LIMITS BY STANDARD EXPANSIONS

Created by T. Madas

Question 1 (***)
a) Write down the first two non zero terms in the expansions of $\sin 3 x$ and $\cos 2 x$.
b) Hence find the exact value of Noses)

$$
\lim _{x \rightarrow 0}\left[\frac{3 x \cos 2 x-\sin 3 x}{3 x^{3}}\right]
$$

$\sin 3 x \approx 3 x-\frac{9}{2} x^{3}, \quad \cos 2 x \approx 1-2 x^{2},-\frac{1}{2}$

Created by T. Madas

Question 2 (***)
Use standard expansions of functions to find the value of the following limit.

$$
\lim _{x \rightarrow 0}\left[\frac{\cos 7 x-1}{x \sin x}\right] .
$$

Created by T. Madas

Question 4 (***)
Use standard series expansions to evaluate the following limit.

$$
\lim _{x \rightarrow \infty}\left[x-x^{2} \ln \left[x+\frac{1}{x}\right]\right] .
$$

Question 5
(***)

By considering series expansion, determine the value of the following limit.

Question 6 (***+)
Use standard expansions of functions to find the value of the following limit.

Created by T. Madas

Question 8 (****+)
Use standard expansions of functions to find the value of the following limit.

$$
\lim _{x \rightarrow 0}\left[\frac{\mathrm{e}^{x} \sqrt{x^{2}+2 x+4}-2}{x}\right]
$$

No credit will be given for using alternative methods such as L' Hospital's rule.
\square $\frac{5}{2}$

Created by T. Madas

LIMITS BY

 L'HOSPITAL RULECreated by T. Madas

Question 1 (**)
Find the value of the following limit

Find the value of the following limit

Question 3 (***)
Find the value of the following limit

Question 5 (***)
Use L'Hospital's rule to find the value of the following limit

$$
\lim _{x \rightarrow 0}\left[\frac{\tan x-x}{\sin 2 x-\sin x-x}\right]
$$

 $\cdots=\lim _{x \rightarrow 0}\left[\frac{2 \sec ^{2} x \tan x}{-4 \sin 2 x-\sin x}\right]$ $=\lim _{x \rightarrow 0}\left[\frac{\frac{d}{a}(2 \cos x \tan x)}{\frac{d}{d}(-4 \sin 2 x+\sin x)}\right]$ $=\lim _{x \rightarrow 0}\left[\frac{4 \sec ^{2} x \tan ^{2} x+2 \sec x}{-8 \cos 2 x+\cos x}\right]$ $=\frac{0+2}{-\theta+1}$ $=\frac{-\frac{2}{7}}{/ \& \text { BEGOR }}$

Created by T. Madas

Question 6 (***+)
Show clearly that the following limit converges to 1 .

Created by T. Madas

Question 8 (****)
Find the value of the following limit

$$
\lim _{x \rightarrow 0}\left[\frac{\mathrm{e}^{5 x}-5 x-1}{\sin 4 x \sin 3 x}\right]
$$

$$
\mathrm{V}, \frac{25}{24}
$$

$$
=\operatorname{Lim}_{x \rightarrow 0}\left[\frac{5 e^{5 x}-5}{[4 \operatorname{coc} 44 \sin 3 x+\sin 4 x(3 \cos 33 x)}\right]
$$

$=\lim _{x \rightarrow 0}\left[\frac{d}{}\left[\frac{d}{3}\left(5 e^{5}-5\right)\right.\right.$

Wha The Unat Now Exsis
$=\frac{25}{0+12+12+0}$
$=25$
$=\frac{25}{24}$

Question 9 (****)
Find the value of the following limit

Created by T. Madas

Question 11 (****+)
Find the value of the constant k, given that

Question 12 (****+)
Show with detailed workings that

$$
\lim _{x \rightarrow \infty}\left[\left(1+\frac{a}{x}\right)^{b x}\right]=\mathrm{e}^{a b}
$$

$\Rightarrow \lim _{a \rightarrow \infty}\left[\frac{a b}{1+\frac{a}{x}}\right]=\ln L$ $\Rightarrow a b=\ln L$

Rosptly moveranca tite logarititu $\Rightarrow L=e^{a b}$

Question 13 (*****)
Find the value of the following limit

Question 14

$$
L=\lim _{x \rightarrow 0}\left[\frac{a-\sqrt{a^{2}-x^{2}}-\frac{1}{4} x^{2}}{x^{4}}\right], a>0
$$

Given that L is finite, determine its value.

Created by T. Madas

Question 15 (${ }^{* * * * * *) ~}$
Find the value of the following limit

VARIOUS
 LIMITS

Created by T. Madas

Question 1 (**)
Find the value of the following limit

Question 2 (**)
Find the value of the following limit

Question 3 (**+)
Find the value of the following limit

Question 4 (**+)
Given that n is a positive integer determine

$$
\lim _{x \rightarrow 0}\left[\frac{x^{n} \mathrm{e}^{x}}{1-\mathrm{e}^{x}}\right]
$$

Created by T. Madas

Question 5 (***)
Find the value of the following limit

$$
\lim _{x \rightarrow 2}\left[\frac{x^{3}-8}{x-2}\right]
$$

You may not use the L'Hospital's rule in this question.

$$
\operatorname{Lim}_{x \rightarrow 2}\left[\frac{x^{3}-8}{x-2}\right]=\operatorname{Lim}_{x \rightarrow 2}\left[\frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2}\right]
$$

$$
=\lim _{x \rightarrow 2}\left[x^{2}+2 x+4\right]=12
$$

Question 6 (***)
Find the value of the following limit.
\square

Created by T. Madas

Created by T. Madas

Question 7 (***)
Find the value of the following limit.

Created by T. Madas

Question 8 (***)
The Fibonacci sequence is given by the recurrence formula

$$
u_{n+2}=u_{n+1}+u_{n}, \quad u_{1}=1, u_{2}=1
$$

It is further given that in this sequence the ratio of consecutive terms converges to a limit ϕ, known as the Golden Ratio.

Show, by using the above recurrence formula, that $\phi=\frac{1}{2}(1+\sqrt{5})$.
\square , proof

Created by T. Madas

Created by T. Madas

Question 9 (***+) Limits
Evaluate the following limit.

$$
\lim _{x \rightarrow 0}\left[\frac{1}{x \sqrt{1+x}}-\frac{1}{x}\right]
$$

You may NOT use L'Hospital's rule in this question

Created by T. Madas

Question 10 (***+)
$f(n)=2^{2^{2^{n}}}, n \in \mathbb{R} \quad$ and $\quad f(n)=1000^{1000^{n}}, n \in \mathbb{R}$.
Determine whether or not $\lim _{n \rightarrow \infty}\left[\frac{g(n)}{f(n)}\right]$ exists.

Created by T. Madas

Question 11 (***+)
Show clearly without the use of any calculating aid that

$$
\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\ldots}}}}=k
$$

where k is an integer to be found.

Question 13 (***+)

$$
\sqrt[3]{4+2 \sqrt[3]{4+2 \sqrt[3]{4+2 \sqrt[3]{4+2 \sqrt[3]{4+\ldots}}}}}
$$

Given that the above nested radical converges, determine its limit.
\square $L=2$

Question 14 (****)
Find the value of the following limit

$$
\lim _{x \rightarrow 4}\left[\frac{x^{2}-16}{\sqrt{x}-2}\right]
$$

You may not use the L' Hospital's rule in this question.

Created by T. Madas

Question 15 (****)
Find the value of each of the following limits.
a) $\lim _{x \rightarrow 1}\left[\frac{1-\sqrt{x}}{1-x}\right]$.
b) $\lim _{x \rightarrow 0}\left[\frac{\sin (k x)}{\sin x}\right]$.

You may not use the L' Hospital's rule in this question.

$$
\lim _{x \rightarrow 0}\left[\frac{\sqrt{x+4}-2}{x(x+1)}\right]
$$

You may not use the L'Hospital's rule in this question.

Created by T. Madas

Created by T. Madas

Question 17 (****)
The function f is defined as

$$
f(x) \equiv \sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}}}, x \in(0, \infty) .
$$

Determine the value of

$$
\int_{0}^{2} f(x) d x
$$

\square
\square

$$
\begin{array}{|c|}
\hline \frac{19}{6} \\
\hline
\end{array}
$$

Created by T. Madas

Question 18 (****+)

Find the value of the following limit

Created by T. Madas

Question 20 (****+)
Use two distinct methods to evaluate the following limit

$$
\lim _{x \rightarrow 8}\left[\frac{\sqrt[3]{x}-2}{x^{2}-9 x+8}\right]
$$

Question 21
Find the value of the following limit

$$
\lim _{x \rightarrow 0}\left[\frac{(8+\cos x)(1-\cos 2 x)}{x \tan 3 x}\right]
$$

You may not use the L' Hospital's rule in this question.

Created by T. Madas

Question 22 (****+)
Use two distinct methods to evaluate the following limit

Question 23 (****+)
Find the value of the following limit

$$
\lim _{x \rightarrow 8}\left[\frac{\sqrt[3]{x}-2}{x-8}\right]
$$

You may not use the L'Hospital's rule in this question.

Question 25 (****+)
Find the value of the following limit

$$
\lim _{x \rightarrow 2}\left[\frac{\sqrt{x-2}+x^{2}-3 x+2}{\sqrt{x^{2}-4}}\right]
$$

You may not use the L'Hospital's rule in this question.

Find the value of the following limit

$$
\lim _{x \rightarrow 5}\left[\frac{\sqrt{x^{2}-25}-\sqrt{x-5}}{\sqrt{x^{3}-125}}\right]
$$

You may not use the L' Hospital's rule in this question.

$$
\quad \frac{\frac{\sqrt{10}-1}{\sqrt{60}}}{0}
$$

Created by T. Madas

Question 27 (****+)
Find the value of the following limit

Question 28 (****+)
Find the value of the following limit

$$
\lim _{x \rightarrow \infty}\left[\left(1+\frac{1}{x^{\frac{3}{2}}}+\frac{1}{x^{2}}\right)^{x}\right]
$$

, 1

Created by T. Madas

Question 29 (****+)
Use two distinct methods to evaluate the following limit.

Question 30 (****+)
Use two distinct methods to evaluate the following limit

$$
\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+3 n}-n\right]
$$

You may not use the L' Hospital's rule in this question.
\square

Now expmono- binonlany wt thant
 $=\lim _{n \rightarrow 0}\left[n\left[1+\frac{3}{2 n}-\frac{0}{6 n+2}+\frac{7 \pi}{6 p^{20}}+\cdots\right]-n\right]$ $=\lim _{h \rightarrow \infty}\left[x+\frac{3}{2}-\frac{1}{2 n}+\frac{23}{6 n^{2}}+\cdots-x\right]$ $=\lim _{n \rightarrow \infty}\left[\frac{3}{2}+0\left(\frac{1}{n}\right)\right]$ $=\frac{3}{2}$ $\frac{3}{2}$

Created by T. Madas

Question 31 (****+)

$$
f(x)=\sqrt{1+x^{2}}, x \in \mathbb{R}
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

Created by T. Madas

Question 32 (****+)

$$
f(x)=\frac{1}{\sqrt{x^{2}-1}}, x \in \mathbb{R},|x|>1
$$

Use the formal definition of the derivative as a limit, to show that

\square $=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{\left[\sqrt{x^{2}-1}-\sqrt{(x+h)^{2}-1}\right]\left[\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right]}{h \sqrt{x^{2}-1} \sqrt{\left(x+h^{2}-1\right.}\left[\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right]}\right]$ Slufury the we (Diffretuce of spumbes) $=\lim _{h \rightarrow \infty}\left[\frac{\left(x^{2}-1\right)-\left[(x+h)^{2}-1\right]}{h \sqrt{x^{2}-1} \sqrt{(x+h)^{2}-1}\left[\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right]}\right]$ $=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{\left(x^{2}-1\right)-\left(x^{2}+2 x h+h^{2}-1\right)}{h \sqrt{x^{2}-1} \sqrt{(x+h)^{2}-1}\left[\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right.}\right]$ $=\lim _{h \rightarrow 0}\left[\frac{-2 x h+h^{2}}{h \sqrt{x^{2}-1} \sqrt{(8+h)^{2}-1}\left(\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right.}\right]$ $=\operatorname{Lim}_{h \rightarrow 0}\left[\frac{-2 x+h}{\sqrt{x^{2}-1} \sqrt{(x+h)^{2}-1}\left[\sqrt{x^{2}-1}+\sqrt{(x+h)^{2}-1}\right.}\right]$ $=\frac{1-2 x}{\sqrt{x^{2}-1} \sqrt{x^{2}-1}\left[\sqrt{x^{2}-1}+\sqrt{x^{2}-1}\right]}$ $=\frac{-2 x}{\left(x^{2}-1\right) \times 2\left(x^{2}-1\right)^{\frac{1}{2}}}$ $=\frac{-x}{\left(x^{2}-1\right)^{3 / 2}}$

$$
\begin{aligned}
& \text { Question } 33 \\
& \quad f(x) \equiv \frac{(* * * *+)}{x^{100}+100^{100}} \sum_{r=1}^{100}(x+r)^{100}, x \in \mathbb{R} .
\end{aligned}
$$

Use a formal method to find

$$
\lim _{x \rightarrow \infty} f(x)
$$

\square
\square

Rewerte \& TAKE THe lumts
$\lim _{x \rightarrow \infty}[f(x)]=\lim _{x \rightarrow \infty}\left[\frac{\sum_{r=1}^{100}(x+r)^{1 \infty}}{x^{100}+100^{100}}\right]$
$=\lim _{x \rightarrow \infty}\left[\frac{(x+1)^{100}+(x+2)^{100}+(x+3)^{100}+\cdots+(x+10)^{1 \infty}}{\left.x^{100}+10\right)^{100}}\right]$
MANPVCATE +5 Foclows
$=\operatorname{Lim}_{x \rightarrow \infty}\left[\frac{x^{100}\left(1+\frac{1}{x}\right)^{100}+x^{100}\left(1+\frac{2}{x} x^{100}+x^{100}\left(1+\frac{3}{x^{100}}\right)^{100}+\cdots+x^{100}\left(1+x^{10 \infty}\right)^{100}\right.}{x^{100}\left(1+\frac{1000}{x^{100}}\right)}\right]$
$=\lim _{x \rightarrow \infty}\left[\frac{\left(11 \frac{1}{2}\right)^{100}+\left(1+\frac{2}{x}\right)^{100}+\left(1+\frac{3}{x}\right)^{100}+\cdots+\left(1+\frac{100}{x}\right)^{100}}{1+\frac{100}{x^{100}}}\right]$
$=\frac{1+1+1+\cdots+1}{1}$
$=100$

Created by T. Madas

Question $34 \quad(* * * *+)$
Find the value of the following limit

Created by T. Madas

Question 35 (*****)

$$
f(x)=\sqrt{\frac{1-x}{1+x}}, x \in \mathbb{R},|x|<1
$$

Use the formal definition of the derivative as a limit, to show that

$$
f^{\prime}(x)=-\frac{1}{(1+x) \sqrt{1-x^{2}}}
$$

Created by T. Madas

Question 36 (*****)
Solve the following equation over the set of real numbers.

$$
\lim _{x \rightarrow \infty}\left[\left(\frac{x+a}{x-a}\right)^{a x}\right]=\sqrt[\mathrm{e}]{\mathrm{e}^{2}}
$$

You may assume that the limit in the left hand side of the equation exists.
You must clearly state any results used in the solution.
\square $a= \pm \mathrm{e}^{-\frac{1}{2}}$

Question 37 (${ }^{* * * * * *) ~}$
It is given that for some real constants a and b,

$$
\lim _{x \rightarrow+\infty}\left[\sqrt{x^{2}-2 x+2}-(a x+b)\right]=2, x \in \mathbb{R}, x>0
$$

Determine the value of a and the value of b.

Created by T. Madas

Question 38 (*****)
Determine the exact value of the following limit.

$$
\lim _{h \rightarrow 0}\left[\frac{1}{h}\left[\int_{\frac{1}{6} \pi}^{\frac{1}{6} \pi+h} \frac{\sin x}{x} d x\right]\right]
$$

You must justify the evaluation.

\square $\frac{3}{\pi}$

Created by T. Madas

Created by T. Madas

Question 39 ($* * * * * *)$
Evaluate the following limit.
\square $\frac{\sqrt{2}}{\pi}$

Proces H\& Buows

Now ut $F(x)=\int \sqrt{\text { swa }}$ di $\Rightarrow F^{\prime}(x)=\sqrt{\sin 2}$
$\cdots=\frac{2}{\pi} \lim _{h \rightarrow 0}\left[\frac{1}{h}\left[F\left(\frac{1}{6} \pi+h\right)-F\left(\frac{1}{t} \pi\right)\right]\right]$
$=\frac{2}{\pi} \lim _{h \rightarrow 0}\left[\frac{F(t \pi+h)-F\left(\frac{1}{6} \pi\right)}{h}\right]$
This A THE Drewatuat Difinition of $F(2) \& F^{\prime}(2)$ Nawatio
AT $2=\frac{\pi}{6}$
$\cdots=\left.\frac{2}{\pi} \frac{d F}{d x}\right|_{2=\frac{\pi}{6}}=\left.\frac{2}{\pi} \sqrt{\sin x}\right|_{x=\frac{\pi}{6}}=\frac{2}{\pi} \sqrt{\sin \frac{\pi}{2}}$
$=\frac{2}{\pi} \sqrt{\frac{1}{2}}=\frac{2}{\pi} \times \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{\pi}$

Created by T. Madas

Question 40
a) Use L'Hospital's rule to evaluate

$$
\lim _{x \rightarrow 0}\left[\frac{\sqrt[3]{1+\sin 3 x}-\sqrt[3]{1-\sin 3 x}}{x}\right]
$$

b) Verify the answer to part (a) by an alternative method.

You must state clearly any additional results used.
\square , 2

Created by T. Madas

Question 41 (*****)
The positive solution of the quadratic equation $x^{2}-x-1=0$ is denoted by ϕ, and is commonly known as the golden section or golden number.

This implies that $\phi^{2}-\phi-1=0, \phi=\frac{1}{2}(1+\sqrt{5}) \approx 1.62$.

Show, with full justification, that

Question 42 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

\square , proof

Question 43 (*****)
The Lambert W function, also called the omega function or product logarithm, is a multivalued function which has the property

$$
W\left(x \mathrm{e}^{x}\right) \equiv x
$$

and hence if $x \mathrm{e}^{x}=y$ then $x=W(y)$.

For example
$-x \mathrm{e}^{-x}=2 \Rightarrow-x=W(2),(x+\pi) \mathrm{e}^{x+\pi}=\frac{1}{2} \Rightarrow x+\pi=W\left(\frac{1}{2}\right)$ and so on.

Use this result to show that the limit of
is given by

Question 44 (*****)
No credit will be given for using L'Hospital's rule in this question.
a) Use the formal definition of the derivative of a suitable expression, to find the value for the following limit

$$
\lim _{x \rightarrow 4}\left[\frac{\sqrt{x^{3}}+2 \sqrt{x}-12}{x-4}\right]
$$

b) Verify the answer to part (a) by an alternative method.
\square ,$\frac{7}{2}$

Created by T. Madas

Question 45 (*****)
Use the formal definition of the derivative to prove that if

$$
y=f(x) g(x)
$$

then $\frac{d y}{d x}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
You may assume that
\square

- $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c}[f(x)]+\lim _{x \rightarrow c}[g(x)]$
- $\lim _{x \rightarrow c}[f(x) \times g(x)]=\lim _{x \rightarrow c}[f(x)] \times \lim _{x \rightarrow c}[g(x)]$

Question 46 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$
\int_{3}^{6} x^{2} d x=63
$$

\square , proof

WOKLIN AT THF DIAGLAM BEION
- $\delta_{x}=\frac{b-a}{4}=\frac{6-3}{1}=\frac{3}{4}$ - $x_{i}=a+i \delta_{x}=3+i \times \frac{3}{n}=3+\frac{3 i}{n}$ - $f\left(0_{i}\right)=\left(3+\frac{3 i}{n}\right)^{2}=9\left(1+\frac{i}{n}\right)^{2}=9\left(\frac{n+i}{6}\right)^{2}=\frac{9}{n^{2}}\left(n^{2}+2 n i+i^{2}\right)$
USING THE RIEMANN SJM UMIT

Question 47 (*****)
A curve has equation $y=f(x)$.

The finite region R is bounded by the curve, the x axis and the straight lines with equations $x=a$ and $x=b$, and hence the area of R is given by

$$
I(a, b)=\int_{a}^{b} f(x) d x
$$

The area of R is also given by the limiting value of the sum of the areas of rectangles of width δx and height $f\left(x_{i}\right)$, known as a "right (upper) Riemann sum"

$$
I(a, b)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n}\left[f\left(x_{i}\right) \delta x\right]\right],
$$

where $\delta x=\frac{b-a}{n}$ and $x_{i}=a+i \delta x$.

Using the "right (upper) Riemann sum" definition, and with the aid of a diagram where appropriate, show clearly that

$$
\lim _{n \rightarrow \infty}\left[\sqrt[n]{\frac{n!}{n^{n}}}\right]=\frac{1}{\mathrm{e}}
$$

\square , proof

 ancey orr 4 SIMRL inthation By PMers or insptatal - $\frac{d}{d x}(a \ln x)=1 \times \ln x+x\left(\frac{1}{x}\right)=\ln x+1$ - $\frac{\frac{d}{d}}{d}(-x)=-1$

Created by T. Madas

Question 48
$(* * * * *)$
Use Leibniz rule and standard series expansions to evaluate the following limit

$$
\lim _{x \rightarrow 0}\left[\frac{1}{x^{3}} \int_{0}^{x} \frac{t \ln (t+1)}{t^{4}+\frac{1}{6}} d t\right]
$$

\square , 2

Question 49 (*****)
Determine the limit of the following series.

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\frac{1}{n+4}+\ldots+\frac{1}{n+n-2}+\frac{1}{n+n-1}+\frac{1}{n+n}+\right]
$$

Question 50
a) Show with detailed workings that

$$
\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+2 x-1}-\sqrt{x^{2}-1}\right]=1
$$

b) Hence determine in exact simplified form the value of

$$
\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}+2 x-1}-\sqrt{x^{2}-1}\right)^{x}\right]
$$

\square
\square
$\ln L=\lim _{x \rightarrow \infty}\left[\frac{\frac{1}{\left.\left(a^{2}+2 x+1\right)^{\frac{1}{2}}-\left(x^{2}-1\right)\right)^{2}} \times\left[\frac{1}{2}(x+x)\left(x^{2}+2 x-1\right)^{-\frac{1}{2}}-\frac{1}{2}(x)\left(x^{2}-1\right)^{-\frac{1}{2}}\right]}{-\frac{1}{x^{2}}}\right]$
 Seur The untr a wise PMer (a)
$\ln L=\lim _{x \rightarrow \infty}\left[\frac{1}{\sqrt{x+2 x-2}-\sqrt{x^{2}-1}}\right] \times \lim _{x \rightarrow \infty}\left[-x^{2}\left[\frac{x+1}{\sqrt{x+2+2}}-\frac{2}{\sqrt{x_{2}-1}}\right]\right]$ $\ln l=\frac{1}{1} \times \lim _{x \rightarrow \infty}\left[-x^{2}\left[\frac{(x+1) \sqrt{2^{2}} 1}{\sqrt{x^{2}+2 x-1} \sqrt{x^{2}-1}+\sqrt{2}+1}\right]\right]$
 $\ln L=\lim _{x \rightarrow \infty}\left[\frac{(x+1) \sqrt{x^{2}-1}-2 \sqrt{x^{2}+z^{2}-1}}{\sqrt{1+\frac{2}{x}-\frac{1}{x^{2}} \sqrt{1-\frac{1}{x}}}}\right]$ Squt the wint ina anvante Shase $\ln L=-\frac{\lim _{\infty}[(5+1) \sqrt{2 x-2}-x \sqrt{2}+2 x-1}{\lim _{x \rightarrow \infty}\left[\sqrt{1+\frac{2}{4}-\frac{1}{2}} \sqrt{1-\frac{1}{2}}\right]}$ $\ln L=-\lim _{x \rightarrow \infty}\left[(2+1) \sqrt{2^{2}-1}-2 \sqrt{x^{2}+2-1}\right]$
 $\left[\frac{\left[(x+1) \sqrt{x^{2}-1}-2 \sqrt{x^{2}+2 x-1}\right]\left[(x+1) \sqrt{2 x^{2}-1}+2 \sqrt{x^{2}+2 x-1}\right]}{\left[\left[(x+1) \sqrt{2 x-1}+2 \sqrt{x^{2}+2 x-1}\right]\right.}\right.$

$$
\mathrm{e}^{-\frac{1}{2}}=\frac{1}{\sqrt{\mathrm{e}}}
$$

Retarinal to the CMIT
$\ln L=-\lim _{x \rightarrow \infty}\left[\frac{x^{2}-2 x-1}{(x+4) \cdot \sqrt{x^{2}+1}+\sqrt{x^{2}+\sqrt{2 x}}}\right]$
 $\ln L-\frac{1}{|x \sqrt{1}+\sqrt{1}|}$
$\ln L=-\frac{1}{2}$
$L=e^{-\frac{1}{2}}$

