{4} e^{y}+2 y^{3}+y\right) d x\right.$
$\Rightarrow \begin{gathered}\left(2 x y^{4} e^{y}+2 x y^{2}+y\right) d x+\left(x^{2} y^{4} e^{4}-3 x-x^{2} y^{2}\right) d y=0 \\ M\end{gathered}$

- ateak Br gnitnits

$1^{\text {ST }}$ ORDER

BY

VARIOUS

TECHNIQUES

Created by T. Madas

Question 1 (**)

By using a suitable substitution find a general solution of the differential equation

$$
\frac{d y}{d x}=x+y,
$$

giving the answer in the form $y=f(x)$.

$$
y=A \mathrm{e}^{x}-x-1
$$

Question 2 (**)

$$
\frac{d y}{d x}=x+2 y, \text { with } y=-\frac{1}{4} \text { at } x=0
$$

By using a suitable substitution, show that the solution of the differential equation is

$$
y=-\frac{1}{4}(2 x+1)
$$

Question 3 (**)
Use the substitution $t=\sqrt{y}$ to solve the following differential equation.

$$
\frac{d y}{d x}=y+\sqrt{y}, \quad y>0, \quad y(0)=4 .
$$

Given the answer in the form $y=f(x)$.

Question 4 (***)
Solve the differential equation

$$
\frac{d y}{d x}=(9 x+4 y+1)^{2}, \quad y(0)=-\frac{1}{4}
$$

Give the answer in the form $y=f(x)$.

$$
y=-\frac{1}{4}-\frac{9}{4} x+\frac{3}{8} \tan 6 x
$$

Question 5 (***)
Use a suitable substitution to solve the differential equation

$$
\frac{d y}{d x}=\frac{x+y}{4-3(x+y)}, y(0)=1
$$

$$
2 \ln |x+y-2|=3-x-3 y
$$

Question 6 (***)
Use the substitution $y=\mathrm{e}^{z}$ to solve the differential equation

$$
x \frac{d y}{d x}+y \ln y=2 x y, y(1)=\mathrm{e}^{2}
$$

$$
y=\mathrm{e}^{x+\frac{1}{x}}
$$

\square

Question 7 (***)
Use the substitution $z=\sin y$ to solve the differential equation

$$
x \frac{d y}{d x} \cos y-\sin y=x^{2} \ln x, y(1)=0
$$

subject to the condition $y=0$ at $x=1$.

$$
\sin y=x^{2} \ln x-x^{2}+x
$$

Question 8 (***+)
Use a suitable substitution to find the solution of the following differential equation.

Question $9 \quad(* * *+)$
Use a suitable substitution to solve the following differential equation.

$$
\frac{d y}{d x}+\sqrt{y+1}=y+1, \quad y>-1, \quad y(0)=3 .
$$

Given the answer in the form $y=f(x)$.

Question 10 (***+)
a) By using the substitution $z=x^{2}+y^{2}$, solve the following differential equation

$$
2 x y \frac{d y}{d x}+y^{2}=2 x-3 x^{2}
$$

subject to the condition $y=1$ at $x=1$.
b) Verify the answer to part (a) by using the substitution $z=y^{2}$ to solve the same differential equation and subject to the same condition.
\square

$$
y^{2}=x-x^{2}+\frac{1}{x}
$$

PETURNIMG TO THE O.D.E
$\Rightarrow \frac{d y}{d t}+\frac{y}{2 a}=\left(1-\frac{3}{2} 2\right) y^{-1}$
$\Rightarrow \frac{1}{2 y} \frac{d z}{d x}+\frac{y}{2 x}=\left(1-\frac{3}{2} x\right) y^{-1}$
$\Rightarrow \frac{d z}{d x}+\frac{y^{2}}{x}=2\left(1-\frac{3}{2} x\right)$
$\Rightarrow \frac{d z}{d x}+\frac{z}{x}=2-3 x$
nultipar innougrt By $a-$ or inlteratina- factor
$\Rightarrow x \frac{d z}{d x}+z=2 x-3 x^{2} \quad[x=1, y=1, z=1]$
$\Rightarrow \frac{d}{d x}(x z)=x-3 x^{2}$
$\Rightarrow[x z]_{(1,1)}^{(x, z)}=\int_{1}^{2} 2 x-3 x^{2} d x$
$\Rightarrow x z-1=\left[x^{2}-x^{2}\right]_{1}^{2}$
$\Rightarrow x z-1=\left(x^{2}-x^{3}\right)-(x-1)$
$\Rightarrow x z=x^{2}+1-x^{3}$
$\Rightarrow z=x+\frac{1}{x}-x^{2}$ $\Rightarrow y^{y^{2}=x+\frac{1}{x}-x^{2}}$ A BEGET

Created by T. Madas

Question 11 (***+)
A curve with equation $y=f(x)$ passes through the point with coordinates $(0,1)$ and satisfies the differential equation

$$
y^{2} \frac{d y}{d x}+y^{3}=4 \mathrm{e}^{x}
$$

By finding a suitable integrating factor, solve the differential equation to show that

$$
0 \square, \square \text { proof }
$$

Created by T. Madas

Question 12 (***+)
A curve with equation $y=f(x)$ passes through the origin and satisfies the differential equation

$$
2 y\left(1+x^{2}\right) \frac{d y}{d x}+x y^{2}=\left(1+x^{2}\right)^{\frac{3}{2}}
$$

By finding a suitable integrating factor, or otherwise, show that
\square , proof

Question 13 (****)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{x+y-3}{x+y-5}
$$

subject to the condition $y=\frac{5}{2}$ at $x=\frac{5}{2}$.

Question 14 (****)
Find a general solution of the following differential equation

$$
y \frac{d y}{d x}+x=2 y
$$

Question 15 (****)

$$
\frac{d y}{d x}=\tan \left(x^{2}+2 y+\pi\right)-x, \quad y(0)=\frac{1}{4} \pi
$$

Solve the above differential equation to show that

Created by T. Madas

Question 16 (****)

$$
\frac{d y}{d x}\left(x+y^{2}\right)=y
$$

a) Solve the above differential equation, subject to $y=1$ at $x=1$ by considering $\frac{d x}{d y}$, followed by a suitable substitution..
b) Verify the validity of the answer obtained in part (a).

Created by T. Madas

Question 17 (****)

$$
\frac{d y}{d x}=\frac{x+y+3}{x+y-1}, y(0)=0 .
$$

Show that the solution of the above differential equation is

Question 18 (****)
Given that $v=y x^{-2}$ find a general solution for the following differential equation.

$$
\frac{d y}{d x}-\frac{2 y}{x}=\log _{v} \mathrm{e}, \quad u>0, u \neq 1 .
$$

Given the answer in the form $f(x, y)=$ constant.

Question 19 (****)
Use a suitable substitution to solve the following differential equation.

$$
\frac{d y}{d x}+8 x y=y^{2}+16 x^{2}, \quad y(0)=-6
$$

Given the answer in the form $y=f(x)$.

Question 20 (****)
Sketch the curve which passes through the point with coordinates $(1,2)$ and satisfies

$$
\frac{1}{2} \frac{d y}{d x}+\frac{x}{3 y^{2}}=\frac{\sqrt{x^{2}+y^{3}}}{y^{2}}
$$

\square graph

Question 21 (****)
Use a suitable substitution to solve the following differential equation.

$$
\frac{d y}{d x}=(x-y+2)^{2}, \quad y(0)=4 .
$$

Given the answer in the form $y=f(x)$.
\square $y=\frac{(x+1) \mathrm{e}^{2 x} \pm 3(x+3)}{\mathrm{e}^{2 x} \pm 3}=\frac{ \pm(x+1) \mathrm{e}^{2 x}-3(x+3)}{ \pm \mathrm{e}^{2 x}-3}$

$\Rightarrow \frac{x-y+3}{x-y+1}=E$
$\Rightarrow x-y+3=E_{x}-E_{y}+E$
$\rightarrow E y-y=E x-x+E-3$
$\rightarrow y[E]=E x+E-(x+3)$
$\Rightarrow y=\frac{E(x+1)-(x+3)}{E-1}$
$\Rightarrow y=\frac{ \pm \frac{1}{3} e^{2 x}(x+1)-(x+3)}{ \pm \frac{1}{3} e^{2}-1}$
$\Rightarrow y=\frac{ \pm(x+1) e^{2 x}-3(x+3)}{ \pm e^{2}-3}$
10. ortter woens wx that
$y=\frac{(x+1) e^{2 x}-3(x+3)}{e^{x}-3}$

$$
\begin{aligned}
& y=\frac{-(x+1) e^{2 x}-3(x+3)}{-e^{x}-3} \\
& y=\frac{(T+1)^{2}+3(x+3)}{e^{2 x}+3}
\end{aligned}
$$

Question 22 (****+)

$$
\frac{d^{2} y}{d x^{2}}+\frac{x y+4}{x^{2}}=y^{2}, x \neq 0 .
$$

$$
y=\frac{2+2 A x^{4}}{x-A x^{5}}
$$

- intratitina rooth sides yimes
$\Rightarrow \ln |x-2|-\ln |v+2|=4 \ln x+\ln A$
$\rightarrow \ln \left|\frac{v-z}{v+2}\right|=\ln A x^{4}$
$\Rightarrow \frac{v-2}{v+2}=A x^{4}$
$\Rightarrow \frac{7 y-z}{x y+2}=A x^{4}$
$\Rightarrow x y-2=A x^{5} y+2 A x^{4}$
$\Rightarrow x y-A x^{x} y=2+2 A x^{t}$
$\Rightarrow y\left(x-A x^{5}\right)=2+2 A x^{4}$
$\Rightarrow y=\frac{2+2 A x^{4}}{x-A x^{5}}$

Created by T. Madas

Question 23 (****+)

$$
\frac{d y}{d x}=\frac{3 x-y+1}{x+y+1}, y(1)=2 .
$$

Solve the differential equation to show that

$$
(y-x)(y+3 x+2)=7 .
$$

Question $24 \quad(* * * *+)$

$$
\frac{d y}{d x}=\frac{2 x+5 y+3}{4 x+y-3}, y(1)=1 .
$$

Solve the differential equation to show that

$$
(y-2 x+3)^{2}=2(x+y)
$$

Question 25 (****+)
Solve the following differential equation

$$
\frac{d y}{d x}=\frac{2 x+y-1}{x+2 y+1}
$$

to show that

$$
(x-y)(x+y-2)(x-y-2)^{2}=\text { constant }
$$

Created by T. Madas

Question 26 (****+)

Solve the following differential equation

$$
\frac{d y}{d x}=\frac{2 x+3 y-7}{3 x+2 y-8}, \quad y(1)=1
$$

Give the answer in the form $(y-x-1)^{5}=f(x, y)$, where $f(x, y)$ is a function to be found.

Created by T. Madas

Question 27 (****+)

$$
\frac{d y}{d x}\left(x+y^{2}\right)=y .
$$

a) Solve the above differential equation, subject to $y=1$ at $x=1$.
b) Verify the validity of the answer obtained in part (a).

Question 28 (${ }^{* * * *+) ~}$
Find a general solution for the following differential equation

$$
\frac{d y}{d x}=\frac{1+y^{2}}{-x+\arctan y}
$$

$$
+A \mathrm{e}^{-\arctan y}
$$

$$
x=-1+\arctan y+A \mathrm{e}^{-\arctan y}
$$

- Returnme to THe oDE
\square

Created by T. Madas

Question 29 (****+)

$$
2+(x+1) \frac{d y}{d x}=x(x+2)+y .
$$

Solve the above differential equation, subject to $y(2)=0$.

$$
y=x^{2}-2 x
$$

Question $30 \quad(* * * *+)$
Use the substitution $v=\frac{y-x}{y+x}, y+x \neq 0$, to solve the following differential equation

$$
x \frac{d y}{d x}-y=\frac{(1-x)\left(x^{2}-y^{2}\right)}{x^{3}+x^{2}+x+1}, \quad y(0)=1
$$

Give the answer in the form $y=f(x)$.
\square $y=x^{2}+x+1$

$\Rightarrow v=\frac{y-x}{y+2}=\frac{y+2-2 x}{y+2}=1-\frac{2 x}{y+2}$
$\Rightarrow \frac{d y}{d x}=\frac{2(1-x)}{x+2+2+1} \times \frac{x}{x+y}$

$\Rightarrow \frac{d v}{d x}=\frac{2(1-x)}{x^{2}(x+1)+(x+1)} \times(-v)$
$\Rightarrow \frac{d v}{d x}=\frac{2 v(x-1)}{(x+1)\left(3^{2}+1\right)}$
$\Rightarrow \int \frac{1}{v} d v=\int \frac{2(\lambda-1)}{(x+1)\left(x^{2}+1\right)} d x$

$\frac{2(x-1)}{(x+1)\left(x^{2}+1\right)} \equiv \frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$
$Z(x-1) \equiv A\left(x^{2}+1\right)+(B x+C)(x+1)$
$\begin{array}{lll}\text { - If } x=-1 & \text { of } x=0 & \text { - if } x=2 \\ -4=2 A & -2=A+C & z=5 A+6 B\end{array}$
$\begin{array}{ccc}-4=2 A & -2=A+C & 2=5 A+6 B \\ A=-2 & -2=-2+C & 2=-10+6 B \\ & \underline{C=0} & \\ & B=6 B\end{array}$
Rearenina to THE O.D.E
$\Rightarrow \int \frac{1}{v} d v=\int \frac{2 x}{x^{2}+1}-\frac{2}{x+1} d x$
$\Longrightarrow \ln |V|=\ln \left|x^{2}+1\right|-2 \ln |x+1|+\ln A$
$\Rightarrow \ln |V|=\ln \left|\frac{A\left(x^{2}+1\right)}{(x+1)^{2}}\right|$
$\Rightarrow \quad v=\frac{A\left(x^{2}+1\right)}{(x+1)^{2}}$
$\Rightarrow \frac{y-x}{y+x}=\frac{A\left(x^{2}+1\right)}{(x+1)^{2}}$

Question 31 (*****)
Solve the differential equation

$$
\frac{d y}{d x}=\frac{1-x y+x^{2} y^{2}}{x^{2}-y x^{3}}, x>0,
$$

subject to the condition $y(1)=0$.

Question 32 ($* * * * *$)
Find a simplified general solution for the following differential equation.

$$
\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}-2 x y\left(\frac{d y}{d x}\right)+y^{2}=1 .
$$

$\Rightarrow y=\frac{t}{\sqrt{x^{2}-1}}$
$\Rightarrow y \sqrt{x^{2}-1}-A=0 \quad$ on $\quad y \sqrt{x^{2}-1}+A=0$

- smiluary
$\frac{d^{2} y}{d x^{2}}=0$
$\frac{d y}{d x}=B$
$y=B x+C$
\qquad
- Hfruce
$(y+B x+C)\left(y \sqrt{x^{2}-1}+A\right)=0$

Created by T. Madas

Question 33 (*****)
Find a general solution for the differential equation

Question 34 (*****)
Solve the differential equation

$$
\frac{d y}{d x}=-\frac{x y^{2}+y}{x+y x^{2}+x^{3} y^{2}}, x \neq 0, y>0
$$

subject to the condition $y\left(\frac{1}{2}\right)=1$.

Question 35 (*****)
The positive solution of the quadratic equation $x^{2}-x-1=0$ is denoted by ϕ, and is commonly known as the golden section or golden number.
a) Show, with a detailed method, that $F(x)=f(\phi) x^{g(\phi)}$ is a solution of the differential equation,

$$
F^{\prime}(x)=F^{-1}(x)
$$

where f and g are constant expressions of ϕ, to be found in simplified form.
b) Verify the answer obtained in part (a) satisfies the differential equation, by differentiation and function inversion.
[You may assume that $F(x)$ is differentiable and invertible]

V \square

$$
F(x)=\left(\frac{1}{\phi}\right)^{\frac{1}{\phi}} x^{\phi}=\phi^{1-\phi} x^{\phi}
$$

Differgaintin)a $F(x)=\phi^{1-\phi} x^{\phi}$ $F^{\prime}(x)=\phi \phi^{1-\phi} x^{\phi-1}=\{\underbrace{}_{d^{2}+x^{\phi-1}}$ nutetina $F(x)$ $\Rightarrow y=\phi^{1-\phi} x^{\phi}$ $\Rightarrow \frac{y}{\phi^{1 \phi}}=x^{\phi}$ $\Rightarrow \frac{(y)^{\frac{1}{\phi}}}{(\phi)^{\frac{1}{\phi}}}=\left(x^{+1}\right)^{\frac{1}{\phi}}$ $\Rightarrow 2=\phi^{-\frac{1-\phi}{\phi}} y^{\phi}$ $\Rightarrow \underbrace{-}(a)=\phi^{\frac{\phi y}{4}} x^{\frac{1}{\phi}}$
 $\frac{1}{\phi}=\phi-1 \quad$ (Gince $\phi=1+\frac{1}{\phi}$)
 $\frac{\phi-1}{\phi}=1-\frac{1}{\phi}=1-(\phi-1)=2-\phi$ $\therefore \phi^{\phi-\phi} a^{\phi-1}=\phi^{\phi-1} a^{\frac{1}{\phi}}$ $\therefore F^{\prime}(x)=F^{-1}(x)$

