DIFFERENTIAL EQUATIONS

(by variation of parameters)

Question 1 (***)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=2 x \mathrm{e}^{x}
$$

Created by T. Madas

Question 2 (***)
Use the method of variation of parameters to find the general solution of the following differential equation.

Question 3 (***)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\frac{\mathrm{e}^{x}}{x}, x>0
$$

Created by T. Madas

Question 4 (***)

Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=15 \sqrt{x} \mathrm{e}^{2 x}
$$

Question 5 (***+)

Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\mathrm{e}^{x} \ln x, x>0 .
$$

$$
y=A \mathrm{e}^{x}+B x \mathrm{e}^{x}-\frac{3}{4} x^{2} \mathrm{e}^{x}+\frac{1}{2} x^{2} \mathrm{e}^{x} \ln x
$$

Question 6 (***+)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x
$$

$$
y=A \cos x+B \sin x-x \cos x-\sin x \ln \mid \sin x
$$

Question 7 (***+)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}+y=\sec x
$$

$$
y=A \cos x+B \sin x+x \sin x-\cos x \ln |\sec x|
$$

Question 8 (***+)
Find the general solution of the following differential equation.

Question 9 (***+)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-4 y=\frac{(5 x-2) \mathrm{e}^{4 x}}{x^{3}}
$$

You may assume that $\frac{d}{d x}\left(\frac{\mathrm{e}^{5 x}}{x^{2}}\right)=\frac{(5 x-2) \mathrm{e}^{5 x}}{x^{3}}$.

$y=A \mathrm{e}^{4 x}+B \mathrm{e}^{-x}-\frac{\mathrm{e}^{4 x}}{x}$

$$
\begin{aligned}
& \rightarrow y_{p}=\frac{1}{5} e^{4 x} \int \frac{3}{x^{2}}-\frac{2}{x^{2}} d x-\frac{1}{5} e^{-x} \int \frac{(5-2) e^{x}}{x^{3}} d x \\
& \frac{d}{d x}\left(\frac{x^{2}}{x^{2}}\right)=\frac{(a-2)^{2}}{x^{2}} \\
& \Rightarrow y_{p}=\frac{1}{5} e^{a x}\left[-\frac{5}{x}+\frac{1}{x^{2}}\right]-\frac{1}{5} e^{-x}\left[\frac{e^{5 x}}{x^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow y_{p}=t^{2}\left[\frac{1}{x}-\frac{1}{x}-\frac{1}{x}\right] \\
& \Rightarrow y_{p}=-\frac{e^{4 x}}{x} \\
& \therefore y=A e^{4 x}+B e^{-x}-\frac{e^{4 x}}{x}
\end{aligned}
$$

Question 10 (****)
Find the general solution of the following differential equation.

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{2} \mathrm{e}^{x}, x \neq 0
$$

Question 11 (****)
Find the general solution of the following differential equation.

Question 12 (****)
Find the general solution of the following differential equation.

$$
3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+2 y=\mathrm{e}^{-x} \sin x
$$

$$
y=A \mathrm{e}^{-x}+B \mathrm{e}^{x}+B \mathrm{e}^{-\frac{2}{3} x}+\frac{1}{10} \mathrm{e}^{-x}(\cos x-3 \sin x)
$$

Question 13 (****)
Find the general solution of the following differential equation.

$$
\frac{d^{2} y}{d x^{2}}-y=\frac{1}{1+\mathrm{e}^{x}}
$$

$$
y=A \mathrm{e}^{x}+B \mathrm{e}^{-x}-\frac{1}{2}\left(1+x \mathrm{e}^{x}\right)+\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \ln \left(1+\mathrm{e}^{x}\right),
$$

$$
y=A \cosh x+B \sinh x-\frac{1}{2}\left(1+x \mathrm{e}^{x}\right)+\sinh x \ln \left(1+\mathrm{e}^{x}\right)
$$

Created by T. Madas

Question 14 (****)
Use variation of parameters to determine the specific solution of the following differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-7 x \frac{d y}{d x}+16 y=16 \ln x
$$

given further that $y=\frac{1}{2}, \frac{d y}{d x}=2$ at $x=1$.

$$
y=\frac{1}{2}+\left(1+x^{4}\right) \ln x
$$

\square
\square
OThus The RARTLWCAR inverate is onven by $y_{p}=-e_{1} \int \frac{e_{2} f}{a w} d x+e_{2} \int \frac{e_{1} f}{a^{w}} d x$ $y_{p}=-x^{4} \int \frac{x^{4} \ln x \times 16 \ln x}{x^{2} \times x^{7}} d x+x^{4} \ln x \int \frac{x^{4} \times 16 \ln x}{x^{2} \times x^{7}} d x$ $y_{p}=-x^{4} \int \frac{16(\ln x)^{2}}{x^{5}} d x+x^{4} \ln x \int \frac{16 \ln x}{x^{5}} d x$ (0) GACH By parts

- $\int 16 x^{-5}(\ln x)^{2} d x$ $=-\frac{4}{x 4}(\ln x)^{2}+\int 8 x^{-5}(\ln x) d x$ $=-\frac{4}{x^{*}}(\ln x)^{2}-\frac{2}{x^{4}} \ln x+\int 2 x^{-5} d x$ $=-\frac{4}{x^{4}}(\ln x)^{2}-\frac{2}{x^{4}} \ln x-\frac{1}{2} x^{-4}$
- $\int 16 x^{-5}(1 m x) d x$ $=-\frac{4}{3 x} \ln x+\int 4 x^{-5} d x$
 $\therefore y_{y}=-x^{4}\left[\frac{-x^{4}(\ln (x)}{} x^{2}-\frac{2}{x^{2}} \ln x-\frac{1}{2} x^{-4}\right]+x^{4} \ln x\left[-\frac{4}{2 x} \ln x-x^{-4}\right]$ $y_{p}=4\left(\ln ()^{2}+2 \ln x+\frac{1}{2}-4(\operatorname{th} x)^{2}-\ln x\right.$

