LINE

INTEGRALS

LINE INTEGRALS

IN 2 DIMENSIONAL CARTESIAN COORDINATES

Created by T. Madas

Question 1
Evaluate the integral

$$
\int_{C}(x+2 y) d x
$$

θ

where C is the path along the curve with equation $y=x^{2}+1$, from $(0,1)$ to $(6,37)$.

174

Question 2
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(x^{2}-y^{2}\right) \mathbf{i}+(2 x y) \mathbf{j}
$$

Evaluate the line integral

$$
\int_{(-2,-1)}^{(4,2)} \mathbf{F} \cdot \mathbf{d r}
$$

along a path joining directly the points with Cartesian coordinates $(-2,-1)$ and $(4,2)$.

Question 3
The path along the straight line with equation $y=x+2$, from $A(0,2)$ to $B(3,5)$, is denoted by C.
a) Evaluate the integral

$$
\int_{C}\left(x^{3}+y\right) d x+\left(x-y^{3}\right) d y
$$

b) Show that the integral is independent of the path chosen from A to B.
c) Verify the independence of the path by evaluating the integral of part (a) along a different path from A to B.

Question 4
The path along the perimeter of the triangle with vertices at $(0,0),(1,0)$ and $(0,1)$, is denoted by C.

Evaluate the integral

Created by T. Madas

Question 5
The path along the perimeter of the triangle with vertices at $(0,0),(1,0)$ and $(0,1)$, is denoted by C.

Evaluate the integral

Question 6
The functions F and G are defined as

$$
F(x, y)=x^{2} y \quad \text { and } \quad G(x, y)=(x+y)^{2}
$$

The anticlockwise path along the perimeter of the triangle whose vertices are located at $(0,0),(1,0)$ and $(0,1)$, is denoted by C.

Evaluate the line integral

$$
\int_{C} F d x+G d y
$$

Question 7
The anticlockwise path along the perimeter of the square whose vertices are located at the points $(0,0),(1,0),(1,1)$ and $(0,1)$, is denoted by C.

Evaluate the line integral

$$
\int_{C}\left(x^{2}+x y\right) d x+(x+y)^{3} d y
$$

You may not use Green's theorem in this question.

Question 8
Evaluate the integral

$$
\int_{(-1,7)}^{(5,0)}(3 y) d x+(3 x+2 y) d y
$$

$(-1,7)$ and $(5,0)$.
along a path joining the points with Cartesian coordinates $(-1,7)$ and $(5,0)$.

Question 9
Evaluate the integral

$$
\int_{(1,1)}^{(3,4)}\left(3 x^{2} y^{2}\right) d x+\left(2 x^{3} y\right) d y
$$

$(1,1)$ and $(3,4)$.
along a path joining the points with Cartesian coordinates $(1,1)$ and $(3,4)$.

Question 10

$$
\mathbf{F}(x, y) \equiv\left(2 x y^{2}+\cos x\right) \mathbf{i}+\left(2 x^{2} y-\sin y\right) \mathbf{j}
$$

Show that the vector field \mathbf{F} is conservative, and hence evaluate the integral

where C is the arc of the circle with equation

$$
x^{2}+y^{2}=\frac{\pi^{2}}{4}, y \geq 0
$$

from $A\left(-\frac{\pi}{2}, 0\right)$ to $B\left(\frac{\pi}{2}, 0\right)$.

Question 11
In this question α, β and γ are positive constants.

$$
\mathbf{F}=-\alpha y^{2} \mathbf{e}_{\mathbf{x}}+\beta x^{2} \mathbf{e}_{\mathbf{y}}
$$

A particle of mass m is moving on the $x-y$ plane, under the action of \mathbf{F}.

Find the work done by \mathbf{F} on the particle in moving it from the Cartesian origin O to the point $(1,1)$, in each of the following cases.
a) Directly from O to $(1,0)$, then directly from $(1,0)$ to $(1,1)$.
b) Directly from O to $(0,1)$, then directly from $(0,1)$ to $(1,1)$.
c) Moving the particle with velocity $\mathbf{v}=\gamma\left(\mathbf{e}_{\mathbf{x}}+\mathbf{e}_{\mathbf{y}}\right)$.

$$
W_{1}=\beta, W_{2}=-\alpha, W_{3}=\frac{1}{3}(\beta-\alpha)
$$

Question 12
Evaluate the line integral

$$
\oint_{C}\left[y(x+1) \mathrm{e}^{x} d x+x\left(\mathrm{e}^{x}+1\right) d y\right]
$$

where C is a circle of radius 1 , centre at the origin O, traced anticlockwise.

Question 13
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(\sin x^{3}-x y\right) \mathbf{i}+\left(x+y^{3} \sin y\right) \mathbf{j}
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r},
$$

where C is the ellipse with Cartesian equation

$$
2 x^{2}+3 y^{2}=2 y .
$$

Question 14
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=[x \cos x] \mathbf{i}+\left[15 x y+\ln \left(1+y^{3}\right)\right] \mathbf{j}
$$

Evaluate the line integral
where C is the curve

$$
\{(x, y): y=3,-2 \leq x \leq 2\} \cup\left\{(x, y): y=x^{2}-1,-2 \leq x \leq 2\right\}
$$

traced in an anticlockwise direction.

LINE INTEGRALS

2 DIMENSIONAL PARAMETERIZATIONS

Question 1
The path along the semicircle with equation

$$
x^{2}+y^{2}=1, x \geq 0
$$

from $A(0,1)$ to $B(0,-1)$, is denoted by C.

Evaluate the integral

Created by T. Madas

Question 2
Evaluate the integral

$$
\int_{(0,0)}^{(6,12)}\left(6 x^{2}-2 x y\right) d s
$$

where s is the arclength along the straight line segment from $(0,0)$ to $(6,12)$.

Created by T. Madas

Question 3
Evaluate the integral

$$
\int_{(1,-1)}^{(3,3)}(y+x) d x+(y-x) d y
$$

along the curve with parametric equations
\square , 10 $x=2 t^{2}-3 t+1 \quad$ and $\quad y=t^{2}-1$.

Created by T. Madas

Question 4
Evaluate the line integral

$$
\int_{(5,0)}^{(0,5)}(2 x+y) d s
$$

where s is the arclength along the quarter circle with equation

Question 5
Evaluate the line integral

$$
\oint_{C} y^{5} d x
$$

where C is a circle of radius 2 , centre at the origin O, traced anticlockwise. You may not use Green's theorem in this question.

Created by T. Madas

Question 6

Evaluate the line integral

$$
\oint_{C}\left[y^{3} d x+(x y) d y\right],
$$

where C is a circle of radius 1 , centre at the origin O, traced anticlockwise.
You may not use Green's theorem in this question.

Created by T. Madas

Question 7
Evaluate the line integral

$$
\oint_{C}[y d x+x(2+y) d y]
$$

where C is a circle of radius 1 , centre at the origin O, traced anticlockwise.

You may not use Green's theorem in this question.

Created by T. Madas

Question 8
Evaluate the line integral

$$
\oint_{C} \frac{x^{2} y}{x^{2}+y^{2}} d x
$$

Created by T. Madas

Question 9

The figure above shows the ellipse with equation

$$
(x-1)^{2}=16\left(1-y^{2}\right)
$$

The ellipse meets the positive y and x axes at the points A and B, respectively, as shown in the figure.

The elliptic path C is the clockwise section from A to B.

Determine the value of each of the following line integrals.
a) $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(y^{2}+\frac{1}{2} x^{2}\right) d y\right]$.
b) $\int_{C}\left[y^{3} d x+\frac{1}{16}(x-1)^{3} d y\right]$.
\square $\frac{125}{3}-\frac{5}{64} \sqrt{15}, \frac{1}{4} \sqrt{15}$

[solution overleaf]

Created by T. Madas

Created by T. Madas
$A\left(0, \frac{1}{4} \sqrt{15}\right) \longrightarrow \theta=\operatorname{arcan} \frac{\sqrt{12}}{4}=\arccos \left(\frac{1}{4}\right)$ Trnascolaming mif intrerte ind pmetmetrece

$$
\int_{c} y^{3} d x+\frac{1}{16}(x-1)^{3} d y
$$

$\int_{0 r c o s}^{0}\left[\sin ^{3} \theta(-4 \sin \theta)+\frac{1}{16}(1+4 \cos \theta-1)^{3} \cos \theta\right] d \theta$
 $\int_{\arcsin \frac{3}{9}}^{0}-4 \sin ^{4} \theta+4 \cos ^{4} \theta d \theta$

$\int_{\operatorname{arcan} \frac{\sqrt{3}}{3}} 4\left(\cos ^{5} \theta-\sin ^{4} \theta\right) d \theta$ $\operatorname{arcam} \frac{\sqrt{3}}{13}$
$\left.\int^{0} 4 \cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta$ $\arcsin \sqrt{2}$
$\operatorname{arccot}(x)$
$=[2 \sin 20]_{\substack{0 \\ \theta=\operatorname{aratan} \frac{\sqrt{R}}{4} \\ \theta}}^{0}$
$=[4 \sin \theta \cos \theta]_{\theta=\arcsin \frac{\sqrt{3}}{4}}^{0}$
$0=\arccos \left(\frac{1}{4}\right)$
$=0-4 \times \frac{\sqrt{13}}{4} \times\left(\frac{-1}{4}\right)$

Question 10
The closed curve C bounds the finite region R in the $x-y$ plane defined as

$$
R(x, y)=\left\{x+y \geq 0 \cap x-y \leq 0 \cap x^{2}+y^{2} \leq 2\right\} .
$$

Evaluate the line integral

$$
\oint_{C}\left(x y d x+x^{2} d y\right)
$$

where C is traced anticlockwise.
\square , 0

MItfettin by Rtcontron (5) ALTERNATIUE BY GREEN'S THTOREM $\oint_{C} x y d x+x^{2} d y$ $\oint_{D} \frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}(x y) d x d y$ Sunteat into fank co.orDinatis $=0$ 玄

Question 11
Evaluate the line integral

$$
\oint_{C}\left[\arctan \left(\frac{y}{x}\right) d x+\ln \left(x^{2}+y^{2}\right) d y\right]
$$

where C is the polar rectangle such that $1 \leq r \leq 2,0 \leq \theta \leq \pi$, traced anticlockwise.

Question 12
Evaluate the line integral

$$
\oint_{C}[(2 x-y) d x+(2 y-x) d y]
$$

where C is an ellipse with Cartesian equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

traced anticlockwise.

You may not use Green's theorem in this question.

Question 13
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=(x-3 y) \mathbf{i}+(y-2 x) \mathbf{j}
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r}
$$

where C is the ellipse with cartesian equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

You may not use Green's theorem in this question.

Question 14

$$
\mathbf{F}(x, y) \equiv\left(-\frac{y}{x^{2}+y^{2}}\right) \mathbf{i}+\left(\frac{x}{x^{2}+y^{2}}\right) \mathbf{j}
$$

By considering the line integral of \mathbf{F} over two different suitably parameterized closed paths, show that

$$
\int_{0}^{2 \pi} \frac{1}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta=\frac{2 \pi}{a b}
$$

where a and b are real constants.

You may assume without proof that the line integral of \mathbf{F} yields the same value over any simple closed curve which contains the origin.

LINE INTEGRALS

IN 3 DIMENSIONS

Question 1
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(x^{2} y\right) \mathbf{i}+\left(4 x y^{2}\right) \mathbf{j}+(-6 x z) \mathbf{k}
$$

$$
\int_{(0,0,0)}^{(10,4,8)} \mathbf{F} \cdot \mathbf{d r}, \quad \text { where } \mathbf{d r}=(d x, d y, d z)^{\mathrm{T}} \text {, }
$$

along a path given by the parametric equations

Question 2
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(x^{2} y\right) \mathbf{i}+\left(x y^{2}\right) \mathbf{j}+(y z) \mathbf{k}
$$

Evaluate the line integral

along a path of three straight line segments joining $(0,0,0)$ to $(1,0,0),(1,0,0)$ to $(1,2,0)$ and $(1,2,0)$ to $(1,2,3)$.

Question 3
It is given that

$$
\mathbf{F}(x, y, z) \equiv \mathbf{j} \wedge \mathbf{r}
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Evaluate the line integral

$$
\int_{C} \mathrm{~F} \cdot \mathbf{d r}
$$

where C is the closed curve given parametrically by

$$
\mathbf{R}(t)=\left(t-t^{2}\right) \mathbf{i}+\left(2 t-2 t^{2}\right) \mathbf{j}+\left(t^{2}-t^{3}\right) \mathbf{k}, 0 \leq t \leq 1
$$

Question 4
The simple closed curve C has Cartesian equation

$$
x^{2}+y^{2}=4, z=3 .
$$

Given that $\mathbf{F}=x^{2} z \mathbf{i}+y^{2} x \mathbf{j}+z^{2} y \mathbf{k}$, evaluate the integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r} .
$$

You may not use Green's theorem in this question.

Question 5

$$
\mathbf{F}=(x z-y) \mathbf{i}+(x y+z) \mathbf{j}+\left(x^{2}+y^{2}+z^{2}\right) \mathbf{k}
$$

Determine the work done by \mathbf{F}, when it moves in a complete revolution in a circular path of radius 2 around the z axis, at the level of the plane with equation $z=6$.

You may not use Green's theorem in this question.

Question 6
Evaluate the integral

$$
\int_{(1,1,0)}^{(5,3,4)}(3 x-2 y) d x+(y+z) d y+\left(1-z^{2}\right) d z
$$

along the straight line segment joining the points with Cartesian coordinates $(1,1,0)$ and $(5,3,4)$.

Question 7

$$
\mathbf{F}(x, y, z) \equiv y z^{2} \mathbf{i}+x z^{2} \mathbf{j}+2 x y z \mathbf{k} .
$$

Show that the vector field \mathbf{F} is conservative, and hence evaluate the integral

$$
\int_{(1,1,4)}^{(3,5,10)} \mathbf{F} \cdot \mathbf{d r}
$$

\square
\square

Question 8
A vector field \mathbf{F} is defined as

$$
\mathbf{F}(x, y, z) \equiv[x+y z] \mathbf{i}+[y+x z] \mathbf{j}+\left[x(y+1)+z^{2}\right] \mathbf{k} .
$$

The closed path C joins $(0,0,0)$ to $(1,1,1),(1,1,1)$ to $(1,1,0),(1,1,0)$ to $(0,0,0)$, in that order.

By writing

$$
\mathbf{F}(x, y, z)=\mathbf{G}(x, y, z)+\mathbf{H}(x, y, z)
$$

for some vector functions \mathbf{G} and \mathbf{H}, where $\nabla g(x, y, z)=\mathbf{G}(x, y, z)$ for some smooth scalar function $g(x, y, z)$, evaluate the line integral

$$
\oint_{c} \mathbf{F} \cdot \mathbf{d r} .
$$

\square

Question 9
A vector field \mathbf{F} is defined as

$$
\mathbf{F}(x, y, z) \equiv\left(y z+y^{2}\right) \mathbf{i}+(x z+2 x y) \mathbf{j}+\left(x y+4 z^{3}\right) \mathbf{k} .
$$

a) Show that \mathbf{F} is conservative.
b) Hence evaluate the integral

Question 10
A curve C is defined as

$$
(x, y, z)=(\cos 3 t, \sin 3 t, t), 0 \leq t \leq 2 \pi
$$

a) Sketch the graph of C.

$$
\mathbf{F}(x, y, z) \equiv x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}
$$

b) Determine whether the vector field \mathbf{F} is conservative.
c) Evaluate the integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}
$$

\square

Question 11
Evaluate the integral

$$
\int_{(-1,2,3)}^{(2,0,1)}\left(3 x^{2} y z+6 x\right) d x+\left(x^{3} z-8 y\right) d y+\left(x^{3} y+1\right) d z
$$

along a path joining the points with Cartesian coordinates $(-1,2,3)$ and $(2,0,1)$.

Question 12
A curve C is defined by $\mathbf{r}=\mathbf{r}(t), 0 \leq t \leq 2 \pi$ as

$$
\mathbf{r}(t)=(x, y, z)=[2(t-\sin t), \sqrt{3} \cos t, 1+\cos t] .
$$

Evaluate the integral
where s is the arclength along C.

$$
\int_{C} z d s
$$

Question 13
A vector field \mathbf{F} and a scalar field ψ are given.

$$
\mathbf{F}=\left(3 x^{3} y\right) \mathbf{i}+(15 \sqrt{z}) \mathbf{j}-\left(\frac{13}{96} x z\right) \mathbf{k} \quad \text { and } \quad \psi(x, y, z)=x \mathrm{e}^{\frac{2 y}{\sqrt{z}}}
$$

Evaluate the integral

$$
\int_{(0,0,0)}^{(2,4,64)}[\mathbf{F}+\nabla \psi] \cdot \mathbf{d r}
$$

along the curve with parametric equations

Question 14
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(3 x^{2} y z+2 z\right) \mathbf{i}+\left(x^{3} z+2 y\right) \mathbf{j}+\left(x^{3} y+2 x\right) \mathbf{k} .
$$

Evaluate the line integral

along a path joining the points with Cartesian coordinates $(4,0,1)$ and $(-2,2,0)$.

Question 15
It is given that the vector function \mathbf{F} satisfies

$$
\mathbf{F}=\left(1+x y^{2}\right) \mathbf{i}+(x+x y z) \mathbf{j}+(y \sin z) \mathbf{k}
$$

Evaluate the line integral

where C is the anticlockwise cartesian path

$$
x^{2}+y^{2}=16, z=3
$$

You may not use Green's theorem in this question.

Question 16
Evaluate the line integral

$$
\oint_{C}\left[x d x+(x-2 y z) d y+\left(x^{2}+z\right) d z\right]
$$

where C is the intersection of the surfaces with respective Cartesian equations

Question 17
It is given that the vector field \mathbf{F} satisfies

$$
\mathbf{F}=8 z \mathbf{i}+4 x \mathbf{j}+y \mathbf{k}
$$

Evaluate the line integral

$$
\oint_{C} F \cdot d r
$$

where C is the intersection of the surfaces with respective Cartesian equations

$$
z=x^{2}+y^{2} \quad \text { and } \quad z=y
$$

You may not use Stokes' Theorem in this question.

Question 18
It is given that the vector field \mathbf{F} satisfies

$$
\mathbf{F}=y^{2} \mathbf{i}+z^{2} \mathbf{j}+x^{2} \mathbf{k}
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r}
$$

where C is the intersection of the surfaces with respective Cartesian equations

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0 \quad \text { and } \quad x^{2}+y^{2}=x, \quad z \geq 0
$$

You may not use Stokes' Theorem in this question.

LINE INTEGRALS

IN POLAR COORDINATES

Created by T. Madas

Question 1

The figure above shows the closed curve C with polar equation

$$
r=\sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

The vector field \mathbf{F} is given in plane polar coordinates (r, θ) by

$$
\mathbf{F}(r, \theta)=\left(r^{2} \cos \theta \sin \theta\right) \hat{\mathbf{r}}+(r \cos \theta) \hat{\boldsymbol{\theta}}
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathrm{dr}
$$

Created by T. Madas

Question 2

The figure above shows the curve C with polar equation

$$
r=\theta, 0 \leq \theta \leq 2 \pi
$$

The vector field \mathbf{F} is given in Cartesian coordinates by

$$
\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j} .
$$

Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}
$$

Altrentitive by payes
$\oint_{c} F \cdot d \underline{I}=\oint_{c}(x, y) \cdot(d x d y)=\oint_{c} x d x+y d y$
$\left\{\begin{array}{l}x=r \cos \theta=\theta \cos \theta \\ y=r \sin \theta=\theta \sin \theta\end{array}\right\}$
$d x=(\cos \theta-\theta \sin \theta) d \theta$
$d y=(\sin \theta+\theta \cos \theta) d \theta)$
$\oint_{c}[(\theta \cos \theta)(\cos \theta-\theta \sin \theta)+(\cos \theta)(\sin \theta+\theta \cos \theta)] d \theta$ $\int_{2}\left[\theta \omega^{2} \theta-\theta \theta^{2} \cos \sin \theta+\theta \sin ^{2} \theta+\theta^{2} \sin \theta \cos \theta\right] d \theta$ $\oint \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta$ $=\int_{\theta=0}^{2 \pi} \theta d \theta$

Created by T. Madas

Question 3

The figure above shows the closed curve C with polar equation

$$
r=1+\cos \theta, 0 \leq \theta \leq 2 \pi .
$$

The vector field \mathbf{F} is given in Cartesian coordinates by

$$
\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r}
$$

ALTRENATINT APPEOGGH]
$\oint_{i} £ \cdot d y=\oint_{c}(-y, x) \cdot(d x, d y)=\oint-y d x+x d y$ $\left\{\begin{array}{l}x=r \cos \theta=(1+\cos \theta) \cos \theta=\cos \theta+\cos ^{2} \theta \\ y=r \sin \theta=(1+\cos \theta) \sin \theta=\sin \theta+\cos \theta \sin \theta\end{array}\right\}$ $(d z=(-\sin \theta-2 \cos \theta \sin \theta) d \theta=(-\sin \theta-\sin 2 \theta) d \theta$
$d y=\left(\cos \theta+\cos ^{2} \theta-\sin \theta\right) d \theta=(\cos \theta+\cos \theta) d \theta$ $\left(x y=\left(\cos \theta+\cos ^{2} \theta-\sin \theta\right) d \theta=(\cos \theta+\cos 2 \theta) d \theta\right.$ $-r \sin \theta(-\sin \theta-\sin 2 \theta) d \theta+r \cos \theta(\cos \theta+\cos 2 \theta) d \theta$ $r\left[\sin ^{2} \theta+\sin \theta \sin 2 \theta+\cos ^{2} \theta+\cos \theta \cos 2 \theta\right] d \theta$ $(1+\cos \theta)(1+\cos \theta \theta \cos \theta+\sin 2 \theta \sin \theta) d \theta$ $(1+\cos \theta)(1+\cos (2 \theta-\theta)) d \theta$
$(1+\cos \theta)(1+\cos \theta) d \theta$ $\int^{2 \pi} 1+2 \cos \theta+\cos ^{2} \theta d \theta$ $\int_{0}^{2 \pi} 1+\frac{1}{2}+\frac{1}{2} \cos 2 \theta d \theta$ $\int_{0}^{2 \pi} \frac{3}{2} d \theta=\frac{3 \pi}{4 \theta \text { Bffoef }}$

Created by T. Madas

Question 4

$$
0
$$

The figure above shows the closed curve C with polar equation

$$
r=3+\sin \theta, 0 \leq \theta \leq 2 \pi
$$

The vector field \mathbf{F} is given in Cartesian coordinates by

$$
\mathbf{F}(x, y)=(x+y) \mathbf{i}+(-x+y) \mathbf{j} .
$$

Evaluate the line integral

$$
\oint_{C} \mathbf{F} \cdot \mathbf{d r}
$$

\square

Returanio To tit pane Int internat
$\oint_{c} f \cdot d r=\oint_{c}\left(x+g_{i}-2+y\right) \cdot\left(d x_{1} d y\right)$
$=\oint_{c}[(x+y) i+(-x+4)] \cdot[i d x+1 d y]$

$\oint\left[r\left(\cos ^{2} \theta+\sin ^{3} \theta\right) \hat{\underline{I}}-r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \hat{\theta}\right] \cdot[d r \hat{\underline{I}}+r d \theta \hat{\theta}]$
$\oint_{c}(r \hat{r}-\hat{\theta}) \cdot(d r \hat{I}+r d \hat{\theta} \hat{\underline{Q}})$
§ $r d r-r^{2} d \theta$

$$
0
$$

0
initial line

