MULTIVARIABLE

INTEGRATION

(SPHERICAL POLAR COORDINATES)

Question 1
a) Determine with the aid of a diagram an expression for the volume element in spherical polar coordinates, (r, θ, φ).
[You may not use Jacobians in this part]
b) Use spherical polar coordinates to obtain the standard formula for the volume of a sphere of radius a.

Question 2
Use spherical polar coordinates, (r, θ, φ), to obtain the standard formula for the surface area of a sphere of radius a.

Created by T. Madas

Question 3
Determine an exact simplified value for

$$
\int_{R} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d x d y d z
$$

where R is the region outside the sphere with equation

Question 4
The finite R region is defined as

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 4
$$

Determine an exact simplified value for

Created by T. Madas

Question 5
Determine an exact simplified value for

$$
\int_{R} 15 z^{2} d x d y d z
$$

where R is the region between the spheres with equations

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x^{2}+y^{2}+z^{2}=4
$$

Question 6
The finite R region is defined as the interior of the sphere with equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Determine an exact simplified value for

Created by T. Madas

Question 7
Use spherical polar coordinates to find an exact value for the following integral.

Question 8
A hemispherical solid piece of glass, of radius $a \mathrm{~m}$, has small air bubbles within its volume.

The air bubble density $\rho(z)$, in m^{-3}, is given by

$$
\rho(z)=k z,
$$

where k is a positive constant, and z is a standard cartesian coordinate, whose origin is at the centre of the flat face of the solid.

Given that the solid is contained in the part of space for which $z \geq 0$, determine the total number of air bubbles in the solid.

Created by T. Madas

Question 9
A uniform solid has equation

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

with $x>0, y>0, z>0, a>0$.

Use integration in spherical polar coordinates, (r, θ, φ), to find in Cartesian form the coordinates of the centre of mass of the solid.

\square - Inginitajmar rowne dV, his mats pd Csit DiAGeAn $M \bar{z}=\iiint_{\text {Gacet soun }} \rho z d V$ Surtat inco sinteglat Panes $M \bar{z}=\int_{\phi+0}^{\frac{\pi}{2}} \int_{\theta=0}^{\frac{\pi}{2}} \int_{r_{=0}}^{a} P(\underbrace{r_{\cos \theta}}_{\bar{z}}) \underbrace{r^{2} \sin \theta d r d \theta}_{d V} d \phi$	

Question 10
A solid sphere has equation

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

The density, ρ, at the point of the sphere with coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ is given by

$$
\rho=\sqrt{x_{1}^{2}+y_{1}^{2}}
$$

Determine the average density of the sphere.

$$
\overline{N^{\prime},}, \bar{\rho}=\frac{3}{16} \pi a
$$

Question 11
A thin uniform spherical shell with equation

$$
x^{2}+y^{2}+z^{2}=a^{2}, a>0,
$$

occupies the region in the first octant.

Use integration in spherical polar coordinates, (r, θ, φ), to find in Cartesian form the coordinates of the centre of mass of the shell.

Question 12
The finite region Ω is defined as

$$
x^{2}+y^{2}+z^{2} \leq 1
$$

Use Spherical Polar Coordinates (r, θ, φ), to evaluate the volume integral

$$
\int_{\Omega}(r \sin \theta \cos \varphi)^{4} d V
$$

Question 13
A solid sphere has equation

$$
x^{2}+y^{2}+z^{2}=1
$$

The region defined by the double cone with Cartesian equation

$$
3 z^{2} \geq x^{2}+y^{2}
$$

is bored out of the sphere.

Determine the volume of the remaining solid.

Created by T. Madas

Question 14
A solid sphere has radius 5 and is centred at the Cartesian origin O.

The density ρ at point $P\left(x_{1}, y_{1}, z_{1}\right)$ of the sphere satisfies

$$
\rho=\frac{3}{85}\left[1+\left|z_{1}\right| \sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}\right] .
$$

Use spherical polar coordinates, (r, θ, φ), to find the mass of the sphere.

Question 15
A solid uniform sphere has mass M and radius a.

Use spherical polar coordinates, (r, θ, φ), to show that the moment of inertial of this sphere about one of its diameters is $\frac{2}{5} M a^{2}$.

Question 16
A thin uniform spherical shell has mass m and radius a.

Use spherical polar coordinates, (r, θ, φ), to show that the moment of inertial of this spherical shell about one of its diameters is $\frac{2}{3} m a^{2}$.

Question 17
The finite region R is defined as the region enclosed by the ellipsoid with Cartesian equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{25}=1
$$

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ), find the value of

Question 18
A solid uniform sphere of radius a, has variable density $\rho(r)=r$, where r is the radial distance of a given point from the centre of the sphere.
a) Use spherical polar coordinates, (r, θ, φ), to find the moment of inertia of this sphere I, about one of its diameters.
b) Given that the total mass of the sphere is m, show that

$$
I=\frac{4}{9} \pi a^{6}
$$

Question 19
Evaluate the triple integral

$$
\int_{V} 5 x^{2} d x d y d z
$$

where V is the finite region contained within the closed surface with equation

Question 20
The finite R region is defined as

$$
x^{2}+y^{2}+z^{2} \leq 2 z
$$

Determine an exact simplified value for

Question 21
The finite R region is defined as

$$
4 z \leq x^{2}+y^{2}+z^{2} \leq 16 z
$$

Determine an exact simplified value for
\square , 1092π

Question 22
A solid sphere has equation

$$
x^{2}+y^{2}+z^{2}=a^{2}, a>0
$$

The sphere has variable density ρ, given by

$$
\rho=k(a-z), k>0
$$

Use integration in spherical polar coordinates, (r, θ, φ), to find in Cartesian form the coordinates of the centre of mass of the sphere.

$$
\left(0,0,-\frac{1}{5} a\right)
$$

Question 23
A solid is defined in a Cartesian system of coordinates by

$$
x^{2}+y^{2}=x z, 0 \leq z \leq 2
$$

a) Describe the solid with the aid of a sketch.
b) Use standard elementary formulas to find the volume of the solid.
c) Use spherical polar coordinates to verify the answer to part (b)

$$
V=\frac{2}{3} \pi
$$

\square

Question 24
A solid sphere has radius a and mass m.

The density ρ at any point in the sphere is inversely proportional to the distance of this point from the centre of the sphere

Show that the moment of inertia of this sphere about one of its diameters is $\frac{1}{3} m a^{2}$
\square

Question 25
The finite R region is defined as

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 2 z
$$

Determine an exact simplified value for

Question 26
The finite R region is defined as

$$
x^{2}+y^{2}+z^{2} \leq 4 z \quad \text { and } \quad z \geq 2
$$

Determine an exact simplified value for

Question 27
A non right circular cone has Cartesian equation

$$
x^{2}+y^{2}=x z, 0 \leq z \leq 2
$$

Use spherical polar coordinates to find an exact simplified value for
where R is the interior of the cone.

$$
\int_{R} x z d V
$$

$$
\text { (19) } \sqrt{\frac{4 \pi}{5}}
$$

\square

Created by T. Madas

Question 28
A solid uniform sphere has mass M and radius a.

Use spherical polar coordinates, (r, θ, φ), and direct calculus methods, to show that the moment of inertial of this sphere about one of its tangents is $\frac{7}{5} M a^{2}$.

You may not use any standard rules or standard results about moments of inertia in this question apart from the definition of moment of inertia.

