Jordan-Gauss

Elimination

Question 1
Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\left(\begin{array}{rrr}
1 & 1 & -3 \\
2 & 1 & 4 \\
5 & 2 & 16
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
4
\end{array}\right)
$$

V \square $, x=-10, y=19, z=1$

Question 2

$$
\begin{aligned}
x+3 y+5 z= & 6 \\
6 x-8 y+4 z & =-3 \\
3 x+11 y+13 z & =17
\end{aligned}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\mathrm{V}, \quad y_{1}, x=-\frac{1}{2}, y=\frac{1}{2}, z=1
$$

\square

Question 3

$$
\begin{aligned}
x+5 y+7 z & =41 \\
5 x-4 y+6 z & =2 \\
7 x+9 y-3 z & =1
\end{aligned}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\square, x=-2, y=3, z=4
$$

Question 4

$$
\begin{aligned}
4 x+2 y+7 z & =2 \\
10 x-4 y-5 z & =50 \\
4 x+3 y+9 z & =-2
\end{aligned}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
\square, x=4, y=0, z=-2
$$

\square

Question 5

$$
\begin{array}{r}
x+3 y+2 z=14 \\
2 x+y+z=7 \\
3 x+2 y-z=7
\end{array}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Solve the above simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 7

$$
\begin{array}{r}
2 x+y-z=3 \\
x+3 y+z=2 \\
3 x+2 y-3 z=1
\end{array}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Question 8
Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
x=3, y=-1, z=0
$$

Question 9

$$
\begin{array}{r}
x+3 y+2 z=13 \\
3 x+2 y-z=4 \\
2 x+y+z=7
\end{array}
$$

Solve the above system of simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

Solve the following simultaneous equations by manipulating their augmented matrix into reduced row echelon form.

$$
x=2, y=-1, z=4
$$

Created by T. Madas

Question 11

$$
\begin{aligned}
x+5 y+7 z & =41 \\
5 x-4 y+6 z & =2 \\
7 x+9 y-3 z & =k
\end{aligned}
$$

Use the Jordan Gauss algorithm to determine the solution of the above system of simultaneous equations, giving the answers in terms of the constant k.

Question 1

$$
\begin{array}{r}
x+y+2 z=2 \\
2 x-y+z=-2 \\
3 x+y+4 z=2
\end{array}
$$

Show, by reducing the augmented matrix of the above system of equations into row echelon form, that the solution can be written as

$$
x=-t, \quad y=2-t, \quad z=t
$$

where t is a scalar parameter.

Question 2

$$
\begin{array}{r}
x+2 y+z=1 \\
x+y+3 z=2 \\
3 x+5 y+5 z=4
\end{array}
$$

Show that the solution of the above simultaneous equations is

$$
x=3-5 t, \quad y=2 t-1, \quad z=t
$$

where t is a parameter.
\square , proof

Question 3

$$
\begin{aligned}
& 3 x-2 y-18 z=6 \\
& 2 x+y-5 z=25
\end{aligned}
$$

Show, by reducing the above system of equations into row echelon form, that the solution can be written as

$$
\mathbf{r}=8 \mathbf{i}+9 \mathbf{j}+\lambda(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}),
$$

where λ is a scalar parameter.

Question 4

$$
\begin{aligned}
x+y-2 z & =2 \\
3 x-y+6 z & =2 \\
6 x+5 y-9 z & =11
\end{aligned}
$$

Show, by reducing the above equation system into row echelon form, that the consistent solution of the system can be written as

$$
x=1-t, \quad y=3 t+1, \quad z=t
$$

where t is a scalar parameter.

Question 5

$$
\begin{aligned}
3 x-y-5 z & =5 \\
2 x+y-5 z & =10 \\
x+y-3 z & =7
\end{aligned}
$$

Show, by reducing the above system into row echelon form, that the consistent solution of the system can be written as
\square , proof

Question 6

$$
\begin{array}{r}
x+5 y+2 z=9 \\
2 x-y+2 z=4
\end{array}
$$

Show, by reducing the above system of equations into row echelon form, that the solution can be written as

$$
x=A \lambda+B, y=C \lambda+D, x=E \lambda+F
$$

where A, B, C, D, E and F are integers, and λ is a scalar parameter.

$$
\mathrm{V}, x=12 \lambda+7, y=2 \lambda+2, z=-11 \lambda-4
$$

Question 7

$$
\begin{aligned}
& x+y+z=0 \\
& 2 x+4 z+w=-1 \\
& 3 x+2 y+4 z+w=0
\end{aligned}
$$

Find a general solution of the above system of simultaneous equations.

Created by T. Madas

Question 1
Use Cramer's rule to solve the following system of simultaneous equations.

$$
\begin{aligned}
3 x+y+2 z & =11 \\
x+y+z & =4 \\
x-y+2 z & =9
\end{aligned}
$$

No credit will be given for using alternative solution methods.
\square $, x=2, y=-1, z=3$

$\Delta_{z}=\left|\begin{array}{ccc}3 & 1 & 11 \\ 1 & 1 & 4 \\ 1 & -1 & 9\end{array}\right|$

$=3(+13)-(+5)+11(-2)$ $=\underline{12}$

- Hence we thote
$a=\frac{\Delta_{a}}{\Delta}=\frac{8}{4}=2$
$y=\frac{\Delta y}{\Delta}=\frac{-4}{4}=-$
$z=\frac{\Delta z}{\Delta}=\frac{12}{4}=3$

Created by T. Madas

Question 2

Use Cramer's rule to solve the following system of simultaneous equations.

$$
\begin{aligned}
3 x-y+z & =7 \\
x+y+2 z & =7 \\
x+3 y+z & =0
\end{aligned}
$$

No credit will be given for using alternative solution methods.

Question 3

$$
\begin{array}{r}
x+2 y+3 z=5 \\
3 x+y+2 z=18 \\
4 x-y+z=27
\end{array}
$$

Solve the above system of the simultaneous equations ...
a) ... by manipulating their augmented matrix into reduced row echelon form.
b) ... by using Cramer's rule.
\square

$$
x=6, y=-2, z=1
$$

\square

Question 4

$$
\begin{aligned}
7 x+2 y-3 z & =30 \\
3 x+4 y-5 z & =14 \\
5 x-3 y+4 z & =18
\end{aligned}
$$

Solve the above system of the simultaneous equations by using Cramer's rule.
\square $x=4, y=-2, z=-2$

WRTRE THE SHETOM WN MATROX FieM $\underbrace{\left(\begin{array}{ccc} 7 & 2 & -3 \\ 3 & 4 & -5 \\ 5 & -3 & 4 \end{array}\right)}_{A}\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 30 \\ 14 \\ 18 \end{array}\right)$ CAWIATE All THE RELNADT DETTRMINADIS $\begin{aligned} \cdot \operatorname{det} A=\left\|\begin{array}{ccc} 7 & 2 & -3 \\ 3 & 4 & -5 \\ 5 & -3 & 4 \end{array}\right\| & =7\left\|\begin{array}{cc} 4 & -5 \\ -3 & 4 \end{array}\right\|-2\left\|\begin{array}{cc} 3 & -5 \\ 5 & 4 \end{array}\right\|-3\left\|\begin{array}{cc} 3 & 4 \\ 5 & -3 \end{array}\right\| \\ & =7 \times 1-2 \times 37-3[-29)=20 \\ \cdot \operatorname{det} A_{2}=\left\|\begin{array}{ccc} 30 & 2 & -3 \\ 14 & 4 & -5 \\ 18 & -3 & 4 \end{array}\right\| & =30\left\|\begin{array}{cc} 4-5 \\ -3 & 4 \end{array}\right\|-2\left\|\begin{array}{cc} 14 & -5 \\ 18 & 4 \end{array}\right\|-3\left\|\begin{array}{cc} 14 & 4 \\ 18 & -3 \end{array}\right\| \\ & =30 \times 1-2 \times 146-3(-114)=80 \end{aligned}$ $\text { - } \begin{aligned} \operatorname{det} \Delta_{y}=\left\|\begin{array}{ccc} 7 & 30 & -3 \\ 3 & 14 & -5 \\ 5 & 18 & 4 \end{array}\right\| & =7\left\|\begin{array}{ll} 14 & -5 \\ 18 & 4 \end{array}\right\|-30\left\|\begin{array}{cc} 3 & -5 \\ 5 & 4 \end{array}\right\|-3\left\|\begin{array}{cc} 3 & 14 \\ 5 & 15 \end{array}\right\| \\ & =7 \times 146-30 \times 37-3(-16)=-40 \end{aligned}$ - $\operatorname{det} A_{z}\left\|\begin{array}{ccc}7 & 2 & 30 \\ 3 & 4 & 14 \\ 5 & -3 & 18\end{array}\right\|=7\left\|\begin{array}{cc}4 & 14 \\ -3 & 18\end{array}\right\|-2\left\|\begin{array}{cc}3 & 14 \\ 5 & 18\end{array}\right\|+30\left\|\begin{array}{cc}3 & 4 \\ 5 & -3\end{array}\right\|$ $=7 \times 114-2(-16)+30(-29)=-40$	

- thuce we thout
. $x=\frac{d \in T A x}{d \in T A}=\frac{80}{20}=4$
- $y=\frac{\operatorname{det} A y}{\operatorname{deT} A}=\frac{-40}{20}=-2$
$\cdot z=\frac{\operatorname{dtt} A_{z}}{d t \tau A}=-\frac{40}{20}=-2$

Question 5

$$
4
$$

$$
\begin{array}{r}
x+y+z+w=2 \\
2 x-y+2 z-w=1 \\
3 x+y-z-w=1 \\
4 x+2 y+3 z-2 w=0
\end{array}
$$

$$
40
$$

$$
4
$$

<

Use Cramer's rule to find the value of w in the above system of the simultaneous equations

Question 6
Use Cramer's rule to find the value of x in the following system of simultaneous equations.

$$
\begin{aligned}
2 x+y-z+t & =9 \\
x+y+z-w-t & =0 \\
2 x-y-z+2 w+2 t & =12 \\
x+2 y+w+t & =8 \\
3 x+z-w & =6
\end{aligned}
$$

No credit will be given for using alternative solution methods.
\square , $x=3$

EXAONDING BY THE BOTKM ROW
$=+\left|\begin{array}{cc}9 & -9 \\ -5 & 11\end{array}\right|+6\left|\begin{array}{cc}4 & 9 \\ -2 & -5\end{array}\right|$
$=9\left|\begin{array}{cc}1 & -1 \\ -5 & 11\end{array}\right|-12\left|\begin{array}{cc}2 & 9 \\ 1 & 5\end{array}\right|$
$=9(6)-12(1)$ $=54-12$ $=42$ Titus By Cetantr's RUE wt tavt

 $x=\frac{42}{14}$ $x=3$

Question 1
The 3×3 matrix \mathbf{C} is given below.

$$
\mathbf{C}=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
1 & 4 & 2
\end{array}\right)
$$

a) Use the standard method for finding the inverse of a 3×3 matrix, to determine the elements of \mathbf{C}^{-1}.
b) Verify the answer of part (a) by obtaining the elements of \mathbf{C}^{-1}, by using a method involving elementary row operations.
\square
V , \square
\square
$\mathbf{C}^{-1}=\left(\begin{array}{rrr|}2 & 0 & -1 \\ 3 & -1 & -1 \\ -7 & 2 & 3\end{array}\right)$

MATEXI of confations $=\left[\begin{array}{ccc}-2 & -3 & 7 \\ 0 & 1 & -2 \\ 1 & +1 & -3\end{array}\right]$
ADSUSATEMATPIX $=$ \square
$|C|=\mid x(-2)+2(-3)+1 \times 7=-2-6+7=-1$

$$
\underline{C}^{-1}=\frac{1}{|C|}(A D N a+T E)=\frac{1}{-1}\left[\begin{array}{ccc}
-2 & 0 & 1 \\
-3 & 1 & 1 \\
7 & -2 & -3
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & -1 \\
-3 & -1 & -1 \\
-7 & 2 & 3
\end{array}\right]
$$

b) NOW THE INOUSSE BY RON OffeAtIONS $\left.\left[\begin{array}{cccccc}1 & \frac{2}{2} & 1 & 1 & \frac{I}{0} & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 4 & 2 & 0 & 0 & 1\end{array}\right] \xrightarrow[{\sqrt{13}(-1})\right]{\stackrel{r}{2}(-2)}$ $\left[\begin{array}{ccc:c}1 & 2 & 1 & 1 \\ 0 & -3 & -1 & 0 \\ 0 & 2 & 1 & 1 \\ \hline\end{array}\right.$

Question 2
The 4×4 matrix \mathbf{A} is given below.

$$
\mathbf{A}=\left(\begin{array}{rrrr}
3 & 2 & 3 & 1 \\
-2 & -1 & -1 & 0 \\
3 & 2 & 4 & 2 \\
3 & 2 & 3 & 2
\end{array}\right)
$$

Find \mathbf{A}^{-1}, by using a method involving elementary row operations.
$\mathbf{A}=\left(\begin{array}{rrrr}-2 & -2 & 1 & 0 \\ 4 & 3 & -3 & 1 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1\end{array}\right)$

Question 1
The following four vectors are given.

$$
\mathbf{u}=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

a) Show that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent.
b) Express \mathbf{p} in terms of \mathbf{u}, \mathbf{v} and \mathbf{w}.
\square $\mathbf{p}=2 \mathbf{u}-4 \mathbf{v}-7 \mathbf{w}$

Question 2
The following three vectors are given.

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
7 \\
3 \\
4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}
5 \\
2 \\
3
\end{array}\right]
$$

a) Show that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly dependent.
b) Find a linear relationship, with integer coefficients, between \mathbf{u}, \mathbf{v} and \mathbf{w}.
\square , $\mathbf{u}=3 \mathbf{v}-4 \mathbf{w}$

Created by T. Madas

Question 3
The following four vectors are given.

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
3 \\
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
0
\end{array}\right] .
$$

a) Show that these four vectors are linearly dependent.
b) Express \mathbf{p} in terms of \mathbf{u}, \mathbf{v} and \mathbf{w}.
\square $\mathbf{p}=\frac{3}{2} \mathbf{u}-\mathbf{v}+\frac{5}{2} \mathbf{w}$

