LEGENDRE'S EQUATION

Summary on Legendre Functions/Polynomials
Legendre's Differential Equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n-1) y=0, n \in \mathbb{R}
$$

General Solution of Legendre's Differential Equation

$$
\begin{aligned}
y= & A\left[1-\frac{(n+1) n}{2!} x^{2}+\frac{(n+3)(n+1) n(n-2)}{4!} x^{4}-\frac{(n+5)(n+3)(n+1) n(n-2)(n-4)}{6!} x^{6}+\ldots\right] \\
& B\left[x-\frac{(n+2)(n-1)}{3!} x^{3}+\frac{(n+4)(n+2)(n-1)(n-3)}{3!} x^{5}-\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} x^{7}+\ldots\right]
\end{aligned}
$$

- If n is an even integer, the first solution terminates after a finite number of terms, while the second one produces an infinite series.
- If n is an odd integer, the second solution terminates after a finite number of terms, while the first solution produces an infinite series.
- The finite solutions are the Legendre Polynomials, also known as solutions of the first kind, denoted by $P_{n}(x)$.
- The infinite series solutions are known as solutions of the second kind, denoted by $Q_{n}(x)$.

The second solution $Q_{n}(x)$ can be written in terms of $P_{n}(x)$ by

$$
Q_{n}(x)=P_{n}(x) \int \frac{1}{\left(1-x^{2}\right)\left(P_{n}(x)\right)^{2}} d x
$$

Created by T. Madas

The infinite series form for the Legendre's polynomial $P_{\boldsymbol{n}}(x)$ is given by

$$
P_{n}(x)=\sum_{k=0}^{N}\left[\frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}(-1)^{k} x^{n-2 k}\right]
$$

where N is the floor function

$$
N= \begin{cases}\frac{1}{2} n & \text { if } n \text { is even } \\ \frac{1}{2}(n-1) & \text { if } n \text { is odd }\end{cases}
$$

The generating function for the Legendre's polynomial $\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{x})$ is given by

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

Question 1
Find the two independent solutions of Legendre's equation

$$
\begin{gathered}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0, n \in \mathbb{R} . \\
y=A\left[1-\frac{(n+1) n}{2!} x^{2}+\frac{(n+3)(n+1) n(n-2)}{4!} x^{4}-\frac{(n+5)(n+3)(n+1) n(n-2)(n-4)}{6!} x^{6}+\ldots\right] \\
\text { 十 } \\
B\left[x-\frac{(n+2)(n-1)}{3!} x^{3}+\frac{(n+4)(n+2)(n-1)(n-3)}{3!} x^{5}-\frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} x^{7}+\ldots\right]
\end{gathered}
$$

 (1) Ascmit A scution of THE Feral $y=\sum_{k=0}^{\infty} a_{k} z^{k+\infty}=\sum_{k=0}^{\infty} a_{k} x^{k}$ $\frac{d u}{d x}=\sum_{k=1}^{\infty} a_{e} k x^{k-1}$ $\frac{d^{2} y}{d x^{2}}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$ Q. sub mas Tit O.Dt $\Rightarrow \sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}-\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k}-2 \sum_{k=1}^{\infty} a_{k} k x^{k}+h(k+1) \sum_{k-0}^{\infty} a_{k} x^{k}=0$ (1). The Smatuts phowe in Hefest somantias is x° \& THe Hates is x^{2} fure ax x° \& x^{\prime} $2 a_{2} 2^{0}+6 a_{3} z^{1}+\sum_{k=4}^{\infty} a_{k} k(k-1)^{k-2}-\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k}-2 a_{1} a^{1}-2 \sum_{k=2}^{\infty} a_{2} k^{2}+n(n+1) g x^{2}+n(n+1) a_{1} 2^{1}+n(n+1)^{1} \sum_{k=2}^{\infty} a_{2}^{k}=0$ $\underbrace{\left[2 a_{2}+n(v+1) a_{0}\right]}+\left[6 a_{3}-2 a_{1}+n(n+1) a_{1}\right] \lambda+\sum_{k=4}^{\infty} a_{k} k(k-1) x^{k-2}-\sum_{k=2}^{\infty} a_{k} k(k-1) x^{2}-2 \sum_{k=2}^{\infty} a_{k} k x^{k}+n(n+1) \sum_{k=1}^{\infty} a_{k} x^{k}=0$ chare fiesets Theer is no indicit quatial

\square

Question 2
Legendre's equation is given below

$$
\left(1-t^{2}\right) \frac{d^{2} w}{d t^{2}}-2 t \frac{d w}{d t}+n(n+1) w=0, n \in \mathbb{N}
$$

a) By assuming a series solution of the form

$$
w(t)=\sum_{r=0}^{\infty} a_{r} t^{r}, a_{0} \neq 0
$$

show by a detailed method that

$$
a_{r+2}=-\frac{(n-r)(n+r+1)}{(r+2)(r+1)} a_{r}
$$

b) By rewriting the recurrence relation of part (a) backwards, and taking the value of a_{n} as

$$
a_{n}=\prod_{m=1}^{n} \frac{(2 n-2 m+1)}{n!}
$$

show further that the Legendre's polynomials $P_{n}(t)$ can be written as

$$
P_{n}(t)=\sum_{k=0}^{N}\left[\frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}(-1)^{k} t^{n-2 k}\right]
$$

where N is the floor function

$$
N=\left\{\begin{array}{cl}
\frac{1}{2} n & \text { if } n \text { is even } \\
\frac{1}{2}(n-1) & \text { if } n \text { is odd }
\end{array}\right.
$$

Question 3
It can be shown that the Legendre's polynomials $P_{n}(x)$ can be written as

$$
P_{n}(x)=\sum_{k=0}^{N}\left[\frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}(-1)^{k} x^{n-2 k}\right]
$$

where N is the floor function

$$
N=\left\{\begin{array}{cl}
\frac{1}{2} n & \text { if } n \text { is even } \\
\frac{1}{2}(n-1) & \text { if } n \text { is odd }
\end{array}\right.
$$

Show that the generating function for $P_{n}(x)$ satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

- more minupuatians
$=\frac{1 \times 3 \times 5 \ldots(2 n-1)}{n!} a^{n}-\frac{(\times 3 \times 5 \ldots(2 n+3)}{2(n-1)!} \frac{(n-1)}{1!} x^{n-2}+\frac{1 \times 3 \times 5 \times \ldots(2)+5)}{2^{2}+(n-2)!} \frac{(n-1 \mid(y-2)}{2!} x^{n-2}-\ldots$
\qquad $=\frac{1 \times 3 \times 5 \ldots(2 n-1)}{n!} x^{x}-\frac{1 \times 3 \times 5 \ldots(2 n-1)}{2 n!} \times \frac{n(n-1)}{2 n-1} a^{n-2}+\frac{1 \times 3 \times 5 \ldots(2 n-1)}{2^{2} n!} \times \frac{n(n-1)(n-2)(n-3)}{2!(2 n-1)(x n-5)} x^{n-4}-\ldots$ $=\frac{1 \times 3 \times 5 \times \ldots(2 n-1)}{n!}\left[x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2^{2} \times 2!(2 n-1)(2 n-3)} x^{n-4}-\frac{n(n-1)((x-2)(n-3)(n-4)(n-5)}{\left.2^{2} \times 3\right)(n n-1)(n-3)(2 n-5)} x^{4-6}+\cdots\right]$

$(=1)^{k} r^{n-2 k} \frac{(2 n-1)(2 n-3) \times \ldots \times 5 \times 3 \times 1}{n!} \times \frac{n(n-1(n-2) \ldots(n-22 n+1)}{2^{k} \times k!(2 n-1)(2 n-3) \cdots(2 n-2 k+1)}$
 (5) (2n-1)(n-3)(2n-5)..5x3x1=$\frac{2 n(2 n-1)(2 n-2)(2 n-3) \ldots \times 5 \times 4 \times 3 \times 2 \times 1}{2((2 n-2)(n-4)+4 \times 2}=\frac{(2 n)!}{2^{n}[n(n-1)(n-2) \cdot 2 \times]}=\frac{(2 n)!}{2^{n} n!}$

Question 4
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right] \text {. }
$$Use this relationship to prove that

\square , proof

Created by T. Madas

Question 5
The generating function $g(x, t)$ for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\begin{aligned}
& g(x, t)=\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right] . \\
& \text { to prove that } \\
& \frac{\partial}{\partial x}[g(x, t)]+\frac{\partial}{\partial t}[g(x, t)]=x[g(x, t)]^{3} .
\end{aligned}
$$

Use this relationship to prove that
\square , proof

Created by T. Madas

Question 6

$$
f(x) \equiv 10 x^{3}-3 x^{2}+x-1
$$

Express $f(x)$ as a linear combination of Legendre's polynomials, $P_{n}(x)$.

You may assume

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $\quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$
- $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$,
- $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
$f(x)=4 P_{3}(x)-2 P_{2}(x)+7 P_{1}(x)-2 P_{0}(x)$

Question 7
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

By differentiating the above relationship with respect to t, prove that

$$
(2 n+1) x P_{n}(x)-(n+1) P_{n+1}(x)+n P_{n-1}(x)=0
$$

\square , proof

$\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{4} P_{t}(t)\right]$
Diffacinalift with respect to t
$\Rightarrow-\frac{1}{2}(1-2 x t+2)^{-\frac{3}{2}}(-2 x+2 t)=\sum_{n=0}^{\infty}\left[n t^{n-1} P_{n}(-x)\right]$
$\Rightarrow(x-t)\left(1-22 t+t^{2}\right)^{-\frac{2}{2}}=\sum_{n=0}^{\infty}\left[n t^{n-1} P_{n}(x)\right]$
$\Rightarrow(x-t)\left(1-2 x t+t^{2}\right)^{-\frac{2}{2}}\left(1-2 x t+t^{2}\right)=\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty}\left[n t^{n-1} P_{1}(x)\right]$
$\Rightarrow(x-t)\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty}\left[n t^{n-1} P_{n}(x)\right]$
$\Rightarrow(x-t) \sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]=\left(1-2 x t+t^{2}\right) \sum_{n=0}^{\infty}\left[n t^{n-1} P_{t}(x)\right]$
$\Rightarrow \sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)-t^{n+1} P_{n}(x)\right]=\sum_{n=0}^{\infty}\left[n t^{n-1} P_{1}(x)-2 x n t^{n} P_{n}(x)+n t^{n+1} P_{n}(x)\right]$
quatina cosfficinss of t, say $\left[t^{n}\right]$.
$\Rightarrow x P_{n}(x)-P_{n-1}(x)=(n+1) P_{n+1}(x)-2 a n P_{n}(x)+(n-1) P_{4-1}(x)$
$\Rightarrow 0=\left(n+1 P_{n+1}(x)-2 x n P_{n}(x)-x P_{n}(x)+(n-1) P_{n-1}(x)+P_{n-1}(x)\right.$
$\Rightarrow 0=(n+1) P_{4+1}(x)-(2 x n+x) P_{n}(x)+n P_{n-1}(x)$
$\Rightarrow(n+1) P_{4 x}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0$
-ta repureto

Created by T. Madas

Question 8
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

By separately differentiating the above relationship once with respect to t and once with respect to x, prove that
\square , proof

Question 9
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

a) Use this result to show that

$$
P_{n}(1)=1 .
$$

b) By using the result of part (a) and Legendre's equation, deduce that

$$
P_{n}^{\prime}(1)=\frac{1}{2} n(n+1) .
$$

\square , proof
a) - stmeting from tif citigeating funotion br leffnnore's poynomials $\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]$ - Letting $x=1$, in the heove relatlangtie
$\Rightarrow\left(1-2 t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(1)\right]$
$\Rightarrow\left[(1-t)^{2}\right]^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{4} P_{n}(1)\right]$
$\Rightarrow(1-t)^{-1}=\sum_{n=0}^{\infty}\left[t^{u} P_{4}(1)\right]$
$\rightarrow \underline{1+t}+\underline{t}+t^{2}+\cdots=P_{0}(1)+\underline{t P_{1}(1)}+t^{2} P_{2}(1)+t^{2} P_{1}(1)+\cdots$

- Htwce HHe Refut perous BY conertason $\quad P_{n}(1)=1$
b) Stnetina with legandre's equation, whbse solution is $y=P_{n}(x)$
$\Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$
$\Rightarrow\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$
$\Rightarrow\left(1-x^{2}\right) P_{4}^{\prime \prime}(x)-2 x P_{4}^{\prime}(x)+n(n+1) P_{4}(x)=0$
- LET $x=1$ a Nott from Pant (a), $P_{n}(1)=1$
$\Rightarrow \quad-2 P_{n}^{\prime}(1)+n(n+1)=0$
$\Rightarrow \quad P_{n}^{\prime}(1)=\frac{1}{2} n(n+1)$

Question 10
Use trigonometric identities to show that

$$
\sin ^{2} \theta=\frac{8}{35} P_{4}(\cos \theta)-\frac{16}{21} P_{2}(\cos \theta)+\frac{8}{15} P_{0}(\cos \theta)
$$

You may assume

- $\quad P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$
- $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$,
- $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$

Question 11
The generating function $g(x, t)$ for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
g(x, t)=\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

Verify that $g=g(x, t)$ is a solution of the differential equation

Question 12
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

a) Use this result to show that

$$
P_{n}(-1)=(-1)^{n}
$$

b) By using the result of part (a) and Legendre's equation, deduce that

Created by T. Madas

Question 13
The Legendre's polynomial $P_{n}(x)$ is a solution of the differential equation

Created by T. Madas

Question 14

The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

a) By differentiating the above relationship with respect to t, prove that

$$
(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x) .
$$

b) By separately differentiating the generating function for the Legendre's polynomials once with respect to t and once with respect to x, prove that

$$
n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)
$$

c) Use parts (a) and (b) to show that

$$
(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)+P_{n-1}^{\prime}(x) .
$$

d) Use parts (b) and (c) to deduce that

$$
(n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x) .
$$

Question 15
The generating function for the Legendre's polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right] \text {. }
$$

Use this result to show that ...
\ldots if n is even, $P_{n}(x)$ is an even polynomial in x.
... if n is odd, $P_{n}(x)$ is an odd polynomial in x.

Question 16
The generating function for the Legendre's Polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

a) Use this result to show that

$$
P_{2 n}(0)=\frac{(-1)^{n}(2 n)!}{2^{2 n} n!}
$$

b) Deduce the value of $P_{2 n+1}(0)$.

$$
P_{2 n+1}(0)=0
$$

Question 17
Legendre's equation is given below

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0, \quad n \in \mathbb{R}
$$

Use the substitution $x=\cos \theta$ to show that

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left[\frac{d y}{d \theta} \sin \theta\right]+n(n+1) y=0
$$

\square

Created by T. Madas

Question 18
Find the two independent solutions of Legendre's equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

$$
y=A x+B\left[\frac{1}{x} \ln \left(\frac{1+x}{1-x}\right)-1\right]
$$

Question 19
The generating function for the Legendre's Polynomials $P_{n}(x)$, satisfies

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\left[t^{n} P_{n}(x)\right]
$$

Using this result, and integrating both sides with respect to t, from 0 to 1 , show that

$$
\sum_{n=0}^{\infty}\left[\frac{P_{n}(\cos \theta)}{n+1}\right]=\ln \left[1+\operatorname{cosec}\left(\frac{1}{2} \theta\right)\right]
$$

\square

$\Rightarrow \sum_{n=0}^{\infty} \frac{P_{1}(\cos \theta)}{n+1}=\left[\ln \left[\frac{u}{\sin \theta}+\sqrt{\frac{u^{2}}{\sin ^{2} \theta}+1}\right]\right]_{u=-\cos \theta}^{1-\cos \theta}$
$\Rightarrow \sum_{u=0}^{\infty} \frac{P_{u}(\cos \theta)}{n+1}=\left[\ln \left[\frac{\left.u+\sqrt{u^{2}+\sin ^{2} \theta}\right)}{\sin \theta}\right]\right]_{u=-\cos \theta}^{1-\cos \theta}$
$\Rightarrow \sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}=\ln \left[\frac{1-\cos \theta+\sqrt{(1-\cos \theta)^{2}+51^{2} \theta}}{\sin \theta}\right]$
$\Rightarrow \sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}-\ln \left[\frac{-\cos \theta+\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}{\sin \theta}\right]$
$\Rightarrow \sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}=\ln \left[\frac{1-\cos \theta+\sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}}{1-\cos \theta}\right]$
$\Rightarrow \sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}=\ln \left[\frac{1-\cos \theta+\sqrt{2-2 \cos \theta}}{1-\cos \theta}\right]$
$\Longrightarrow \sum_{n=0}^{\infty} \frac{P_{4}(\cos \theta)}{4+1}=\ln \left[\frac{(1-\cos \theta)+\sqrt{2} \sqrt{1-\cos \theta}}{1-\cos \theta}\right]$
$\Longrightarrow \sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}=\ln \left[\frac{\sqrt{1-\cos \theta}+\sqrt{2}}{\sqrt{1-4 \sin }}\right]$
$\Rightarrow \sum_{\substack{n-\infty}}^{\infty} \frac{P_{1}(\cos \theta)}{h+1}=\ln \left[\frac{\sqrt{1-\left(1-2 \sin ^{2} \theta\right)}+\sqrt{2}}{\sqrt{1-\left(1-2 \sin ^{2} \frac{2}{2}\right)}}\right]$ $\Rightarrow \sum_{4=0}^{\infty} \frac{P_{4}(\cos \theta)}{n+1}=\ln \left[\frac{\sqrt{2 \sin n^{2} \frac{2}{2}}+\sqrt{2}}{\sqrt{2 \sin \frac{\pi}{2}} \frac{\pi}{2}}\right]=\ln \left[\frac{\sqrt{2} \sin \frac{\theta}{2}+\sqrt{2}}{\sqrt{n^{2}} \sin \frac{\theta}{2}}\right]$
$\therefore 1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\frac{1}{4} P_{3}(\cos \theta)+\cdots \frac{1}{n+1} P_{n}(\cos \theta)=\ln \left[\frac{1+\sin \theta}{\sin \theta / 2}\right]$

Question 20
The generating function g for the Legendre's polynomials $P_{n}(x)$, satisfies
a) By differentiating g with respect to t, prove that

$$
(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)
$$

b) By differentiating g once with respect to t and once with respect to x, prove that

$$
n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)
$$

c) Use parts (a) and (b) to show that

$$
(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)+P_{n-1}^{\prime}(x)
$$

d) Use parts (b) and (c) to deduce that

$$
(n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)
$$

e) Use parts (b) and (d) to show that

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n\left[P_{n-1}(x)-x P_{n}(x)\right]
$$

f) Use parts (a) and (e) to show that

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=(n+1)\left[x P_{n}(x)-P_{n+1}(x)\right]
$$

Question 21
Find one series solution for the Legendre's equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0, n \in \mathbb{R}
$$

about $x=1$.

$$
y=A \sum_{r=0}^{\infty}\left[\frac{(n+r)!}{(n-r)!} \times \frac{1}{(r!)^{2}} \times\left(\frac{x-1}{2}\right)^{2}\right]
$$

