asmaths.com Created by T. Madas

ASINALIS COM INC. MULTIVARIABLE dasmaths.c. IVIL INTEGRATIC (SPHERICAL POLAR COORDINATES)

THE MARSHARMS ON THE SOUTH THE SOUTH

Question 1

a) Determine with the aid of a diagram an expression for the volume element in spherical polar coordinates, (r, θ, φ) .

[You may not use Jacobians in this part]

b) Use spherical polar coordinates to obtain the standard formula for the volume of a sphere of radius *a*.

 $dv = r^2 \sin \theta \, dr \, d\theta \, d\varphi$

FSMB dodb do

 $\frac{1}{2}\alpha^{3}\int_{\frac{1}{2}=0}^{2\pi}\left[1-(-1)\right] d\psi = \frac{2}{3}\alpha^{3}\int_{0}^{2\pi} 1 d\psi$ $\frac{2}{3}\alpha^{3}\left[\frac{1}{2}\phi\right]_{*}^{2\pi} = \frac{2}{3}\alpha^{3}\times 2\pi = \frac{4}{3}\pi\alpha^{3}$

V= III l du

Ev= Sr× roo x rono 6545

Question 2

î,

F.C.B.

I.V.G.P.

KG

Use spherical polar coordinates, (r, θ, φ) , to obtain the standard formula for the surface area of a sphere of radius a.

mada

3

5

20

mana,

F.C.P.

Created by T. Madas

0

KGA

Question 3

Determine an exact simplified value for

1.1.6.9

COM

I.F.C.p

 $\int \frac{1}{\left(x^2 + y^2 + z^2\right)^2} \, dx \, dy \, dz \, ,$

 $x^2 + y^2 + z^2 = 1.$

where R is the region **outside** the sphere with equation

200

I.C.B.

.com

 4π

2010

I.V.C.B. Mada

I.G.S.

Created by T. Madas

2017

N.C.

Question 4

The finite R region is defined as

 $1 \le x^2 + y^2 + z^2 \le 4 \,.$

ths.com

1.4.6.6

6

-

Determine an exact simplified value for

Question 5

Determine an exact simplified value for

I.F.C.p

I.V.C.

ans.com

I.F.G.p

 $\int 15z^2 \, dx \, dy \, dz \, ,$

where R is the region between the spheres with equations

I.C.B. $x^{2} + y^{2} + z^{2} = 1$ and $x^{2} + y^{2} + z^{2} = 4$. nadasmaths.com

 124π

1.4.6.6

14

.

ths.com

30

- 152° dr du t
- D)2 (r²sin 0 dr d0 db)

22

Created by T. Madas

2011

Question 6

ŀ.C.B.

I.C.B.

The finite R region is defined as the interior of the sphere with equation

 $x^2 + y^2 + z^2 = 1.$

Determine an exact simplified value for

 $\sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz$.

i C.P.

2

Question 7

Use spherical polar coordinates to find an exact value for the following integral.

Question 8

A hemispherical solid piece of glass, of radius a m, has small air bubbles within its volume.

The air bubble density $\rho(z)$, in m⁻³, is given by

where k is a positive constant, and z is a standard cartesian coordinate, whose origin is at the centre of the flat face of the solid.

 $\rho(z) = k z \,,$

Given that the solid is contained in the part of space for which $z \ge 0$, determine the total number of air bubbles in the solid.

 πka^4

Question 9

F.G.B.

I.C.p

A uniform solid has equation

 $x^2 + y^2 + z^2 = a^2,$

with x > 0, y > 0, z > 0, a > 0.

Use integration in spherical polar coordinates, (r, θ, φ) , to find in Cartesian form the coordinates of the centre of mass of the solid.

 $\left(\frac{3}{8}a,\frac{3}{8}a,\frac{3}{8}a\right)$

K.C.A

nadasn.

	<i>2</i> 0
2. 4 THE SOUD IS for A STINEL So IT HAS 3-may symmetry	$ = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$
A WUL 36 THE SHALL	$(\Rightarrow \frac{1}{2} \log \log \frac{1}{2} $
2 brown	(= finite = fit = finite (
$\sum_{k=0}^{n} d_{kk} = \sum_{k=0}^{n} d_{kk} = \sum_{k=0}$	Koo Broo → 377 Z = J Z J SHOUDDG
White the wave of the mass poly with the wave part (2 to or) is (poly) x z	$ \Rightarrow \frac{2\pi}{2\pi} \overline{\epsilon} = \int_{\frac{1}{2}\infty}^{\frac{1}{2}} \overline{\epsilon} \left[\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n} \right]_{n}^{2} d\phi $
· SUMMING UP & TARAG LIMITS	> = = = = = = = = = = = = = = = = = = =
MZ= III PEdu	$\Rightarrow \frac{2\pi}{3a} \tilde{\epsilon} = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} d\phi$
are sain SHANDE POLALS) = 3 + + - [+ +] +
$M_{\overline{e}} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\alpha} \rho'\left(\frac{r\omega\rho}{r}\right) \frac{r^{2}\sigma\rho}{r} \frac{\rho}{dv} \frac{\rho}{dv} \frac{\rho}{dv}$	(> 3 = 5 = 7
deo Bao Iza	$\Rightarrow z = \frac{3}{6}q$
	$\left(\begin{array}{c} \vdots \left(\widehat{\mathbf{J}}_{i} \widehat{\mathbf{J}}_{j} \widehat{\mathbf{Z}} \right) = \left(\begin{array}{c} \widehat{\mathbf{W}}_{j} \left(\frac{3 \mathbf{u}}{\mathbf{B}} \right) \frac{3 \mathbf{u}}{\mathbf{B}} \right) \\ \end{array} \right)$

Question 10

I.G.B.

I.C.B.

A solid sphere has equation

 $x^2 + y^2 + z^2 = a^2 \,.$

The density, ρ , at the point of the sphere with coordinates (x_1, y_1, z_1) is given by

 $\rho = \sqrt{x_1^2 + y_1^2}$.

Determine the average density of the sphere.

STRETING BY THE DEFINITION OF MARS FOR VARIABLE DENSITY MASS = $\int p(x_{1}y_{1}z) dV = \int \sqrt{x^{2}y^{2}} dx dy dz$ SWITCH INTO SPHERICAL $\int_{\Theta_{2D}} \int_{\Theta_{2D}} \sqrt{(r_{SM} \Theta_{loc} \varphi)^{2} + (r_{SM} \Theta_{SM} \varphi)^{2}} r_{SM}^{2} dr d\theta d\phi$ \implies MASS = $\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{0} \sqrt{r^{2} \omega^{2} \theta \omega^{2} \phi + r^{2} \omega^{2} \theta \omega^{2} \phi}^{1} r^{2} \omega \theta dr d\theta d\phi$ $\longrightarrow M_{2} = \int_{dem}^{2\pi} \int_{0}^{\pi} \int_{0}^{0} (r_{2}r_{1}) \int_{0}^{\infty} \int_{0}^{1} (r_{2}r_{2}r_{1}) \int_{0}^{\infty} (r_{2}r_{2}r_{2}) \int_{0}^{1} (r_{2}r_{2}) \int_{0}^{1} (r_$ \implies MASS = $\int_{add}^{2\pi} \int_{add}^{\pi} \int_{add}^{a} \int_{add}^{a} r^{2} sr^{2} \theta d\theta d\phi$ $\implies MASS = \int_{\phi=0}^{2\pi} \int_{\Theta=0}^{\pi} \frac{1}{\phi^{q}} s w^{2} \theta \ d\theta \ d\phi$ = MASS = $\frac{1}{4} \alpha^4 \int_{\phi=0}^{2\pi} \int_{\phi=0}^{\pi} SN^2 \phi \, d\phi \, d\phi$

I.G.B.

6%

1

$$\begin{split} & MASS = \frac{1}{4} \cdot \mathbf{u}^{H} \times \pi \times \int_{-\infty}^{\infty} \frac{1}{2} \cdot -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2$$

• NOW THE VOWER OF A SPHERE OF PADING $\underline{\alpha}$ is $V = \frac{1}{4}\pi^2 a^2$ $\therefore 4.000005 \text{ Deserty} = \frac{10455}{VOWE} = -\frac{\frac{1}{4}\pi^2 a^2}{\frac{1}{3}\pi a^3} = \frac{3}{16}\pi a^3$

Created by T. Madas

2

Question 11

Ĉ,

.K.C.

A thin uniform spherical shell with equation

 $x^2 + y^2 + z^2 = a^2, a > 0,$

occupies the region in the first octant.

Use integration in spherical polar coordinates, (r, θ, φ) , to find in Cartesian form the coordinates of the centre of mass of the shell.

-> Miza Ja pauso da Ed= a2, SMB dodd = IPTUE = Space ds -> 1 Tate _ (to do do do) ⇒ <u>1</u>π2 = ∫^π2 ¢≈0 The (I a simplese de de ⇒ 날1 = ∫ = (Jasiro] to do 1- pTTQ2 = + 12 44 T MOMINI ADDIT THE ILY PUPINE IS う 大を = 焼 2 = 1 a ONG UMITS $\left(\overline{\mathfrak{S}}_{1}, \frac{\sigma}{2}, \frac{\sigma}{2}\right) = \left(\overline{\mathfrak{S}}_{1}, \overline{\mathfrak{G}}_{1}, \overline{\mathfrak{S}}\right)$ MZ = (a cost day

 $\left(\frac{a}{2},\frac{a}{2},\frac{a}{2}\right)$

ng

Question 12

V.G.B. Mal

I.G.B.

The finite region Ω is defined as

I.C.B.

 $x^2 + y^2 + z^2 \le 1.$

Use Spherical Polar Coordinates (r, θ, φ) , to evaluate the volume integral

COM

1.40

2

in n

M2(12)

Y.G.B.

Created by T. Madas

Question 13

A solid sphere has equation

 $x^2 + y^2 + z^2 = 1.$

The region defined by the double cone with Cartesian equation

 $3z^2 \ge x^2 + y^2,$

is bored out of the sphere.

F.G.B.

I.C.B.

Determine the volume of the remaining solid.

i G.B.

 $V = \frac{2}{3}\pi$

11₂₀₂

Question 14

F.C.B.

I.C.B.

A solid sphere has radius 5 and is centred at the Cartesian origin O.

The density ρ at point $P(x_1, y_1, z_1)$ of the sphere satisfies

 $\rho = \frac{3}{85} \left[1 + \left| z_1 \right| \sqrt{x_1^2 + y_1^2 + z_1^2} \right].$

Use spherical polar coordinates, (r, θ, φ) , to find the mass of the sphere.

E.A.

ma

Question 15

F.G.B.

I.G.p.

A solid uniform sphere has mass M and radius a.

Use spherical polar coordinates, (r, θ, φ) , to show that the moment of inertial of this sphere about one of its diameters is $\frac{2}{5}Ma^2$.

 $= \frac{1}{2} h^{\alpha} \int_{0}^{\infty} \frac{1}{4} h^{\alpha} h^{\alpha}$

proof

1+

2013.sm2

madasn.

F.G.B.

Question 16

. C.B.

Į.G.B.

A thin uniform spherical shell has mass m and radius a.

Use spherical polar coordinates, (r, θ, φ) , to show that the moment of inertial of this spherical shell about one of its diameters is $\frac{2}{3}ma^2$.

ALEA ELEMPSI IN SHREPLAL	SUMMING UP AND TAKING WAIT
dis= a ² sont do do	$I = \int_{S} \int_{HT} \frac{1}{4T} \sin^2 \sin^2 \theta d\theta d\theta$
SUPPORE ASSA = 4774 ² SUPPORE ASSA = 4774 ² MAES THE DUT AREA	$d h \theta \theta \delta' \omega \sum_{\substack{m=1\\m \neq n}}^{T} \int_{0}^{m} $
WITHOUT LOSS OF GRUTERUITY TAKE THE 2 ANU AS THE	$T = \frac{w_{12}^{2}}{4\pi} \int_{\varphi_{100}}^{\pi\pi} \int_{\varphi_{100}}^{\pi} \int_{\varphi_{100}}^{\varphi_{100}} \int_{\varphi_{100$
DAMATEL OF THE SHELL MASS OF INFINITISMAL IS p os	$\psi = \frac{1}{2} \int_{0}^{\infty} \frac{1}{2$
• 40MIT OF WHITH THE Z-4KUS IS $\left(\varphi \delta \xi \right) \times \theta^2 = \varphi \delta \xi \times (q.5M0)^2$	$\mathbb{T} = \frac{4\pi}{100^2} \int_{0}^{\infty} \int_{0}^{\infty} -\cos\theta + \frac{1}{2} \cos^2\theta \int_{0}^{\infty} d\theta$
$= \frac{W_1}{4\eta_0 \times \times} R^2 \frac{W^2}{8W^2} \theta \frac{\partial t}{\partial t}$ $= \frac{W_1}{4W} \sin^2 \theta \frac{\partial t}{\partial t}$	$T = \frac{mo^2}{4\pi} \int_{k=0}^{k=1} \left[\left((-\frac{k}{2}) - (-(+\frac{k}{2}) \right) \right] d\phi$ $T = \frac{mo^2}{4\pi} \int_{k=0}^{k=1} \frac{k}{2} d\phi$
- 41 SUND (2 SING 30 24)	I = min [+ +] 21
= <u>अवर</u> े आफे ठिफ ठेंक्	$J \approx \frac{w_{0}^{2}}{\eta} \times \left[\frac{2\pi}{3} - \rho\right]$ $J \approx \frac{2}{3} m a^{2}$
	· · · · · · · · · · · · · · · · · · ·

proof

E.B.

1

Question 17

1.0.

Y.C.

The finite region R is defined as the region enclosed by the ellipsoid with Cartesian equation

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ) , find the value of

 $\iiint \left(x^2 + y^2 + z^2\right) \, dx \, dy \, dz \, .$

 $\frac{\mathfrak{A}^2}{\mathfrak{q}} + \frac{\mathfrak{g}^2}{\mathfrak{l}_6} + \frac{\mathfrak{g}^2}{\mathfrak{g}_5} \leqslant 1$ (22+92+22) drdydz AUR DX JY J7 $\Big[(9\chi^2_+ i \xi \chi^2_+ 25 z^2] x 60 d \chi d \chi_{\rm d} z$ [[꽃 꽃 끓 끓 || 9X 97 9Z 60 (9x2+16y2+252) dx dy dz 0 0 dX dY dZ 4 0 dX dY dZ 3 $\chi^2_{+}\gamma^2_{+}\underline{\mathcal{Z}}^2_{\leq}$ da dy dz = 60 dXdYdz $60 \int \left[\widehat{\mathcal{Q}}(\text{reinduct})^2 + \text{ll}\left(\text{reinduct})^2 + 22(\text{read})^2 \right] \, t^2 \sin \theta \, \mathrm{d} t \, \mathrm{d} \theta \, \mathrm{d} \varphi$ $=60 \int \left(9r^3 w^3 \Theta \omega \delta \varphi + 16r^3 \omega^3 \Theta \delta \omega \delta \varphi + 35r^2 \omega \delta \Theta \right] r^2 sm \Theta \ dr \ d\Theta \ d\varphi$ $\label{eq:eq:entropy} \text{General} = \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right] + \left[\begin{array}{c} 1 & 1 \end{array} \right] + \left[\begin{array}{$ $\int_{-\infty}^{\infty} \left[\frac{1}{2} r^{5} \right] \times \left[\frac{1}{2} sub \left(\frac{1}{2} (s_{1}^{2} + |s_{2}|_{2}) + |s_{2}|_{2} \right) + \frac{1}{2} sub \left(\frac{1}{2} + |s_{2}|_{2} \right) \right] db db$ SHE SHE (9+75174) + SLOEDSAND UP JA

. .51m10(1-ca20)(9+75m2)+25 030.0019 db db $\int_{-\infty}^{\pi} (s_{M}\theta - s_{M}\theta_{M}) (\theta + 7s_{M}\theta_{M}) + 2s_{M}\theta_{M} d\theta d\theta$ $\left[\left(-\omega_{2}\theta+\frac{1}{2}\cos^{2}\theta\right)\left(9+7\sin^{2}\theta\right)-\frac{25}{2}\cos^{2}\theta-\frac{\pi}{2}d^{2}\theta$ $\left[\left(-\cos\theta-\frac{1}{3}(\omega_{2}\theta)(\eta+3\omega_{2}^{2}\phi)+\frac{2\xi}{3}(\omega_{2}\phi)\theta^{-\eta}\right)\right]_{\theta=\eta}^{\theta=\theta} \quad d\phi$ = 12 (too $= \mathbb{E} \quad \left[\int_{1}^{2\pi} \left[\left(1 - \frac{1}{3} \right) \left(q + 7 S u_1^2 \psi \right) + \frac{2 \zeta}{3} \right] - \left[\left(-1 + \frac{1}{3} \right) \left(q + 7 S u_1^2 \psi \right) - \frac{2 \zeta}{8} \right] \quad d\psi$ $\frac{2}{3}(9+754^{2}+)+\frac{25}{3}+\frac{2}{3}(9+754^{2}+)+\frac{25}{3}$ db $\frac{4}{3} \left[9 + 7 \left(\frac{1}{2} - \frac{1}{2} \cos 2k \right) \right] +$ $12 + \frac{14}{3} - \frac{14}{3}\cos 2\phi + \frac{50}{3}$ $= |2 \int_{\frac{1}{2}}^{2\pi} \frac{100}{3} - \frac{14}{3} \cos 2\phi \, d\phi$ = 12 [100 + - 7 9424] 2] = 12 x 100 x 21

 800π

2

Question 18

A solid uniform sphere of radius a, has variable density $\rho(r) = r$, where r is the radial distance of a given point from the centre of the sphere.

a) Use spherical polar coordinates, (r, θ, φ) , to find the moment of inertia of this sphere *I*, about one of its diameters.

 $I = \frac{4}{9}ma^2.$

b) Given that the total mass of the sphere is m, show that

Question 19

Evaluate the triple integral

I.V.C.B

I.C.

I.V.C.B. Madasm

COM

I.F.C.p

 $\int 5x^2 dx dy dz ,$

where V is the finite region contained within the closed surface with equation

COM

 8π

2017

Madasn

I.F.G.B.

1.4.6.6

1.4

Created by T. Madas

2017

Question 20

COM

I.F.C.P.

The finite R region is defined as

 $x^2 + y^2 + z^2 \le 2z \,.$

Determine an exact simplified value for

I.C.B.

I.C.

 $\frac{z}{\sqrt{x^2 + y^2 + z^2}} \, dx \, dy \, dz \, .$

ths.com

 $\frac{16\pi}{15}$

2011

1720257

I.F.G.B.

I.G.S.

14

.

I.C.B.

Created by T. Madas

COM

Question 21

0

maths.c.

Smaths.com

I.V.C.B

The finite R region is defined as

 $4z \le x^2 + y^2 + z^2 \le 16z \,.$

 $\left(\frac{z}{8}\right)$

dx dy dz .

Determine an exact simplified value for

Y.G.B.

21hs.com

 1092π

21115

I.F.G.B.

COM

madası

200

¥.G.5.

1.4

.

Created by T. Madas

COM

I.C.

Question 22

.K.C.

A solid sphere has equation

$$a^{2} + y^{2} + z^{2} = a^{2}, a > 0.$$

The sphere has variable density ρ , given by

 $\rho = k(a-z), \ k > 0.$

Use integration in spherical polar coordinates, (r, θ, φ) , to find in Cartesian form the coordinates of the centre of mass of the sphere.

4 at sind - fat since de $M = 3\pi k \left[-\frac{1}{3}a^{4}\omega s\theta - \frac{1}{4}a^{4}sw^{2}\theta \right]_{0}^{T}$ $\int_{T}^{\infty} \left[\theta^{2} v 2 \frac{1}{2} + \theta a \partial \frac{1}{2} \right] \int_{0}^{P} p a d \pi a = M$ $M = 2\pi k q^{4} \left[\left(\frac{4}{5} + 0 \right) - \left(-\frac{4}{5} + 0 \right) \right]$ M= Borkat $\rho dv = \int k(a-z) dv$ RHE WOMING OF HU WIGNITHIMAN 1867 THE 2-Y PUNUH (2-6.083) (00 "6" FERT) = k(a-z)z $\int_{0}^{\infty} \int_{0}^{\infty} k \left[\alpha r^{2} \sin \theta - r^{2} \sin \theta \cos \theta \right] d\phi dr d\theta$ = k(az-z2) M = (= KCarrost- Frid (IN SPHHELCH, PRARY) $M = 2\pi k \int_{\Theta=0}^{T} \int_{\infty}^{q} ar^{2} sin \theta - r^{3} sin \theta \cos \theta - dr d\theta$ $M\Xi = \iiint k[arcos \theta - r^2 cod \theta] r^2 sn \theta dr d d$ $M = 2\pi k \begin{bmatrix} \pi & \pi^2 \sin^2 \theta & \pi^2 \end{bmatrix}_{m=1}^{\infty} d\theta$

 $M_{\tilde{z}} = \int_{\phi_{zo}}^{2\pi} \int_{q_{zo}}^{\pi} \int_{r_{zo}}^{r_{zo}} \left[ar^{3}snbusb - r^{4}snbusb \right] drddd$ $\frac{4}{3} \sqrt{\pi u^{4} \hat{\epsilon}} = \sqrt{\frac{4}{2\pi}} \int_{-\infty}^{\pi} \int_{ \frac{\mu}{3}\pi^{4}\bar{z}^{2} = \int_{4-\infty}^{2\pi} \int_{-\infty}^{\pi} \frac{1}{4} a^{2}sm \theta cos \theta - \frac{1}{2}a^{2}sm \theta cos \theta + d \phi$ $\frac{4\pi}{3q} \stackrel{\sim}{=} = \int_{\Phi=0}^{2\pi} \int_{\Theta=0}^{\pi} \frac{1}{4} \sin \theta \cos \theta - \frac{1}{4} \sin \theta \cos \theta d\theta d\theta$ $\frac{3\pi}{2\pi} = \int_{\phi=0}^{2\pi} \left[\frac{1}{2} \operatorname{Sum} \theta + \frac{1}{2} \cos \theta \right]_{\theta}^{\pi} d\phi$ $\lim_{J \to 0} \overline{\xi} = \int_{\frac{1}{2}}^{2T} \left(\circ - \frac{1}{2} \right) - \left(\circ + \frac{1}{12} \right) d\phi$ 4=== = Jan - 2 d+ 11 2 = te secon the sty point for (0,0,-,59)

P.C.A

 $\left(0,0,-\frac{1}{5}a\right)$

2%

Question 23

.V.C.

A solid is defined in a Cartesian system of coordinates by

 $x^2 + y^2 = xz$, $0 \le z \le 2$.

- **a**) Describe the solid with the aid of a sketch.
- **b**) Use standard elementary formulas to find the volume of the solid.
- c) Use spherical polar coordinates to verify the answer to part (b)

6) 3ta 0.520 do de = 3.2: 1 $V = \int_{\Phi = -\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{\mu}{2} \tan^2 \theta \right]_{\Phi = 0}^{\Phi = -\frac{\pi}{2}}$ $V = \frac{2}{660}$ $TT \times I^2 = T$ 4.0026 -0 db 1 5 7 5 2 0 goosp do Com \$ (++ 56052) db \$ + \$ was \$\$ V= [4+ 2 4420] # $V = \left(\frac{2\pi}{3} + 0 \right) - (0)$ 102d + 1

 $V = \frac{2}{3}\pi$

Ĉ.ŀ.

Madası,

Question 24

12,

A solid sphere has radius a and mass m.

The density ρ at any point in the sphere is inversely proportional to the distance of this point from the centre of the sphere

Show that the moment of inertia of this sphere about one of its diameters is $\frac{1}{3}ma^2$

proof WHEN THE MASS -USI - SPHERICAL POLINES $(f_1\theta_1d)$ $P(f_i\theta_i\phi) = \frac{k}{r}$ $\mathsf{MASS} = \int_{V} \ell \, dv = \int_{\mathsf{f} \sim \mathsf{g} \sim \mathsf{g} \sim \mathsf{g} \sim \mathsf{f}}^{\mathsf{aff}} \int_{\mathsf{F} \sim \mathsf{f}}^{\mathsf{f}} d\mathbf{x} \frac{\mathsf{k}}{\mathsf{f}} \left(\ell^2 \mathsf{zm} \mathsf{g} \, \mathsf{dr} \, \mathsf{d} \mathsf{g} \, \mathsf{d} \mathsf{g} \right)$ $\mathfrak{g}_{\mathfrak{h}} = \int_{0}^{\mathfrak{h}} \mathfrak{g}_{\mathfrak{h}} \mathfrak$ $\frac{1}{2}ka^2 - \left(-\frac{1}{2}ka^2\right) d\theta = ka^2 \int_0^{27} 1 d\theta =$ akud $I = \iint_{\substack{d=0 \\ d=0}}^{d} \int_{-\infty}^{0} \frac{k}{2} (c_{M\theta})^{2} (r_{M\theta}^{2} dr d\theta d\theta)$ $I = \int_{-\infty}^{\infty} \int_{-\infty}^{T} \int_{-\infty}^{\alpha} k r^{3} s h^{3} dr d\theta d\phi$ $I = \int_{-\infty}^{\infty} \int_{-\infty}^{\pi} \left[\frac{1}{2} r^{e_{\text{sup}}} \right]_{0}^{\alpha} d\theta d\theta$ $\frac{1}{2}a^{4}sin^{4}\theta d\theta d\phi = \int_{4-\infty}^{37} \int_{100}^{10} \frac{1}{4}a^{4}sin\theta(1-c_{0}\theta) d\theta d\phi$ $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \cos \theta - \frac{1}{2} \sin \theta \right) + \frac{1}{2} \sin \theta + \frac{1$ $\int_{\Phi_{d}} \frac{1}{2} d_{\theta} \left[(-\frac{1}{2} + i) - (\frac{1}{2} - i) \right] = \int_{\Phi^{\pm 0}}^{\Phi^{\pm 0}} \frac{1}{2} d_{\theta} d_{\theta} = -\frac{3}{2} \frac{3}{2} \frac{1}{2} d_{\theta} d_{\theta}$

Question 25

I.C.B.

I.V.G.B.

The finite R region is defined as

 $1 \le x^2 + y^2 + z^2 \le 2z \; .$

z dx dy dz.

R

Determine an exact simplified value for

Y.G.J.

COM

1.G.D.

Com

madasn

I.C.B.

Created by T. Madas

0

N.

Question 26

I.V.G.B. III,

I.V.G.B.

200

The finite R region is defined as

 $x^2 + y^2 + z^2 \le 4z$ and $z \ge 2$.

 $\overline{\sqrt{x^2 + y^2 + z^2}}$

- dx dy dz.

Determine an exact simplified value for

. ŀGp

 $\begin{array}{c} x_{1}^{+}y_{1}^{+}y_{2}^{+}-z_{2}=0\\ x_{1}^{+}y_{1}^{+}(z_{1}^{+})z_{1}^{+}=1\\ \vdots\\ x_{1}^{+}y_{1}^{+}(z_{1}^{+})z_{1}^{+}z_$

2017

Madası

I.C.p

COM

 $\frac{44\pi}{3}$

K.C.A

N.G.S.

14

.

Created by T. Madas

00

N.

Question 27

I.C.B.

A non right circular cone has Cartesian equation

 $x^2 + y^2 = xz$, $0 \le z \le 2$.

Use spherical polar coordinates to find an exact simplified value for

 $\frac{4\pi}{5}$

C.p.

nana.

where R is the interior of the cone.

Question 28

K.C.

A solid uniform sphere has mass M and radius a.

Use spherical polar coordinates, (r, θ, φ) , and direct calculus methods, to show that the moment of inertial of this sphere about one of its tangents is $\frac{7}{5}Ma^2$.

You may **not** use any standard rules or standard results about moments of inertia in this question apart from the definition of moment of inertia.

proof

] = 1p 1. 21 4 MAG $I = \frac{1}{2} \int_{dm}^{\pi} \int_{max}^{\frac{\pi}{2}} \frac{32a^{2}\cos^{2}\theta \cdot ad\theta \cdot ad\theta}{max} + \frac{32a^{2}\cos^{2}\theta \cdot ad\theta}{max} d\theta d\phi$ $\varphi = \sum_{\alpha=0}^{2} \left\{ \theta^{\alpha}_{\alpha\alpha} e^{-\frac{1}{2}} \right\} + \theta e^{-\frac{2}{2}} \left\{ \theta^{\alpha}_{\alpha\alpha} e^{-\frac{1}{2}} \right\} = \sum_{\alpha=0}^{2} \left\{ \theta^{\alpha}_{\alpha\alpha} e^{-\frac{1}{2}} \right\}$ $\overset{\uparrow}{\mathbb{B}} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \frac{f(3) f(2)}{f(3)} = \frac{2! \times 1!}{4!} = \frac{1}{12}$ $\widehat{I} = \frac{1}{5} \rho \int_{\varphi=0}^{2\eta} \left\{ \frac{4}{3} a^{4} SM^{2} \phi + \left[0 + 4q^{5} \right] d\phi \right\}$ $I = \frac{1}{2}\rho_{ab} \int_{0}^{0} \int_{0}^$ $J = \frac{1}{5}\rho q^{2} \int_{-\frac{1}{3}}^{\frac{37}{4}} \left(\frac{1}{2} - \frac{1}{5}\cos 2\phi\right) + 4 d\phi$ $I = \frac{1}{5} p q^4 \int_{-\frac{2}{3}}^{2\pi} \frac{2}{3} - \frac{2}{3} \cos 2\phi + \phi \, d\phi$ $t^2+y^2+z^2=2aZ$ $t^2=2aCros$ $t^2=2arcos$ $J = \frac{1}{5} \rho q^{5} \times \int_{0}^{2\eta} \frac{\eta}{3} d\phi$ 1= 290050 $I = \frac{14}{15} \rho a^4 \int_0^{2\pi} 1 d\phi$ $T_{\rm TC} \times {}^2 p q \frac{\mu}{U} = L$ $\widehat{J} = W \times d^{2} = \left(\rho t^{2} \text{SMO} dt d\Theta d\phi \right) \times \left(q^{2} t \mathbb{R}^{2} \right)$ $\left[g^2 + 2^{E_{20}} - r^2 \omega_1^2 \Theta S \omega_1^2 \phi + r^2 \omega_2^2 \Theta \right] \quad \text{so} \quad \overline{J} = u_1 d^2$ y = rand.amp Z= randr I = 28 Pas $T = \frac{2\theta}{15} \left(\frac{3m_1}{4\pi^4} \right) e^5$ $\operatorname{Ind}^2 = (\rho r^2 \sin\theta dr d\theta d\phi)(r^2 \sin^2\theta \sin^2\theta + r^2 d^2\theta)$ I = $\frac{1}{5}$ legeneric = pt4 (suftsuft+ suftaste) dr de de Praces