uas mains com Created by T. Madas

asmaths.com

MULTIVARIABLE RESTRACTOR (PLA)

Creace PLANE POLAR COORDINATES T. T. C.P. INALISSING IN T. Y. C.P. MARINESSING IN T.Y. C.P. MARINESSING IN T.Y. C.P. MARINESSING IN T.Y. C.P. MARINESSING IN T.Y. TASTRAILS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHA

Question 1

I.C.B.

I.F.G.B

The finite region on the x-y plane satisfies

I.C.B.

 $1 \le x^2 + y^2 \le 4, y \ge 0.$

Find, in terms of π , the value of I.

K.G.P.

I.F.G.B.

I.C.B.

COM

1.G.D.

4

.

Madasn

Created by T. Madas

0

N.C.

Question 2

I.C.B. Madasn

COM

I.V.G.B.

The finite region on the x-y plane satisfies

Y.G.B

 $1 \le x^2 + y^2 \le 16, \ y \ge 0.$

Find, in terms of π , the value of I.

 $I = (x+y)^2 \, dx \, dy \, .$

I.G.

(249) dady = ... si 27+22y+g2 dr dy

+ 2(ran()(roap) 7 rdr de

200

COM

1.G.D.

1+

./

COM

madasn

I.F.C.B.

2011

10

Question 3

I.V.G.P.

Find the exact simplified value for the following integral.

K.C.

 $\int_0^\infty \int_0^y e^{-(x^2+y^2)} dx \, dy \, .$

112/281

 $\frac{\pi}{8}$

 $\frac{\pi}{10}$

N.C.S.

1

Question 4

I.F.G.B.

Find the exact simplified value for the following integral.

N.

 $\int_0^\infty \int_0^\infty \left(x^2 + y^2\right)^{\frac{3}{2}} e^{-\left(x^2 + y^2\right)^{\frac{5}{2}}} dx \, dy \, .$

Question 5

maths.com

I.F.C.P.

0

The finite region on the x-y plane satisfies

I.G.B.

I.C.J

I.C.B. Madasmatis.Com

Find the value of I.

Madasmarns.com

I.V.C.B. Madasa

I.C.B.

aths com

9

ths.col

Y.G.S.

4.6

-

²02811211

Created by T. Madas

madasmaths.com

Question 6

R,

The points A and B have Cartesian coordinates (1,0) and (1,1), respectively.

The finite region R is defined as the triangle OAB, where O is the origin.

Use plane **polar** coordinates, (r, θ) to determine the value of

[No credit will be given for workings in other coordinate systems.]

 $\frac{\pi}{12}$

2

Question 7

12112

ths.com

aths com

I.V.G.B.

The finite region R is defined as

 $1 \le x^2 + y^2 \le 4 \,.$

dx dy.

ŀ.G.p.

 $\frac{\ln(x^2 + y)}{\ln(x^2 + y)}$

Determine an exact simplified value for

I.G.B.

ĈB.

21/18

I.C.B.

The Com

1.G.S.

6

.

nadasma,

COM

I.V.C.B. Madasn

Madasn.

200

Created by T. Madas

COM

S.

Question 8

The Com

nadasmaths,

00

I.F.G.B

 $I = \int_0^\infty e^{-x^2} dx \quad \text{and} \quad I = \int_0^\infty$ $e^{-y^2} dy$.

By considering an expression for I^2 and the use of plane polar coordinates, show clearly that

 $I = \frac{1}{2}\sqrt{\pi} \, .$

·G.p

proof

Com

madasm

ŀ.G.p.

The com

The COL

6

.

nadasn.

2017

Created by T. Madas

COM

Question 9

I.V.G.B.

 $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2} dx dy.$

a) Use plane polar coordinates (r, θ) , to find the exact simplified value of the above integral.

dx.

b) Hence evaluate

I.C.P.

2017

Mada

I.C.P.

5

.

Is.con

Created by T. Madas

2017

E.

Question 10

The points A and B have Cartesian coordinates (0,1) and (1,1), respectively.

The finite region R is defined as the triangle OAB, where O is the origin.

Use plane **polar** coordinates, (r, θ) to determine the value of

[No credit will be given for workings in other coordinate systems.]

 $\frac{1}{4}$

Question 11

The finite region R, on the x-y plane, satisfies

 $x^2 + y^2 \le 1.$

Find, in terms of π , the value of

ģ

V.C.B. Madasm

COM

I.V.G.B

 $\int \left(y-3y^2\right)\,dx\,dy\,.$

K.C.

ths.com

 $\frac{3\pi}{4}$

ne.

I.F.G.B.

Com

madasn

200

1:0.

6

.

Created by T. Madas

2017

Question 12

I.Y.C.B. Madasman

Smaths.com I.V.C.B

I.I.G.p

, I.F.G.B.

0

Find the exact simplified value for the following integral.

Madasmaths.com

1.4.6.6

A.C.

1.

nadasma

Created by T. Madas

CA

Question 13

>

Find the exact simplified value for the following integral.

Question 14

1.C.B.

I.G.B.

The finite region R is bounded by the straight lines and curves with the following equations.

y = 0, x = 0, $x^2 + y^2 = 4$ and $y = \sqrt{3}x$.

Determine an exact simplified value for

 $x\sqrt{x^2+y^2} \, dx \, dy \, .$

 $2\sqrt{3}$

E.G.A.

わっ

Question 15

?Ŗ

F.G.B.

Y.G.B.

A uniform circular lamina of mass M and radius a.

Use double integration to find the moment of inertia of the lamina, when the axis of rotation is a diameter.

Madasn.

 $\frac{1}{4}Ma^2$

1.4

Madasma

madasn

F.G.B.

Question 16

F.G.B.

I.G.B.

A circular sector of radius r subtends an angle of 2α at its centre O. The position of the centre of mass of this sector lies at the point G, along its axis of symmetry.

|OG|

 $2r\sin\alpha$

3α

4

x12=

Mā :

(rast) rdrdt (rast) rdrdt proof

F.G.B.

1120251

2

Use calculus to show that

Question 17

V.C.B. Madasm

COM

I.C.B.

The finite region on the x-y plane satisfies

 $4x^4 + 4y^4 \le \pi^2 - 8x^2y^2$ and $6x^2 + 6y^2 \ge \pi$.

Find the value of the following integral.

I.G.B.

 $\cos\left(x^2+y^2\right)\,dx\,dy\,.$

200

ths.com

 $\frac{1}{2}\pi$

Com

nadası

I.F.C.B.

.G.D.

1

Created by T. Madas

2011

R

Question 18

13/1s.

I.V.G.B

The finite region R, on the x-y plane, satisfies

 $x^2 + y^2 \le 1.$

Find, in terms of π , the value of I.

 $I = \int \left(1 + 3xy + 4x - 2yx^2\right) dx dy.$

 $\left[r + 3r^{3}\cos\theta$ and + 4r^{2}\cos\theta - 2r^{4}\sin\theta\cos^{2}\thetadr de

Y.G.B.

COM

 π

ne,

I.F.G.B.

Com

Madasn

. K.G.B.

K

./

- $\frac{\partial G}{\partial t} = \frac{\partial G}{\partial t} + \frac{\partial G}{\partial t} = \frac{\partial G}{\partial t} + \frac{\partial G}{\partial t} +$
- $= \left(\overline{U} + 0 + 0 + \frac{2}{15} \right) \left(0 + 0 + 0 + \frac{2}{15} \right)$

AS BIGHER

Created by T. Madas

I.C.

Question 19

i.C.B.

.K.C.

The finite region R is bounded by the straight lines with the following equations.

x = 0, y = 0 and y = 1 - x.

Use plane **polar** coordinates, (r, θ) to determine the value of

 $\int_{R} \frac{x+y}{x^2+y^2} \, dx \, dy \, .$

[No credit will be given for workings in other coordinate systems.]

1+

 $\frac{\pi}{2}$

E.A.

Question 20

SM3//IS-COM

I.F.C.B

0

 $\sqrt{4-y^2}$ $\frac{2y}{x^2 + y^2} \, dx \, dy \, .$

Use polar coordinates to find an exact simplified answer for I.

aths com

1.G.D.

4.4

.

nadasma,

Madasn,

12.80

27

The

I.F.C.B.

nn

Created by T. Madas

COM

I.C.

Question 21

Ĉ.P.

I.V.G.B.

The finite region R is bounded by the straight lines with the following equations.

$$y = 0$$
, $x = \frac{1}{2}$, $x = 1$ and $y = x$

 $\int \frac{x}{\left(x^2 + y^2\right)^2} \, dx \, dy \, .$

Use plane **polar** coordinates, (r, θ) to determine the value of

[No credit will be given for workings in other coordinate systems.]

FILT SETTLY THE BLOW	$ \begin{cases} \frac{\partial \omega}{\partial t} \int_{0}^{\infty} \frac{\partial \omega}{\partial t} \int_{0}$
9-2 N Prodes is bry J=1 IN POUD is 1= 340 J=1 IN POUD is 1= 340 (f) 2=2 (f) 2=2 (f) 2=3 (f) 2=3 (f) 2=3 (f) 2=3 (f) 2=3 (f) 2=3 (f) 2=3 (f) 3=3 (f) 3=3	$ \begin{array}{l} \displaystyle = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t_{-}}{2\sin t_{-}} - \frac{\sin t_{-}}{\sin t_{-}} & \Rightarrow t_{-} \\ \displaystyle = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin t_{-}}{2\sin t_{-}} - \frac{\sin t_{-}}{\sin t_{-}} & \Rightarrow t_{-} \\ \displaystyle = \int_{0}^{\frac{\pi}{2}} \frac{1}{2\pi} + \frac{1}{2} \cos t_{-} & \Rightarrow t_{-} \\ \displaystyle = \int_{0}^{\frac{\pi}{2}} \frac{1}{2\pi} + \frac{1}{2} \cos t_{-} & \Rightarrow t_{-} \\ \displaystyle = \int_{0}^{\frac{\pi}{2}} \frac{1}{2\pi} + \frac{1}{2} \cos t_{-} & \Rightarrow t_{-} \\ \displaystyle = \int_{0}^{\frac{\pi}{2}} \frac{1}{2\pi} + \frac{1}{2\pi$

 $\frac{1}{8}(\pi+2)$

·C.A.

1

Question 22

ths.com

N.C.B. Madasm

naths.com

I.F.C.B.

The finite region R is defined as

I.C.p

 $4x \le x^2 + y^2 \le 8x \, .$

Determine the value of

 $-8x + y^2 \leq 0$ $-9y^2 + y^2 \leq (6)$

 $(2-2)^2 + (q^2) \ge 4$

I.C.B.

18.COM

 60π

Y.G.S.

·G

.

2011

Madasn,

I.F.G.B.

- $\begin{array}{l} \text{This contrasts of $\widehat{\sigma}_{1} = \int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0}^{0} \frac$

- $960 \times \frac{\overline{\Gamma(\frac{5}{2})} \, \overline{\Gamma(\frac{5}{2})}}{\overline{\Gamma(4)}} = 960 \quad \frac{\frac{3}{2} \, \overline{\Gamma(\frac{5}{2})} \, \overline{\Gamma(\frac{5}{2})}}{3!} = 240 \left(\overline{\Gamma(\frac{5}{2})}\right)^2$
 - $240 \times \left(\frac{1}{2}1^{1}\left(\frac{1}{2}\right)\right)^{2} = 240 \left(\frac{1}{2}\sqrt{n}\right)^{2} = 60n$

200

Created by T. Madas

COM

Y.C.

Question 23

Use plane **polar** coordinates, (r, θ) to determine the value of

Question 24

Use plane **polar** coordinates, (r, θ) to determine the value of

.Y.G.B

I.F.G.B. III,

I.V.G.B.

 $\int e^{-(x+y)^2} dx \, dy \, ,$

where R is the region in the first quadrant in a standard Cartesian coordinate system.

rdodo = $\frac{1}{\cos^2\theta(1+\frac{\sin^2\theta}{\cos^2\theta})^2}$ db $\frac{ste^2\theta}{(1+t_{un}\theta)^2} d\theta = \frac{1}{2} \int_{0}^{\frac{1}{2}} ste^2\theta (1+t_{un}\theta)^{-2} d\theta$ - (1+ ton 0)] = $= \frac{1}{2} \left[\frac{1}{1+b_{H}b} \right]^{\circ} \frac{1}{\frac{1}{2}}$ Y.G.P.

I.F.G.B.

P.C.S.

mada

Question 25

Smarns com trees

I.V.G.B

Given that μ is a positive constant determine the value of

Ths.com

naths.col

1.4.6.5

1.C.

1.6

nadasma,

I.V.C.B. Madasm

Created by T. Madas

I.F.C.B

Question 26

Smarns.com t.t.

I.F.C.P.

0

Determine an exact simplified value for

 $(x^2 + y^2)e^{-(x^2 + y^2)} dx dy$,

where *R* is the region $x^2 + y^2 > 1$

nadasmaths,

1.1.6.5

21hs.com

 $\frac{2\pi}{e}$

Madasmarns.com

L.C.B. Madasn

I.C.B.

ths.col

I.C.S.

N.G.

nadasma,

Created by T. Madas

madasmaths.com

Question 27

20.	-42s	TSD.	×420.	"asp	10
m.	na.	Created by T. Mad	las 1	. 4211	
"Ch	Question 27	45.0			0-
10	Find the exact simplified valu	e for the following integ	gral.	Con	9
		$\sqrt{16x^2 + 16y^2}$	dx dy	~~~ y.	
In.	J_1	$\int_{-\sqrt{1-y^2}} x^2 + y^2 + 1$	G		2
·	, Cp	· · · · ; ;	,[$\pi(4-\pi)$	5
<u> </u>		Decling at the redon of intration and the structure	α α 1 = π (' 4 - → → ↔	<u> 100</u>	-
20.	(nar	$f : \Pi_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_$	$\frac{3}{\pi} = \pi \left[\frac{4r}{4r} - \frac{4arcbur}{5} \right]$	asm	
"Nar	alson .	$\sum_{j=1}^{2^{n}} \frac{1}{\sqrt{6}} \frac{\sqrt{16} r^{2}}{r^{2} + 1} (r dr db)$	$= \tau \left[(4 - 4x \frac{T_{+}}{4}) \right]$ $= \tau \left(4 - 4x \frac{T_{+}}{4} \right)$ $= \tau \left(4 - \eta \right)$	14	11
	S. 421	$\int_{0}^{\frac{2\pi}{2}} \int_{1}^{1} \frac{4t^{2}}{t^{2} + t} dt d\theta = \frac{1}{2^{2} + t^{2}}$ where are the ensembles used associate to θ from			1
	Con "S	$\begin{split} & \left(\frac{3\pi}{2}-\frac{\pi}{2}\right)\int_{0}^{1}\frac{4t^{2}}{t^{2}t_{1}} \ dt \\ & \pi \int_{0}^{1}\frac{4t^{2}}{t^{2}t_{1}} \ dt \end{split}$		3	
2		$\pi \int_{c}^{1} \frac{4(r^{i}+1)-\psi}{r^{2}+i} dr$.
1.1	· · · · · ·	1.1	· · /		1
	p S	G.	6	B	S
201	in.	nar "	· m	no.	
35	1202	282	190°	"ada.	
12	12 Non	121			2
~	S.C. Ch			1ho	
3		COM	-Up	Con	
· .	1.0	¥).	10		
5 J	n. C	s ·k	2	2, 4	P
- (10 N	- C	B	· · · ·	1
2	no.	Created by T. Mad	las 1	Man.	
10/2	· · · · · · · · · · · · · · · · · · ·	asm.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	435	3
- U.	-0,00	× 20.	- UA		10

Question 28

 \mathcal{Q}_{j}

The finite region R is bounded by the straight lines with the following equations.

x + y = 1, x + y = 2, y = x and y = 0.

Use plane polar coordinates (r, θ) to find the value of

[No credit will be given for workings in other coordinate systems.]

7.7.8
$ \begin{array}{c c} \begin{array}{c} \underbrace{\underline{b}} & \underline{b} & \underline{b} & \underline{b} \\ \hline & & \underline{c} & \underline{c} \\ \hline & & \underline{c} & \underline{c} \\ \hline & & \underline{c} \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$
$\iint_{\xi} \Delta_{\xi} \frac{g(x+g)^{2}}{2^{2}} dx dy = \int_{\theta=0}^{\pi} \int_{-1}^{1} \int_{\frac{1}{2^{2}}} \frac{g(x+g)^{2}}{2^{2}} \frac{g(x+g)^{2}}{2^{2}} dx dy$
$=\int_{\theta=0}^{\theta=\frac{\pi}{2}}\int_{-\frac{\pi}{cds}}^{\frac{\pi}{cds}}\frac{1}{cds}\frac{\frac{1}{cds}}{cds}\frac{1}{cds}\frac$
$= \int_{\Theta_{10}}^{\frac{1}{12}} \frac{1}{2\pi} \frac{2mb(acd+3mb)^{1}}{acd^{1}} \left[\frac{4}{(acd+4mb)^{2}} - \frac{1}{(acd+4mb)^{2}} \right] d\theta$
$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{3N \Theta (\cos \theta - \sin \theta)^2}{(\cos \theta + 1)^2} \left[\frac{1}{(\cos \theta + 1)^2} d\theta \right] = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{3N \Theta (\cos \theta - \sin \theta)^2}{\cos \theta} d\theta$
$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \left[\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \int_{0}^{\frac{\pi}{2}}$

 $\frac{3}{4}$

Question 29

The region R on the x-y plane is defined by the inequalities

 $1 \le x^2 + y^2 \le 5$ and $\frac{1}{2}x \le y \le 2x$.

Show clearly that

I.C.B. III.

I.V.G.B.

Y.G.S

N.

 $\int_{R} (x+y) \, dx \, dy = \frac{2}{15} \Big(25 - \sqrt{5} \Big).$

proof

COM

.G.D.

1

2017

17202

I.F.G.B.

 $\begin{aligned} \partial_{\theta} b_{\theta} \partial_{\theta} (\partial_{\theta} u \partial_{\theta} u \partial_{\theta} u)^{2} = \frac{1}{2} \left[\frac$

ろ

Question 30

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

This implies that $\phi^2 - \phi - 1 = 0$, $\phi = \frac{1}{2} (1 + \sqrt{5}) \approx 1.62$.

It is asserted that

$$I = \int_{-\infty}^{\infty} e^{-x^2} \cos\left(2x^2\right) \, dx = \sqrt{\frac{\pi\phi}{5}} \, .$$

By considering the real part of a suitable function, use double integration in plane polar coordinates to prove the validity of the above result.

You may assume the principal value in any required complex evaluation.

proof

THE CYLINGE AND A CHART AND A TASTRATISCOTT I. Y. C.P. TRACASTRATISCOTT I. Y. C.P. TRACASTRATISCOTT I. Y. C.P. TRACASTRATISCOTT I. Y. C.P. TRACASTRA

Question 1

K.G.B. Mal

I.C.B.

Find the value of

where Ω is the region inside the cylinder with equation

 $x^2 + y^2 = 4, \ -2 \le z \le 2$

 $\int rz^2 dV$,

In this question use cylindrical polar coordinates (r, θ, z) .

Y.G.B.

COM

 $\frac{256\pi}{9}$

Com

M2(12)

I.C.B.

.G.5.

6

Question 2

I.C.B.

I.F.G.B

Find the value of

(x+y+z) dx dy dz,

 $x^2 + y^2 = \frac{1}{4}, \ 0 \le z \le 4$.

COM

 2π

+12 drale dz

F.C.P.

.G.D.

1+

nadasn.

Y.C.

where V is the region inside the cylinder with equation

Question 3

I.G.p

I.V.G.B.

Find in exact form the volume enclosed by the cylinder with equation

$$x^2 + y^2 = 16, \ z \ge 0,$$

and the plane with equation

z = 12 - x.

S,

5

.

11.202ST

 192π

F.G.P.

Question 4

COM

I.V.G.P.

I.C.B.

Find the volume of the region bounded by the cylinder with equation

 $x^2 + y^2 = 4,$

and the surfaces with equations

 $z = x^2 + y^2$ and z = 0.

Y.C.B.

27

COM

 8π

.G.D.

1+

.

1212.sm

The,

I.F.G.B.

Com

Madasn

Created by T. Madas

COM

R.

Question 5

>

Find the volume of the paraboloid with equation

 $z = 1 - x^2 - y^2, \ z \ge 0.$

naths.com

SMATHS.COM

I.G.S.

Question 6

I.G.B.

I.V.G.B.

The finite region Ω is enclosed by the cylinder with Cartesian equation

$$x^2 + y^2 = 1, \ -1 \le z \le 1.$$

dx dy dz.

 $\left(1+z^3\right)e^{x^2+y^2}$

Determine an exact simplified value for

9	
$2\pi[e-1]$	
- Sn	
$\int_{\mathfrak{Q}} \frac{(1+2^{2})e^{2^{2}+y^{2}}dV}{(1+2^{2})e^{2^{2}+y^{2}}dV} \qquad \left\{ \begin{array}{c} \mathcal{L}: \mathfrak{A}^{1}+y^{2} \in I \\ (\leq 2 \leq I \end{array} \right\}$	
$=\int_{\mathcal{X}} (l_{1} \cdot 2^{3}) e^{\frac{1}{2} t \frac{1}{2} t^{2}} dx dy dz$	
$= \int_{1}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (r_{4} s_{3}) e^{s_{2}} (r dr d\theta ds) \qquad \qquad$	
$\int_{2r-1}^{1}\int_{0+0}^{2\pi}\int_{r=0}^{1}\frac{(1+2^{2r})re^{r^{2}}}{2r}drd\theta dz$	
$\int_{\frac{1}{2}}^{1} \int_{0}^{2\pi} \int_{0}^{1} \frac{1}{2r} e^{r^{2}} dr d\theta dz$	
$\left[\int_{2^{r_0}}^{1} \left[d_2\right] \left[\int_{q_{r_0}}^{2^{r_1}} \left[d\theta\right] \left[\int_{r_{r_0}}^{1} 2re^{r^2} dr\right]\right]$	
$= l \times 2\pi \times \left[e^{r^2} \right]_{o}^{l}$	
$= 2\pi \left[e^{-1} \right] \pi c$	
	ĺ

.C.P.

nadasn.

F.G.B.

Created by T. Madas

D

Question 7

The Com

Smaths.com

I.F.G.B.

2

The finite region V is enclosed by the cone with Cartesian equation

$$=\sqrt{x^2+y^2}, \ 0 \le z \le 6.$$

 $\sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz \, .$

Determine an exact simplified value for

I.G.B.

 $216\sqrt{2}\pi$

me,

00

K.C.F.

 $\int_{2=1}^{2\pi} \left(\int_{1}^{2\pi} \left(\int_{2}^{2\pi} \int_{2}^{2\pi} \int_{1}^{2\pi} \int_{2}^{2\pi} \int_{2}^{2\pi}$ $\int_{2-r}^{6} \left[\sqrt{2^{2}r^{2}z} \right]_{2-r}^{2+6} dr d\theta = \int_{6\pi0}^{2\pi} \int_{r\infty}^{6} \sqrt{2^{2}r^{2}} - \sqrt{2^{2}r^{2}} dr d\theta$ $\left[2\sqrt{2}\left[r^{3}-\frac{1}{4}\sqrt{2}\left[r^{6}\right]_{0}^{6}d\theta\right]=\int_{0}^{2\pi}432\sqrt{2}-32\sqrt{2}d\theta=\int_{0}^{2\pi}108\sqrt{2}d\theta$

 $\int_{2-\varepsilon}^{\varepsilon} \int_{1-\varepsilon}^{1-\varepsilon} \sqrt{2t^2} dr dz d\theta = \int_{2-\varepsilon}^{2-\varepsilon} \left(\frac{1}{2}(2t^3)\right)_{r=\varepsilon}^{r=\varepsilon} dz d\theta$ $= \int_{-\pi}^{\pi} \int_{0}^{6} \frac{1}{\sqrt{2}} z^{2} dz d\theta = \int_{0}^{2\pi} \left[\frac{1}{\sqrt{2}} z^{2} z^{4} \right]_{0}^{6} d\theta = \int_{0}^{2\pi} \frac{1}{\sqrt{2}} \sqrt{2} z^{4} d\theta$

Vactorial = a

216/27

COM

Com

I.C.S.

4.6

1

COM

In,

Question 8

Ka

The height z, of a cooling tower, is 120 m.

The radius r m, of any of the circular cross sections of the cooling tower is given by the equation

 $r = \sqrt{625 + \frac{1}{4}(z - 90)} \; .$

Use cylindrical polar coordinates (r, θ, z) , to find the volume of the tower.

 138000π

HOWATTINE AS A LOOWING OF RE V= J (dv T AS Y IF NECESSAR $\Gamma = \sqrt{625 + \frac{1}{4}(2-40)^{21}}$ V= [I dedydz V= JI rordodz $V = \pi \int_{-\infty}^{\infty} (4)^2 d\chi = \pi \int_{0}^{120} e^{2\xi} + \frac{1}{4} (x - q_0)^2 d\chi = \pi \left[e^{2\xi} x + \frac{1}{12} (x - q_0)^2 \right]_{0}^{2_0}$ $= \pi \left[\left(\zeta \zeta \zeta \chi_{12,0} + \frac{1}{12} \chi_{23,0}^{2} \right) - \left(\sigma + \frac{1}{12} (-q \sigma)^{2} \right) \right] = \pi \left[\mathcal{T} \int_{-\infty}^{\infty} d\sigma + 2\chi_{23,0} + 6\pi \sigma \int_{-\infty}^{\infty} d\sigma \right]$ r drdzd0 = 1380007 to Before $\int_{2\pi}^{12\pi} \left(\frac{1}{2} I^2 \right)^{\frac{1}{2}} e^{-\frac{1}{2} \sqrt{622} + \frac{1}{6} (2 \cdot 6)^{\frac{1}{2}}} d2 d\theta$ $V = \int_{\theta=0}^{2\pi} \int_{\theta=0}^{\infty} \frac{1}{2} \left(625 + \frac{1}{2} \left(2 - 90\right)^{2} \right) dz d\theta$ $\int \frac{d^{2}}{2} \int \frac{d^{2}}{2}$ $V = \frac{1}{2} \times 2\pi \times \left[6252 + \frac{1}{12} (2-9b)^3 \right]_{0}^{120}$ $V = \pi \left[\left(625 \times 120 + \frac{1}{12} \times 30^3 \right) - \left(\frac{1}{12} \left(-90 \right)^3 \right) \right]$ V = 71 [75000 + 2250 + 60750] V = 138000 TT

Question 9

I.Y.C.B. Madasmaths.Com

Sinalis Com I. K. G.B.

I.V.G.B.

Use cylindrical polar coordinates (r, θ, z) to find the volume of the region defined as

I.V.C.B. Madasman $x^{2} + y^{2} + (z+4)^{2} \le 25, z \ge 0.$

1.6.5.

I.C.

/

madasm.

 $\frac{14}{3}\pi$

 $(1+2xy) \ dV,$

COM

F.C.B.

3

nadasn.

Question 10

I.F.G.P.

Find the value of

where V is the finite region enclosed by the surface with Cartesian equation $z = 1 - x^2 - y^2, \ z \ge 0.$ $\frac{\pi}{2}$ 0)][rdodod; I.G.p N = Edecleda

Question 11

Find in exact form the volume of the solid defined by the inequalities

 $x^2 + y^2 \le 4$, $x \ge 0$, $y \ge 0$ and $0 \le z \le 6 - xy$.

Question 12

F.G.B.

I.C.B.

Find the volume of the finite region bounded by the surfaces with Cartesian equations

 $z = 13 - 4x^2 - 4y^2$ and $z = 1 - x^2 - y^2$

2=1-12 Idu drdbda

 24π

Question 13

A scalar field F exist inside the cylinder with equation

 $x^2 + y^2 = 1, \ 0 \le z \le 4.$

Given further that

$$F(x, y, z) \equiv 2 + xy + 3yz^2$$

evaluate the integral

F.G.B.

I.G.B.

F dV,

where V denotes the region enclosed by the cylinder

2*+g ² =1,2+4	∯ 2+ 2g + 3y2 dv =
	$\label{eq:response} \begin{array}{l} \overline{H} \in \mathcal{X} \neq \mathcal{Y} \text{observed} \overline{H} \in \mathcal{H} \text{observed} \overline{H} \text{observed} \overline{H} \in \mathcal{H} \text{observed} \overline{H} \overline{H} \text{observed} \overline{H} H$
2+421,200	= ∰ 2+3yz dzdydz
	Switch land cyclopedicke Rishks
$(F(x_{ij}z) = z + x_{ij} + x_{ij}^2z)$	$= \int_{\mathbb{R}^{\infty}} \int_{\mathbb{R}^{\infty}} \int_{\mathbb{R}^{\infty}} \left[2 + 3(\Gamma Sm\Theta)(z) \right] \left(\Gamma dr d\Theta dz \right)$
	$= \int_{B^{0}}^{t} \int_{\Theta \in O}^{S^{0}} \int_{P^{0}}^{1} (2r + 3r^{2} \Xi s \tilde{M} \theta) dr d\theta dz = \int_{B^{0}}^{1} \int_{\Theta \in O}^{1} \int_{P^{0}}^{1} (2r + 3r^{2} \xi (\frac{1}{2} - \frac{1}{2} \cos \theta)) dr d\theta$
	$ \begin{array}{c} \left(\int_{-\infty}^{\infty} $
	$= \Im \left[\int_{2^{-\alpha}}^{4} \int_{r^{\alpha} \sigma}^{1} \left(2r + \frac{2}{2} r^{2} \right) dr d\epsilon = \Im \left[\int_{2^{\alpha} \sigma}^{4} \left(r^{\alpha} r \frac{2}{\sigma} r^{\alpha} 2 \right)_{r^{\alpha}}^{1} d\epsilon \right]$
	$= 2\pi \int_{z=0}^{\frac{1}{2}} \left[+\frac{1}{8}z - dz \right] = 2\pi \left[-\frac{1}{2} + \frac{3}{4}z^{2} \right]_{0}^{\frac{1}{2}}$

ŀ.G.B.

G

202.01

 14π

F.C.P.

at [(4+3)-(0)] = 14T

Question 14

Use cylindrical polar coordinates (r, θ, z) to evaluate

where V is the region defined as

 $x^2 + y^2 \le y \,,$

 $x^2 + y^2 + z^2 = 1.$

contained within the sphere with equation

Y.G.B

I.C.B.

I.V.G.B.

ŀ.G.p.

I.G.B.

 $\frac{4}{3}$

1.G.G.

4.4

Question 15

F.G.B.

Y.G.B.

The finite region Ω is defined by the inequalities

 $x^2 + y^2 \le 1$ and $|z| \le \sqrt{x^2 + y^2}$.

Use cylindrical polar coordinates to evaluate

	the second second
	munin
भूम (hautsel 21 houzes (nothasticn aft) Otheratel and alevat aft a shall an UN C=-1 d. 2=1	
(Gaz² du	2 Ling
SZ SWING WILDRIGH POURS	aty is
$2\int_{\Theta^{\infty}}^{\infty}\int_{\Gamma^{\infty}}^{\infty}\int_{Z^{\pi^{0}}}^{Z=\Gamma}GQ^{2} rdrd\theta dz$	Double CONF IN C.P.C
1 SHUMBY ABOUT & BELOW THE D-Y PLANT	$\frac{z^2}{z^2} = r^2$ $\frac{z}{z} = r$
$= 12 \int_{\Theta_{100}}^{\infty} \int_{\Omega_{20}}^{\infty} \left(\frac{1}{\xi_{=0}} \left(\Gamma_{000} \Theta \right)^2 \right)^2 dr d\theta dz$	GYUNDK2. IN C.#.C F≈1
$= 12 \int_{\theta=0}^{2\pi} \int_{r_{20}}^{1} \int_{\theta=0}^{r} r^{2} a a^{2} \theta dr d\theta dz$	
$= \theta_{0}^{2} \eta_{0}^{2} \left[\theta_{100}^{2} \Xi_{11}^{2} \right]_{0=0}^{1} \left[\eta_{0}^{2} \eta_{0}^{2} \Xi_{11}^{2} \right]_{0=0}^{2} \left[\theta_{10}^{2} \eta_$	$= lz \int_{\theta=0}^{2\pi} \int_{r_{\infty}}^{l} r^{4} \cos^{2} \theta dr d\theta$
$= 12 \int_{\theta=0}^{2\pi} \left[\frac{1}{2} r^{4} \cos^{2} \theta \right]_{rw}^{r} d\theta = 12 \int_{\theta=0}^{1} \frac{1}{2} r^{4} \cos^{2} \theta d\theta = 12 \int_{\theta=0}^{1} \frac{1}{2} r^{4} \sin^{2} \theta d\theta = 12 \int_{\theta=0}$	820 7.0036 98 - 21
$= 12 \int_{\theta=0}^{2\pi} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \cos 2\theta \right) d\theta = \frac{\varepsilon}{\varepsilon}$) 1 + (0520- d0
$=\frac{c}{5} \times 2\pi = \frac{12\pi}{5}$	

ŀ.C.B.

nadasn.

COM

 $\frac{12\pi}{5}$

Question 16

I.V.G.B. Madas

COM

I.V.G.B

The finite region V is defined by the inequalities

 $x^{2} + y^{2} + z^{2} \le 1$ and $z \ge 1 - \sqrt{x^{2} + y^{2}}$.

Use cylindrical polar coordinates to evaluate

Y.G.B

200

Com

 $\frac{\pi}{12}$

2017

Inadas n

I.F.C.P.

4.65

6

.

Created by T. Madas

2017

R

Question 17

I.F.G.B.

I.C.B.

I.C.B.

I.C.P.

Use cylindrical polar coordinates (r, θ, z) to show that the volume of a right circular cone of height h and base radius a is

πa²h

112/251

 $= \frac{m_{k}^{2}}{\sum_{k=0}^{k} \frac{1}{k^{k}}} \int_{0}^{k} \frac{x^{k}}{k^{k}} dx = \frac{m_{k}^{2}}{k^{k}} \left[\frac{1}{3} \frac{x^{k}}{k^{k}} \right]_{0}^{k}$ $= \frac{m_{k}^{2}}{k^{k}} \frac{1}{3} \frac{1}{k^{k}} = \frac{1}{3} \frac{m_{k}^{2}}{k^{k}} \int_{0}^{k} \frac{1}{k^{k}} \frac{1}{k^{$

(rdrdde = ar (st)

I.F.G.B.

M2(12

3

1.4

proof

r dr dz

 $\Im = \begin{bmatrix} \frac{h}{2} \frac{a_{z}^2 z}{h^2} & dz \end{bmatrix}$

Created by T. Madas

0

Question 18

a) Determine with the aid of a diagram or a Jacobian matrix an expression for the area element in plane polar coordinates, (r, θ) .

A cylinder of radius $\frac{1}{2}a$ is cut out of a sphere of radius a.

b) Find a simplified expression for the volume of the cylinder, given that one of its generators passes through the centre of the sphere

A COHTYM NERHOD B (JACOBIAN) $\therefore V = 4 \iint z dz dy = 4 \iint 4 \sqrt{a^2 - x^2 - y^2} dz$ $ady = \frac{\partial(a_1y)}{\partial(r_1\theta_1)}$ or do $\begin{cases} x = routh \\ y = routh \\ y$ 37 38 dr de $V = 4 \begin{bmatrix} \frac{\pi}{2} \end{bmatrix}$ $\int_{a=r^{2}}^{rawg\theta} r \, d\theta d\theta$ 37 15 7 × 187 × 78 × 48 $\left(\left(\frac{\partial t}{\partial t} - \frac{\partial t}{\partial t}\right)^2 + \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$ $\frac{dz}{dy} = \begin{vmatrix} \cos\theta & \sin\theta \\ -\tan\theta & \cos\theta \end{vmatrix} dr d\theta$ $V = 4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr d\theta dr d\theta$ 2- 02 + 9 + 42 = 95 3A= 1 (r+5r)280 - 1 r280 $x^2 + y^2 = ax$ $V = 4 \int_{-1}^{\frac{\pi}{2}} \left[-\frac{1}{3} (q^2 - l^2)^{\frac{3}{2}} \right]_{loss}^{loss} d\theta$ $= \frac{1}{2} \partial \theta \left[(l + \partial t)^2 - t^2 \right]$ dady = ['reaso -(-r.sinto)]dr dQ r= a (ross $= \frac{1}{2} \delta \theta \left[r + \delta r - r \right] \left[r + \delta r + r \right]$ $dx dy = r \left[\Theta \hat{r} a + \Theta \hat{r} \omega \right] r = y b r d \theta$ P = aus9 $\label{eq:point} \bigvee = -\frac{\mu}{3} \left[\int\limits_{-\infty}^{\frac{\pi}{2}} \left(q^2 - q^2 \cos^2 \varphi \right)^{\frac{2}{2}} - q^2 \right] \ d\theta$ LUUTS F: O≤F≤acos8 C: O≤F≤E 7 20 x 20x (2r + 8r d = r d r d =1 57 50 + £872 56 $V = -\frac{L}{3} \left[\int_{-\infty}^{\frac{\pi}{2}} d^{3} (j - \cos^{2}\theta)^{\frac{\pi}{2}} - d^{3} d\theta \right]$ $\Theta = -\theta^{\mu} a \int_{0}^{\frac{\pi}{2}} h e^{\frac{\pi}{2}} e^{-\frac{\pi}{2}} d\theta$ $V = -\frac{6}{3}d^3 \int_{0}^{\frac{\pi}{2}} \sin\theta (1-\cos^2\theta) - 1 d\theta$ $V = -\frac{4}{3}q^3 \left[\frac{\pi}{2} \sin\theta - \sin\theta \sin^2\theta - 1\right] d\theta$ $\frac{\pi}{2}\left[\theta - \theta^{\delta} 2\omega \frac{1}{\delta} + \theta 2\omega - \int^{\delta} g \frac{y}{\delta} = \nabla$ BHUNY THE OLY PL $\bigvee = -\frac{3}{4} d^3 \left[\left(0 - 0 - \overline{E} \right) - \left(-1 + \frac{1}{2} \right) \right]$ THE IS GUAL VOLUME FOR 230 $V = -\frac{4}{3}q^2 \left[-\frac{\pi}{2} + \frac{2}{3} \right]$ SO CAULTATE TO VOLCALL DIR 7 MUCTUREST THE ANALONY $V = \frac{4q^3}{3} \left(\frac{\pi}{2} - \frac{2}{3} \right)$ $V = \frac{4}{18}q^3 [3\pi - 4]$ 203 31-47

 $dxdy = r dr d\theta$,

 $V = \frac{2}{9}[3\pi - 4]$

Question 19

E,

I.F.G.B

The region V is contained by the paraboloid with Cartesian equation

$$y = x^2 + z^2$$
, $0 \le y \le 4$.

 $\sqrt{x^2 + z^2} \, dx \, dy dz \, .$

Determine an exact simplified value for

2

 $\int_{V} (x_{1}^{2}z^{2})^{\frac{1}{2}} dx_{1}dy_{1}dz_{2} = \int_{a_{1}}^{a_{2}} \int_{a_{1}}^{a_{2}} \int_{y=x_{1}^{2}z_{2}}^{y=a_{1}} \frac{dy_{1}}{dy_{2}} dy_{2} dz_{3} dy_{4}dz_{4}$ $\int_{\mathcal{X}}^{\mathcal{A}_{\mathcal{E}}} \left(\underbrace{(2^{\ell}+2^{2})^{\frac{1}{2}}}_{\mathcal{Y}} \right)^{\frac{1}{2}} \underbrace{\int_{\mathcal{Y}=\mathcal{X}^{2}+2^{2}}^{\mathcal{Y}=4}}_{\mathcal{Y}=\mathcal{X}^{2}+2^{2}} dx dz$ $4 \left(\mathfrak{x}^{2} + \mathfrak{z}^{2} \right)^{\frac{1}{2}} - \left(\mathfrak{x}^{2} + \mathfrak{z}^{2} \right)^{\frac{1}{2}} \quad d_{\mathfrak{X}} \ d_{\mathfrak{Z}}.$ $(4 - a^2 - z^2)(a^2 + z^2)^{\frac{1}{2}} da dz$ ALTEONATIVE 3 (1 - (2 - (r drdl)) $\int_{r^{\infty}}^{re_{2}} 4t^{2} - t^{4} dt d\theta = \left(\int_{0}^{2\pi} 1 d\theta \right) \left(\int_{0}^{2} 4t^{2} t^{4} dt\right)$ $\Pi_{-\frac{21}{21}} = \left[\frac{2\varepsilon}{2} - \frac{\varepsilon}{2} \right] \pi c = \left[\frac{1}{2} \left[\frac{2\eta_{1}^{2}}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{2\eta_{1}^{2}}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{2\eta_{1}^{2}}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{\varepsilon_{1}}{2} \right]_{1} \pi c = \frac{1}$

. G.S.

1.

Com

1120251

I.F.G.B.

 $\frac{128}{15}\pi$

Question 20

1.Y.G.B

I.G.B.

I.C.P.

Use cylindrical polar coordinates, (r, θ, z) , to find the exact volume of the ellipsoid with Cartesian equation

 $x^2 + y^2 + 3z^2 = 1.$

3

2

 $V = \frac{4\pi}{3\sqrt{3}}$

V≈ 8 1 dv

 $\begin{bmatrix} z & \sqrt{t(x, x, y)} \\ z & x \end{bmatrix} dz dx dy$ $\begin{bmatrix} z \\ z \end{bmatrix}_{z = x}^{z = \sqrt{t(x, x, y)}} dz dy$ $\sqrt{t(x, x, y)} dz dy$

 $\sqrt{\frac{1}{5}(1-r^2)} r dr d\theta$ $\frac{1}{\sqrt{3}} r (1-r^2)^{\frac{1}{2}} dr d\theta$

 $\begin{array}{c} \Rightarrow & \bigvee_{\sigma} \left[\frac{g}{4S} \right]_{\sigma=0}^{\sigma} d_{\sigma} \left[\frac{1}{2} \right]_{\sigma}^{T} \left[\frac{1}{2} \right]_{\sigma}^{T} \left[\frac{1}{2} \right]_{\sigma}^{T} d_{\sigma} \left[\frac{1}{2} \right]_{\sigma}^{T} \left[\frac{1}{2}$

I.F.G.B.

 $\implies f = \frac{\sqrt{2}}{8} \times \frac{5}{11} \times \frac{7}{1} \left[(f-L_5)_{\frac{3}{2}} \right]_{0}^{1}$

 $\Rightarrow \forall z = \frac{4\pi}{3\sqrt{3}} \left[1 - p \right]$ $\Rightarrow \forall z = \frac{4\pi}{3\sqrt{3}} / z$

Question 21

·G,

. K.G.

The finite region V is bounded by surfaces with Cartesian equations

$$z^4 = 4(x^2 + y^2), \ z \ge 0$$
 and $x^2 + y^2 + z^2 = 3, \ z \ge 0$

Use cylindrical polar coordinates (r, θ, z) to show that the volume of V is

 $\frac{2\pi}{15} \left(15\sqrt{3} - 16\sqrt{2} \right).$

proof

 $4 q(x^2+y^2) = 2^4$ $x^2+x^2+z^2=3$

 $= \int_{\Theta_{\mathcal{D}}}^{\infty} \left[-\frac{1}{3} \partial_{\tau} \partial_{\tau}^{3} - i \partial_{\tau}^{2} \frac{1}{3} \partial_{\tau}^{2} \right]_{\mathcal{D}}^{-1} \partial_{\tau} \frac{1}{3} \partial_{\tau}^{2} - \frac{1}{3} \partial_{\tau}^{2} \partial_{\tau}^{-1} \partial_{\tau}^{2} \frac{1}{3} \partial_{\tau}^{2} \partial_{\tau}^{-1} \partial_{\tau}^{2} \partial_{\tau}$

 $= 2\pi \left[\sqrt{5} - \frac{16}{15} \sqrt{2} \right] = \frac{2\pi}{15} \left[15\sqrt{3} - 16\sqrt{2} \right]$

Question 22

24

i.G.B.

Y.C.B.

1

Use cylindrical polar coordinates, (r, θ, z) , to find the exact volume of the region defined by the following Cartesian inequalities

 $z \le x^2 + y^2$, $x^2 + y^2 \ge 1$ and $z \le 6$.

7 = 3244

 $x^2+y^2=1$, $z \leq 6$

 200π

3

r (r dr do dz)

F.G.B.

Question 23

î.p

I.C.B.

I.C.B.

Use cylindrical polar coordinates, (r, θ, z) , to find the volume of the region defined by the following Cartesian inequalities

 $z \ge 4 - x^2 - y^2$, $z \le 4 + x^2 + y^2$ and $x^2 + y^2$

 $V = 16\pi$

r (4-r²) dr dit

 $\int_{100}^{2} R^{3} dr d\theta$ $\left(\frac{1}{2}r^{4}\right)_{100}^{2} d\theta$

F.C.P.

N= 120

2=4-2-4

dv= rdrobdz