MULTIVARIABEE

INTEGRATION

(PLANE \& CYLINDRICAL POLAR COORDINATES)

PLANE POLAR COORDINATES

Question 1
The finite region on the $x-y$ plane satisfies

$$
1 \leq x^{2}+y^{2} \leq 4, y \geq 0
$$

Find, in terms of π, the value of I.

Question 2
The finite region on the $x-y$ plane satisfies

$$
1 \leq x^{2}+y^{2} \leq 16, y \geq 0
$$

Find, in terms of π, the value of I.

Question 3
Find the exact simplified value for the following integral.

$$
\int_{0}^{\infty} \int_{0}^{y} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} d x d y
$$

\square

Question 4
Find the exact simplified value for the following integral.

$$
\int_{0}^{\infty} \int_{0}^{\infty}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} \mathrm{e}^{-\left(x^{2}+y^{2}\right)^{\frac{5}{2}}} d x d y
$$

Question 5
The finite region on the $x-y$ plane satisfies

$$
4 \leq x^{2}+y^{2} \leq 4 x, y \geq 0
$$

Find the value of I.

Created by T. Madas

Question 6
The points A and B have Cartesian coordinates $(1,0)$ and $(1,1)$, respectively. The finite region R is defined as the triangle $O A B$, where O is the origin.

Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{R} \frac{x^{3}}{x^{2}+y^{2}} d x d y
$$

[No credit will be given for workings in other coordinate systems.]

Question 7
The finite region R is defined as

$$
1 \leq x^{2}+y^{2} \leq 4
$$

Determine an exact simplified value for

Created by T. Madas

Question 8

$$
I=\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x \quad \text { and } \quad I=\int_{0}^{\infty} \mathrm{e}^{-y^{2}} d y
$$

By considering an expression for I^{2} and the use of plane polar coordinates, show clearly that

Created by T. Madas

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}-y^{2}} d x d y
$$

a) Use plane polar coordinates (r, θ), to find the exact simplified value of the above integral.
b) Hence evaluate

Created by T. Madas

Question 10
The points A and B have Cartesian coordinates $(0,1)$ and $(1,1)$, respectively. The finite region R is defined as the triangle $O A B$, where O is the origin.

Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{R} y^{2} d x d y
$$

[No credit will be given for workings in other coordinate systems.]

Created by T. Madas

Question 11
The finite region R, on the $x-y$ plane, satisfies

Find, in terms of π, the value of

$$
x^{2}+y^{2} \leq 1
$$

Question 12
Find the exact simplified value for the following integral.

Created by T. Madas

Question 13
Find the exact simplified value for the following integral.

Question 14
The finite region R is bounded by the straight lines and curves with the following equations.

$$
y=0, x=0, x^{2}+y^{2}=4 \text { and } y=\sqrt{3} x .
$$

Determine an exact simplified value for

Question 15
A uniform circular lamina of mass M and radius a.

Use double integration to find the moment of inertia of the lamina, when the axis of rotation is a diameter.

Question 16
A circular sector of radius r subtends an angle of 2α at its centre O. The position of the centre of mass of this sector lies at the point G, along its axis of symmetry.

Use calculus to show that

$$
|O G|=\frac{2 r \sin \alpha}{3 \alpha}
$$

- tacina umits $\alpha x_{1}^{2}=1$

Question 17
The finite region on the $x-y$ plane satisfies

$$
4 x^{4}+4 y^{4} \leq \pi^{2}-8 x^{2} y^{2} \quad \text { and } \quad 6 x^{2}+6 y^{2} \geq \pi .
$$

Find the value of the following integral.

Question 18
The finite region R, on the $x-y$ plane, satisfies

$$
x^{2}+y^{2} \leq 1 .
$$

Find, in terms of π, the value of I.

$$
I=\int_{R}\left(1+3 x y+4 x-2 y x^{2}\right) d x d y
$$

Created by T. Madas

Question 19
The finite region R is bounded by the straight lines with the following equations.

$$
x=0, \quad y=0 \quad \text { and } \quad y=1-x .
$$

Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{R} \frac{x+y}{x^{2}+y^{2}} d x d y
$$

[No credit will be given for workings in other coordinate systems.]

Question 20

$$
I=\int_{0}^{2} \int_{\sqrt{2 y-y^{2}}}^{\sqrt{4-y^{2}}} \frac{2 y}{x^{2}+y^{2}} d x d y
$$

Use polar coordinates to find an exact simplified answer for I.
\square , $4-\pi$

\square
$=\int_{\theta=0}^{\frac{\pi}{2}} 4 \sin \theta-2(2 \sin \theta) \sin \theta d \theta$
$=\int_{\theta=0}^{\frac{\pi}{2}} 4 \sin \theta-4 \sin ^{2} \theta d \theta$
$=\int_{0=0}^{\frac{\pi}{2}} 4 \sin \theta-4\left(\frac{1}{2}-\frac{1}{2} \cos \theta\right) d \theta$
$=\int_{\theta=0}^{\frac{\pi}{2}} 4 \sin \theta-2+2 \cos x \theta d \theta$
$=[-4 \cos \theta-2 \theta+\sin 2 \theta]_{0}^{\frac{\pi}{2}}$
$=(0-\pi+0)-(-4-0+0)$
-40

Question 21
The finite region R is bounded by the straight lines with the following equations.

$$
y=0, \quad x=\frac{1}{2}, \quad x=1 \quad \text { and } \quad y=x
$$

Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{R} \frac{x}{\left(x^{2}+y^{2}\right)^{2}} d x d y
$$

[No credit will be given for workings in other coordinate systems.]

Question 22
The finite region R is defined as

Created by T. Madas

Question 23
Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{y=0}^{\infty} \int_{x=y}^{\infty} \frac{\mathrm{e}^{-x}}{x} d x d y
$$

Created by T. Madas

Question 24
Use plane polar coordinates, (r, θ) to determine the value of

$$
\int_{R} \mathrm{e}^{-(x+y)^{2}} d x d y
$$

where R is the region in the first quadrant in a standard Cartesian coordinate system.

Created by T. Madas

Question 25
Given that μ is a positive constant determine the value of

Question 26
Determine an exact simplified value for

$$
\int_{R}\left(x^{2}+y^{2}\right) \mathrm{e}^{-\left(x^{2}+y^{2}\right)} d x d y
$$

where R is the region $x^{2}+y^{2}>1$

Question 27
Find the exact simplified value for the following integral.

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{0} \frac{\sqrt{16 x^{2}+16 y^{2}}}{x^{2}+y^{2}+1} d x d y
$$

\square
$\pi(4-\pi)$

$=\pi \int_{0}^{1} 4-\frac{t}{r^{2}+1} d r$
$=\pi[4 \pi-4$ anctar $]]_{0}^{\prime}$
$=\pi[(t-$ tandatal $)-(0.0)]$
$=\pi\left(4-4 \times \frac{\pi}{4}\right)$
$=\pi(4-\pi)$

Created by T. Madas

Question 28
The finite region R is bounded by the straight lines with the following equations.

$$
x+y=1, \quad x+y=2, \quad y=x \quad \text { and } \quad y=0
$$

Use plane polar coordinates (r, θ) to find the value of

Question 29
The region R on the $x-y$ plane is defined by the inequalities

$$
1 \leq x^{2}+y^{2} \leq 5 \quad \text { and } \quad \frac{1}{2} x \leq y \leq 2 x
$$

Show clearly that

Question 30
The positive solution of the quadratic equation $x^{2}-x-1=0$ is denoted by ϕ, and is commonly known as the golden section or golden number.

This implies that $\phi^{2}-\phi-1=0, \phi=\frac{1}{2}(1+\sqrt{5}) \approx 1.62$.

It is asserted that

$$
I=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \cos \left(2 x^{2}\right) d x=\sqrt{\frac{\pi \phi}{5}}
$$

By considering the real part of a suitable function, use double integration in plane polar coordinates to prove the validity of the above result.

You may assume the principal value in any required complex evaluation.
\square , proof

	mam

Created by T. Madas

CYLINDRICAL COORDINATES

Created by T. Madas

Question 1
Find the value of

$$
\int_{\Omega} r z^{2} d V
$$

where Ω is the region inside the cylinder with equation

$$
x^{2}+y^{2}=4,-2 \leq z \leq 2
$$

In this question use cylindrical polar coordinates (r, θ, z).

Created by T. Madas

Question 2
Find the value of

where V is the region inside the cylinder with equation

Question 3
Find in exact form the volume enclosed by the cylinder with equation

$$
x^{2}+y^{2}=16, z \geq 0
$$

and the plane with equation

$$
z=12-x
$$

Question 4
Find the volume of the region bounded by the cylinder with equation

$$
x^{2}+y^{2}=4
$$

and the surfaces with equations

Created by T. Madas

Question 5
Find the volume of the paraboloid with equation

Created by T. Madas

Question 6
The finite region Ω is enclosed by the cylinder with Cartesian equation

$$
x^{2}+y^{2}=1, \quad-1 \leq z \leq 1
$$

Determine an exact simplified value for

Created by T. Madas

Question 7
The finite region V is enclosed by the cone with Cartesian equation

$$
z=\sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 6
$$

Determine an exact simplified value for

Question 8
The height z, of a cooling tower, is 120 m .

The radius $r \mathrm{~m}$, of any of the circular cross sections of the cooling tower is given by the equation

$$
r=\sqrt{625+\frac{1}{4}(z-90)}
$$

Use cylindrical polar coordinates (r, θ, z), to find the volume of the tower.

Question 9
Use cylindrical polar coordinates (r, θ, z) to find the volume of the region defined as

$$
x^{2}+y^{2}+(z+4)^{2} \leq 25, z \geq 0
$$

Created by T. Madas

Question 10
Find the value of

where V is the finite region enclosed by the surface with Cartesian equation

$$
\int_{V}(1+2 x y) d V
$$

Question 11
Find in exact form the volume of the solid defined by the inequalities

$$
x^{2}+y^{2} \leq 4, \quad x \geq 0, \quad y \geq 0 \quad \text { and } \quad 0 \leq z \leq 6-x y
$$

Question 12
Find the volume of the finite region bounded by the surfaces with Cartesian equations

$$
z=13-4 x^{2}-4 y^{2} \quad \text { and } \quad z=1-x^{2}-y^{2}
$$

$$
V=24 \pi
$$

Created by T. Madas

Question 13
A scalar field F exist inside the cylinder with equation

$$
x^{2}+y^{2}=1, \quad 0 \leq z \leq 4 .
$$

$$
\text { Given further that } F(x, y, z) \equiv 2+x y+3 y z^{2} \text {, }
$$

where V denotes the region enclosed by the cylinder

Question 14
Use cylindrical polar coordinates (r, θ, z) to evaluate

$$
\int_{V} \frac{5 y z^{2}}{\sqrt{x^{2}+y^{2}}} d x d y d z
$$

where V is the region defined as

$$
x^{2}+y^{2} \leq y
$$

contained within the sphere with equation

$$
x^{2}+y^{2}+z^{2}=1
$$

Question 15
The finite region Ω is defined by the inequalities

$$
x^{2}+y^{2} \leq 1 \quad \text { and } \quad|z| \leq \sqrt{x^{2}+y^{2}}
$$

Use cylindrical polar coordinates to evaluate

Question 16
The finite region V is defined by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 1 \quad \text { and } \quad z \geq 1-\sqrt{x^{2}+y^{2}}
$$

Use cylindrical polar coordinates to evaluate

Created by T. Madas

Question 17
Use cylindrical polar coordinates (r, θ, z) to show that the volume of a right circular cone of height h and base radius a is

Question 18
a) Determine with the aid of a diagram or a Jacobian matrix an expression for the area element in plane polar coordinates, (r, θ).

A cylinder of radius $\frac{1}{2} a$ is cut out of a sphere of radius a.
b) Find a simplified expression for the volume of the cylinder, given that one of its generators passes through the centre of the sphere

$$
d x d y=r d r d \theta, \quad V=\frac{2}{9}[3 \pi-4]
$$

Question 19
The region V is contained by the paraboloid with Cartesian equation

$$
y=x^{2}+z^{2}, \quad 0 \leq y \leq 4
$$

Determine an exact simplified value for

$$
\int_{V} \sqrt{x^{2}+z^{2}} d x d y d z
$$

Question 20
Use cylindrical polar coordinates, (r, θ, z), to find the exact volume of the ellipsoid with Cartesian equation

$$
x^{2}+y^{2}+3 z^{2}=1
$$

$$
V=\frac{4 \pi}{3 \sqrt{3}}
$$

\square

Question 21
The finite region V is bounded by surfaces with Cartesian equations

$$
z^{4}=4\left(x^{2}+y^{2}\right), z \geq 0 \quad \text { and } \quad x^{2}+y^{2}+z^{2}=3, z \geq 0
$$

Use cylindrical polar coordinates (r, θ, z) to show that the volume of V is

Question 22
Use cylindrical polar coordinates, (r, θ, z), to find the exact volume of the region defined by the following Cartesian inequalities

$$
V=\frac{200 \pi}{3}
$$

Question 23
Use cylindrical polar coordinates, (r, θ, z), to find the volume of the region defined by the following Cartesian inequalities

