asmains.co Created by T. Madas SMATHS.CO.

1.4.6.6

naths.com

asmaths.com

LEGENDRE'S

including Legendre's functions and Legendre's polynomials

COM I.V.C.B. Malasmanna Malasmanns.Com

I.Y.C.B. Madasman, Com I.Y.C.B. Manager

I.V.C.B. Madasmaths.Com

lasmans.com i.v.

Summary on Legendre Functions/Polynomials

Legendre's Differential Equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n-1)y = 0, \ n \in \mathbb{R}$$

General Solution of Legendre's Differential Equation

$$y = A \left[1 - \frac{(n+1)n}{2!} x^2 + \frac{(n+3)(n+1)n(n-2)}{4!} x^4 - \frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!} x^6 + \dots \right]$$

$$+ B \left[x - \frac{(n+2)(n-1)}{3!} x^3 + \frac{(n+4)(n+2)(n-1)(n-3)}{3!} x^5 - \frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!} x^7 + \dots \right]$$

- If *n* is an even integer, the first solution terminates after a finite number of terms, while the second one produces an infinite series.
- If *n* is an odd integer, the second solution terminates after a finite number of terms, while the first solution produces an infinite series.
- The finite solutions are the Legendre Polynomials, also known as solutions of the first kind, denoted by $P_n(x)$.
- The infinite series solutions are known as solutions of the second kind, denoted by $Q_n(x)$.

The second solution $Q_n(x)$ can be written in terms of $P_n(x)$ by

$$Q_n(x) = P_n(x) \int \frac{1}{(1-x^2)(P_n(x))^2} dx$$

The infinite series form for the Legendre's polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^{N} \left[\frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} (-1)^k x^{n-2k} \right],$$

×.G.b.

1.

COM

I.F.G.B.

where N is the floor function

V.G.B. May

I.F.G.B.

$$V = \begin{cases} \frac{1}{2}n & \text{if } n \text{ is even} \\ \frac{1}{2}(n-1) & \text{if } n \text{ is odd} \end{cases}$$

The generating function for the Legendre's polynomial $P_n(x)$ is given by

 $(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$

Y.C.P.

Created by T. Madas

C,

Question 1

Find the two independent solutions of Legendre's equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0, \ n \in \mathbb{R}.$$

$$=A\left[1-\frac{(n+1)n}{2!}x^{2}+\frac{(n+3)(n+1)n(n-2)}{4!}x^{4}-\frac{(n+5)(n+3)(n+1)n(n-2)(n-4)}{6!}x^{6}+\dots\right]$$

$$B\left[x - \frac{(n+2)(n-1)}{3!}x^3 + \frac{(n+4)(n+2)(n-1)(n-3)}{3!}x^5 - \frac{(n+6)(n+4)(n+2)(n-1)(n-3)(n-5)}{7!}x^7\right]$$

$$\begin{array}{c} (1-2^{k}) \frac{d_{2}}{d_{2}} - 2x \frac{d_{1}}{d_{2}} + \eta(u_{1}) = 0 \\ \frac{d_{2}}{d_{2}} - \frac{d_{2}}{d_{2}} + \frac{d_{2}}{d_{2}} + \eta(u_{1}) = 0 \\ \frac{d_{2}}{d_{2}} - \frac{d_{2}}{d_{2}} + \eta(u_{1}) = 0 \\ \frac{d_{2}}{d_{2}} -$$

F.G.B.

I.C.P.

I.C.B.

Madasn,

Created by T. Madas

0

R.

Question 2

Legendre's equation is given below

$$\left(1-t^2\right)\frac{d^2w}{dt^2}-2t\frac{dw}{dt}+n(n+1)w=0,\ n\in\mathbb{N}.$$

a) By assuming a series solution of the form

$$w(t) = \sum_{r=0}^{\infty} a_r t^r, a_0 \neq 0,$$

show by a detailed method that

$$a_{r+2} = -\frac{(n-r)(n+r+1)}{(r+2)(r+1)}a_r$$

b) By rewriting the recurrence relation of part (a) backwards, and taking the value of a_n as

$$a_n = \prod_{m=1}^n \frac{(2n-2m+1)}{n!}$$

show further that the Legendre's polynomials $P_n(t)$ can be written as

$$P_n(t) = \sum_{k=0}^{N} \left[\frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} (-1)^k t^{n-2k} \right],$$

where N is the floor function

$$V = \begin{cases} \frac{1}{2}n & \text{if } n \text{ is even} \\ \frac{1}{2}(n-1) & \text{if } n \text{ is odd} \end{cases}$$

proof

[solution overleaf]

Question 3

It can be shown that the Legendre's polynomials $P_n(x)$ can be written as

$$P_n(x) = \sum_{k=0}^{N} \left[\frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} (-1)^k x^{n-2k} \right].$$

where N is the floor function

$$V = \begin{cases} \frac{1}{2}n & \text{if } n \text{ is even} \\ \frac{1}{2}(n-1) & \text{if } n \text{ is odd} \end{cases}$$

tion for $P_n(x)$ satisfies

Show that the generating function for $P_n(x)$ satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

proof

2

NORE MANIPULATIONS $\left(\left(-2\alpha t+t^{-2}\right)^{\frac{1}{2}}=\left(\left(-t\left(-\alpha-t\right)\right)^{-\frac{1}{2}}=\left(+-\frac{t}{t}\left[t^{2}\left(\alpha-t\right)\right]+\frac{-t^{2}\left(\frac{2}{2}\right)}{t^{2}}\left[t^{2}\left(t^{2}\alpha-t\right)\right]^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)}{t^{2}}\left(-t^{2}\left(\alpha-t\right)\right]^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)}{t^{2}}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}}{t^{2}}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}}{t^{2}}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\frac{2}{2}\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\right)^{2}\left(-t^{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\left(\frac{2}{2}\right)^{2}}+\frac{-t^{2}\left(\frac{2}{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\left(\alpha-t\right)\right)^{2}+\frac{-t^{2}\left(\frac{2}{2}\left(\frac{2}{2}\left($ $\frac{1}{2} \frac{1}{2} \frac{1}$ $+ \frac{1}{2} + \frac$ $=\frac{1\times 3\times 2}{8} \frac{1}{(2-q_1)(q_2)} \frac{1}{q_1} - \frac{1\times 3\times 1}{2} \frac{1}{(2-q_1)} \frac{1}{q_2} \times \frac{1}{(2-q_1)} \frac{1}{q_1} \times \frac{1}{2} \frac{1}{(2-q_1)} \frac{1}{q_2} + \frac{1}{(2-q_1)} \frac{1}{q_2} \times \frac{1}{(2-q_1)} \frac{1}{(2-q_$ HE WARENAU OF IT' IN THE ABOVE BONOULAL EXAMPLISION $\frac{|\chi_3 \chi_{\lambda_1}^* \dots \chi_{p-1}^*}{n!} \mathfrak{A}^k = \frac{|\chi_3 \chi_{\lambda_1}^* \dots (2p-1)}{2 \cdot n!} \times \frac{|\chi_{p-1}^*}{2p+1} \mathfrak{A}^{k-1} \xrightarrow{|\chi_3 \chi_{\lambda_1}^* \dots (2p+1)} \times \frac{|\chi_{p-1}^* \chi_{p-1}^*}{2! (2p+1)(2p+1)} \mathfrak{A}^{k-1} \xrightarrow{|\chi_{p-1}^*} \mathfrak{A}^{k-1} \xrightarrow{$ $\sum_{u=1}^{2^{N}} \frac{1}{(v_{u} \otimes (v_{u} \otimes (v_{u}$ $\frac{|V_{2}|_{X_{n}}}{2\pi k \delta \Lambda_{n}} \frac{\partial u^{k}}{\partial u^{k}} t^{k} = \frac{|V_{2}|_{X_{n}}}{2\pi k \delta \Lambda_{n}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}{|V_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}}{|U_{2}|_{X_{n}}}} \frac{|U_{2}|_{X_{n}}}}{|U_{2}$ THE GENERAL THEM OF THE ABOUT SELLS, STRETING FROM $k\!<\!\sigma_j$ is given by = (20) - (n-1)(21) t $\underbrace{ \begin{pmatrix} k & h - 2k \\ -1 \end{pmatrix} \gamma}_{h_1} \underbrace{ \underbrace{ 2(h-1)(2h-3) \times \dots \times 2N \leq N 1}_{h_1} }_{h_1} \times \underbrace{ \underbrace{ \underbrace{ \frac{h(h-1)(h-2)}{2^K \times \left[k \right] (2h-3)}_{-\infty} (2h-2k+1)}_{2^K \times \left[k \right] (2h+3)(2h-3)_{-\infty}} \underbrace{ \underbrace{ 2(h-1)(2h-3)}_{-\infty} (2h-2k+1)}_{-\infty}$ $U_{i}^{N-2} = (2x)^{N-2} - (N-2)(2x)^{N-2} +$ $\int_{0}^{\infty} \left(2x - t \right)^{k-2} = (2x)^{k-2} - (k-2)(2x)^{k-\frac{k}{2}} + \frac{(n-3)(k-4)}{(1 \times 2} - (2x)^{k-\frac{k}{2}} + \frac{(n-3)(k-4)}{(1 \times 2} - (2x)^{k-\frac{k}{2}}$ TIDN THE CORPECTING OF th $\frac{t^{-1}}{2^{n+1}}\left(\sum_{\substack{n=0\\ n \neq n}} \left(\frac{t_n}{2}\right)^n + \frac{t_n}{2}\left(\frac{t_n}{2}\right)^n + \frac{t_n}{2}\left(\frac{t_n}$ $\frac{\chi_{1}}{2^{n}} \frac{(\chi_{2}\chi_{2} \dots (\underline{\lambda}_{l}-1))}{(\chi_{2}\chi_{2} \dots (\chi_{l}-\chi_{l}))} \stackrel{(\chi_{2}\chi_{2} \dots (\chi_{l}-\chi_{l}))}{2^{n-1}} \stackrel{(\chi_{1})}{(\chi_{2}\chi_{2} \dots (\chi_{l}-\chi_{l}))} \stackrel{(\chi_{1})}{(\chi_{2}\chi_{2} \dots (\chi_{l}))} \stackrel{(\chi_{1})}{(\chi_{1}\chi_{2} \dots (\chi_{l}))} \stackrel{(\chi_{1})$ $\frac{w(u-1)(u_{-2k-1},\ldots,(u_{-2k-1})(u_{-2k-2}),\ldots,w(3w(2w))}{(u_{-2k-1}(u_{-2k-2}),\ldots,(3w(2w))}=\frac{w!}{(u_{-2k-1})!}$ n<u>表-1)(28-26-2) … x3x2×</u> マーネー1(31-76-7) … x3x2× $=\frac{(2n)!}{\mathcal{Q}^k\left[\left[h\left(h_{l-1}\right)(h-2),\ldots,\left(h_{l}-k_{l}h\right)\right]\left(2n-2k\right)\right]}=\frac{(2n)!}{\mathcal{Q}^k\left(2n-2k\right)!\left[\left[h\left(h_{l-1}\right)(h-2),\ldots,\left(h-k_{l}h\right)\right]\right]}$ $\begin{array}{c} (2m)!\times(n-k) (n-k) (n-k)$ I.C.B. $\frac{2^{k} \times (2h) (G-k)}{2^{k} (2h) (G-k)}$ Created by T. Madas

Question 4

Y.C.B. Mal

I.G.B.

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

Use this relationship to prove that

.C.p

KG

Ś

2

mada

Created by T. Madas

0

Question 5

I.C.P.

, F.G.B.

The generating function g(x,t) for the Legendre's polynomials $P_n(x)$, satisfies

$$g(x,t) = (1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

Use this relationship to prove that

 $\frac{\partial}{\partial x} \left[g(x,t) \right] + \frac{\partial}{\partial t} \left[g(x,t) \right] = x \left[g(x,t) \right]^3.$

3

$ler g(a,t) = (1 - 2xt + t^2)^{-\frac{1}{2}}$

- $\frac{\partial \mathcal{R}}{\partial \alpha} = -\frac{1}{2} (1-2t+t^2)^{\frac{1}{2}} \times (2t) = t (1-2t+t^2)^{-\frac{1}{2}}$
- $= \pm \left[\left((-24\xi + 43)^{\frac{1}{2}} \right]^3 = \pm \left[g G(\xi) \right]^3 \right]^3$ <u>NEXT</u> DARFRONTATE & WITH SEARCE TO $\frac{1}{2}$.
- $\begin{array}{l} & & \\ & &$

2

ADDING AND THE REAVET ROLLOWS

 $\frac{\partial \mathbf{a}}{\partial \mathbf{x}} + \frac{\partial \mathbf{a}}{\partial t} = t \left[\frac{\partial (\mathbf{a} t)}{\partial t}^3 + (\mathbf{x} - t) \left[\frac{\partial (\mathbf{a} t)}{\partial t} \right]^3 \right]$ $\frac{\partial \mathbf{a}}{\partial t} + \frac{\partial \mathbf{a}}{\partial t} = x \left[\frac{\partial (\mathbf{b} t)}{\partial t} \right]^3$

 $\therefore \frac{\partial \mathbf{x}}{\partial t} (\mathbf{x} 0 | \mathbf{H}) \vdash \frac{\partial \mathbf{f}}{\partial t} (\mathbf{x} (\mathbf{x} + \mathbf{i})) = \mathbf{x} \left[\mathbf{x} (\mathbf{x} + \mathbf{i}) \right]^2$

Y.C.B.

Question 6

 $f(x) \equiv 10x^3 - 3x^2 + x - 1.$

Express f(x) as a linear combination of Legendre's polynomials, $P_n(x)$.

You may assume

- $P_0(x) = 1$
- $P_1(x) = x$

F.C.B.

Y.C.B.

- $P_2(x) = \frac{1}{2} \left(3x^2 1 \right)$
- $P_3(x) = \frac{1}{2}(5x^3 3x),$
- $P_4(x) = \frac{1}{8} (35x^4 30x^2 + 3)$

$f(x) = 4P_3(x) - 2P_2(x) + 7P_1(x) - 2P_0(x)$

 $\hat{f}_{*} = \hat{f}_{3}(x) - 2\hat{f}_{2}(x) + 7\hat{f}_{1}(x) - 2\hat{f}_{3}(x)$

·C.I

Question 7

Ĉ.Ŗ

i.C.B.

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

By differentiating the above relationship with respect to t, prove that

$$(2n+1)xP_n(x) - (n+1)P_{n+1}(x) + nP_{n-1}(x) = 0.$$

$$\begin{split} \underbrace{ she true unit the conservation function } \\ (1-24t+6)^{\frac{1}{2}} &= \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} \frac{1}{2} (1-24t+6)^{\frac{1}{2}} &= \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} \frac{1}{2} (1-24t+6)^{\frac{1}{2}} (2-26t+6)^{\frac{1}{2}} &= \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} Q_i - t(0-24t+6)^{\frac{1}{2}} &= \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) (1-24t+6)^{\frac{1}{2}} &= (1-24t+6)^{\frac{1}{2}} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) (2-24t+6)^{\frac{1}{2}} &= (1-24t+6)^{\frac{1}{2}} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) (2-24t+6)^{\frac{1}{2}} (1-24t+6)^{\frac{1}{2}} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = (1-24t+6)^{\frac{1}{2}} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = (1-24t+6)^{\frac{1}{2}} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] = \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t) \sum_{i=1}^{\infty} \left[t^{i+1} P_i Q_i \right] \\ \xrightarrow{\longrightarrow} (2-t)$$

Question 8

Ċ.B.

C,

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

By separately differentiating the above relationship once with respect to t and once with respect to x, prove that

, proof
1210
STATING WITH THE GENERATING ANCTION $(\cdot -2ut + 4^{\gamma^2} = \sum_{i=1}^{2} \left[t^{i*} P_i (\alpha) \right]$
DISCRETING FOR INTER THE AND INTERNET TO BE MANT WITH DEPART TO A SHALL
$\begin{array}{c} -\frac{1}{2}(1-2\alpha t+\theta)^{\frac{1}{2}}(-2\varepsilon) = \sum_{n=0}^{\infty} \left[e^{\alpha} F_{n}^{n}(\omega) \right] \xrightarrow{(\alpha,\beta)} \\ -\frac{1}{2}(1-2\alpha t+\theta)^{\frac{1}{2}}(-2\varepsilon) = \sum_{n=0}^{\infty} \left[e^{\alpha} F_{n}^{n}(\omega) \right] \xrightarrow{(\alpha,\beta)} \\ \end{array}$
$\begin{array}{c} (\mathbf{x}_{-t})(1_{-2\mathbf{k}t} + t^{t})^{\frac{1}{2}} = \sum_{k=0}^{\infty} \left[h(t^{k+1}\mathbf{P}_{k}(\mathbf{y})] \\ t(1_{-2\mathbf{k}t} + t^{k})^{\frac{1}{2}} = \sum_{k=0}^{\infty} \left[t^{k+1}\mathbf{K}_{k}(\mathbf{y}) \right] \end{array} \right\} \Longrightarrow$
$\begin{array}{l} t(z_{t}-t)(l_{t}-2z_{t}^{t}+t^{t})^{\frac{1}{2}} = t\sum_{k=0}^{\infty} \left[r_{t}t^{k+1}P_{k}(z_{t})\right] \\ (z_{t}-t)t(l_{t}-2z_{t}^{t},t^{k+1})^{\frac{1}{2}} = (z_{t},t)\sum_{k=0}^{\infty} \left[r_{t}t^{k+1}P_{k}(z_{t})\right] \end{array} \right\} \Longrightarrow$
$\frac{d_{20}}{d_{20}} = \frac{\delta_{20}}{\delta_{20}} \left[u^{4} R_{00} \right] = \sum_{i=1}^{\infty} \left[u^{4} R_{i0} \right] = \frac{\delta_{10}}{\delta_{20}} \left[u^{4} R_{i0} \right]$
$= \sum_{k=0}^{k} \left[\frac{1}{k} + \frac{1}{k} \left(\frac{1}{k} \right) \right] = \sum_{k=0}^{k} \left[\frac{1}{k} + \frac{1}{k} + \frac{1}{k} \right]$ Find by Equation (1) and (1) an
$\Rightarrow h P_{n}(x) = 2 P_{n}(x) - P_{nn}^{*}(x)$ $\Rightarrow h P_{n}(x) = 2 P_{n}(x) - P_{nn}^{*}(x)$ $\Rightarrow h P_{nn}(x) = 2 P_{nn}(x) - P_{nn}^{*}(x)$

2

414

Question 9

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

a) Use this result to show that

 $P_n(1) = 1.$

 $P'_n(1) = \frac{1}{2}n(n+1).$

b) By using the result of part (a) and Legendre's equation, deduce that

a) · STARTING ROW THE PRIVERATING FUNDTION BR LEAR $\left(1-2\alpha t+t^{2}\right)^{\frac{1}{2}}=\sum_{N=0}^{\infty}\left[t^{N}P_{t}(x)\right]$ LETTING OL = 1, IN THE ABOVE RELATIONSHIP. $\begin{array}{rcl} & \longrightarrow & \left(\begin{array}{c} \iota & -2t \\ -2t \\ \end{array} + t^{L} \right)^{-\frac{1}{2}} & = & \displaystyle \sum_{k=0}^{\infty} \left[t^{k} & P_{k}(t) \right] \\ \\ & \longrightarrow & \left[\left(\iota - t \right)^{k} \right]^{-\frac{1}{2}} & = & \displaystyle \sum_{k=0}^{\infty} \left[t^{k} & P_{k}(t) \right] \end{array}$ $\implies (1-t)^{-1} = \sum_{h=0}^{\infty} [t^{\mu} P_{\mu}(t)]$ \rightarrow $\underline{i} + \underline{t} + \underline{t}^2 + \underline{t}^3 + \dots = P_{\underline{a}}(\underline{i}) + \underline{t}^2 P_{\underline{a}}(\underline{i$ · HINCE THE RELOT FOLLOWS BY COMPTENSION P.(1) = 1 6 THETING WITH LEGENDRE'S EQUATION, WHERE SOUTHON IS $y = P_{n}(a)$ $\Rightarrow (1 - \chi^2) \frac{d^2y}{d\chi^2} - 2\chi \frac{dy}{d\lambda} + n(n+1)y = 0$ $\Rightarrow (l - x^2)y'' - 2xy' + n(n+1)y = 0$ $\Rightarrow (1 - x^2) P_{h}^{l}(x) - 2x P_{i}^{l}(x) + h(h+i) P_{i}(x) = 0$ • Let x = 1 a note from PART (a) , $P_n(i) = 1$ $\neg 2 \Gamma_{h}^{p'} O) + h(h+l) = O$ $\mathfrak{P}'_{n}(i) = \pm n(n+i)$

proof

Question 10

Use trigonometric identities to show that

$$\sin^2 \theta = \frac{8}{35} P_4(\cos \theta) - \frac{16}{21} P_2(\cos \theta) + \frac{8}{15} P_0(\cos \theta)$$

You may assume

I.C.B.

I.F.G.B.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{1}{2}(3x^2 1)$
- $P_3(x) = \frac{1}{2} (5x^3 3x),$
- $P_4(x) = \frac{1}{8} (35x^4 30x^2 + 3)$

¥.G.B.

N.C.

$\begin{cases} \Theta_{\alpha\beta} = \frac{\Theta}{3\sigma} P_{\alpha}^{2} \left(\omega_{\beta} \Theta \right) - \frac{(c_{\alpha}}{2t} P_{\alpha}^{2} \left(\omega_{\beta} \Theta \right) + \frac{\Theta}{3\sigma} P_{\alpha}^{2} \left(\omega_{\beta} \Theta \right) \end{cases}$
$S(x)^{2} = (x)^{2} = (1 - (x)^{2})^{2} = (1 - 2x)^{2} + (x)^{2}$
• NOD $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\implies 1 - 2x^2 + x^4 \equiv AP_4(x) + BP_2(x) + CP_0(x)$
$\implies l-2x^2+x^4 = 4\left(\frac{35}{6}x^4-\frac{5}{4}x^2+\frac{3}{6}\right)+B\left(\frac{3}{2}x^4-\frac{1}{2}\right)+C$
$\implies 1-2\lambda^2+\lambda^4=\frac{2}{3}A\lambda^4-\frac{1}{3}A\lambda^2+\frac{3}{6}A$
$\frac{3}{2}\beta t^2 - \frac{1}{2}b$
$\Longrightarrow I - 2\lambda^2 + 2\lambda^4 = \frac{3\xi}{8}A\lambda^4 + (\frac{3}{2}B - \frac{\xi}{4}A)\lambda^2 + (C - \frac{1}{2}B + \frac{\xi}{8}A)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
This

I.C.P.

COM

Madası

proof

4.6.5.

2

Question 11

ŀ.G.B.

I.C.B.

The generating function g(x,t) for the Legendre's polynomials $P_n(x)$, satisfies

$$g(x,t) = (1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

Verify that g = g(x,t) is a solution of the differential equation

 $t\frac{\partial^2}{\partial t^2}[tg] + \frac{\partial}{\partial x}\left[\left(1-x^2\right)\frac{\partial g}{\partial x}\right] = 0.$

proof

- $= \sum_{k=0}^{N-D} \mu(n+k) f_k f_n^k(0) 2x \sum_{k=0}^{N-D} f_{kn} f_n^{k}(x) + (1-x_2) \sum_{k=0}^{D} f_{kn} f_n^{k}(0) \right]$
- $= \sum_{h=0}^{\infty} \left[\left((-\lambda^{2}) P_{h}^{(\lambda)} 2 \chi P_{h}^{(\lambda)} + \eta(\eta_{+}) P_{h}^{(\lambda)} \right) + t^{\eta} \right]$

P.C.A

= 0 (t, e) is A societies or Usersone's reported

Question 12

Q,

1.0,

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

a) Use this result to show that

$$P_n\left(-1\right)=\left(-1\right)^n.$$

b) By using the result of part (a) and Legendre's equation, deduce that

 $P'_{n}(-1) = \frac{1}{2}n(n+1)(-1)^{n+1}.$

Question 13

The Legendre's polynomial $P_n(x)$ is a solution of the differential equation

 $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0, \ n \in \mathbb{R}.$

Show that

I.G.B.

I.V.G.B.

I.C.B.

S.

1.G.5.

$\left\{ \left(1-\chi^2\right) \frac{d^2y}{d\chi^2} - 2\chi \frac{dy}{d\chi} + \eta(\eta+1) \frac{dy}{d\chi} = 0 \right\}$

- AS P. (a) IS 4 SOUTH OF THIS FEWFICK
- $(1-x^2)P_{y}^{y'}(x) 2xP_{y}'(x) + h(y+x)P_{y}(x) = 0$
- $\begin{aligned} & \quad \text{In Figure The equations with Respect to a setupets a 4 1} \\ & \quad \rightarrow \int_{a}^{b} (-2a^{2}) P_{w}^{\phi}(\Delta) \ da \ 2 \int_{a}^{b} P_{w}^{b}(\Delta) \ da \ + \ w(w_{H}) \int_{a}^{b} P_{w}^{b}(\Delta) \ da \ = 0 \end{aligned}$
 - INTEGRATION BY PARTS
 - $\frac{P_{n}'(u)}{\left(1-u^{2}\right)P_{n}'(u)} + 2$
- $\Rightarrow \underbrace{\left[(1-x^2)h_{\eta}^{\prime}(x)\right]_{x}^{1}+2\left[x_{\eta}^{2}h_{\eta}^{\prime}(x)\right]_{x}^{0}+2\left[x_{\eta}^{2}h_{\eta}^{\prime}(x)\right]_{x}^{0}-2\left[x_{\eta}^{2}h_{\eta}^{\prime}(x)\right]_{x}^{0}+h(n_{H})\int_{x}^{1}h_{\eta}(x)dx=c$ $\xrightarrow{3\gamma} meg$

I.V.G.p.

- $\Longrightarrow \left[\left(1 \chi^2 \right) \beta'_{\mu}(\chi) \right]_{\chi}^1 + \eta(\eta + 1) \int_{\chi}^1 \beta_{\mu}(\chi) \, d\chi.$
- $\Rightarrow 0 ((-x)^2 P'_{\varphi}(x) + h(u_{H}) \int_{x}^{1} P_{\varphi}(x) dx$
- $\Rightarrow h(h + i) \int_{-\infty}^{1} P_{\mu}(x) d_{\lambda} = (1 x^{2}) P_{\mu}'(\lambda)$
- $\Rightarrow \int_{h}^{1} \langle x \rangle = \frac{y_{1}(y_{1h})}{(-\chi^{2})} \int_{\lambda}^{1} P_{y}(x) dx$ $\text{ for } \int_{0}^{1} P_{y}(x) dx = \frac{(1-\chi^{2})}{h(\chi)} \frac{P_{y}(x)}{h(\chi)}$

Question 14

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

a) By differentiating the above relationship with respect to t, prove that

$$(2n+1) x P_n(x) = (n+1) P_{n+1}(x) + n P_{n-1}(x).$$

b) By separately differentiating the generating function for the Legendre's polynomials once with respect to t and once with respect to x, prove that

$$n P_n(x) = x P'_n(x) - P'_{n-1}(x)$$

c) Use parts (a) and (b) to show that

$$(2n+1)P_n(x) = P'_{n+1}(x) + P'_{n-1}(x).$$

d) Use parts (b) and (c) to deduce that

$$(n+1)P_n(x) = P'_{n+1}(x) - xP'_n(x).$$

proof

STAETING ROM THE GENERATING FUNDT $\left\{ \left(1 - 2zt + t^2\right)^{-\frac{1}{2}} = \sum_{H=0}^{\infty} \left[t^{H} P_{H}(z)\right] \right\}$ $= (a-t)(1-2at+te)^{\frac{1}{2}} = \sum_{h=0}^{\infty} \left[ht^{h-1}P_{\eta}(x)\right]$ $= (2-t)(1-2xt+t^2)(1-2xt+t^2) = (1-2xt+t^2)\sum_{k=0}^{\infty} \left[u_k^{k+1} P_u(k) \right]$ $= (x-t)(1-2\alpha t+t^{2})^{\frac{1}{2}} = (1-2\alpha t+t^{2})\sum_{H=0}^{40} \left(H^{H-1} P_{t}(x) \right)$ $\Rightarrow (x-t) \sum_{h=0}^{\infty} [t^{h} P_{h}(y)] = (1-2tt+t^{h}) \sum_{h=0}^{\infty} [ht^{h+1} P_{h}(x)]$ $\implies \sum_{k=0}^{\infty} \left[t^{k} x P_{k}(x) - t^{k m} P_{\eta}(\omega) \right] = \sum_{k=0}^{\infty} \left[v t^{k m} P_{\eta}(\omega) - 2\omega t^{k} P_{\eta}(x) + v t^{k m} P_{\eta}(x) \right]$ WHTH THE COEPFICIENTS OF HOUSE OF t, SAY [t"] $\Rightarrow \mathcal{L}_{q}^{P}(x) - P_{n-1}(x) = (n+i)P_{n+1}(x) - 22ip_{q}^{P}(x) + (n-i)P_{q-1}(x)$ $\implies \bigcirc = (n+i) P_{n+i}(x) - 2(2n+i) P_{n}(x) + ((n-i)+i] P_{n-i}(x)$ $= (n+1)P_{n+1}(x) - (2n+1)\dot{x}P_{n}(x) + nP_{n-1}(x) = 0$ $= \sigma \quad \text{ficult (3)} \quad (\forall H) \ P_{u_{H}}(x) - Gy_{H}(x) \propto P_{u}(x) + h \ P_{u_{H}}(x) = 0$ DIFFERENTIATE W. R.T X $(h_{H1}) P'_{H_{H1}}(x) - (2h_{H1}) P_{h}(x) - (2h_{H1}) x P'_{h}(x) + h P'_{H_{H1}}(x) = 0$ · FROM () 2 Py(2) = (n Py (2) + P'(2)) $= (h+i) \left[\frac{P_{n}(x) - (2n+i)}{h_{H}} \right] - (2n+i) \left[h_{H}(x) - (2n+i) \left[h_{H}(x) + \frac{P_{n}(x)}{h_{H}} \right] + h_{H} \left[\frac{P_{n}(x)}{h_{H}} \right] = 0$ $\Rightarrow (n+1) P'_{n+1}(x) - (2n+1) P_{n}(x) - h(2n+1) P_{n}(x) - (2n+1) P'_{n-1}(x) + h P'_{n-1}(x) = 0$ $= (n+1) P'_{n_{H}}(x) - (2n+1)(n+1) P_{n}(x) - (n+1) P'_{n-1}(x) = 0$ $\implies P'_{n+1}(x) - (2n+1)P_{n}(x) - P'_{n-1}(x) = 0$ $\implies (2n+1)P_{\mu}(x) = P'_{\mu\mu}(x) - P'_{\mu-1}(x)$

Created by T. Madas

 $\left[(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}(x)] \right]$ Differentiate with sense to \pm_{1} , And with tensor to x. $-\frac{1}{2}(1-2xt+4t)^{\frac{1}{2}}(-2xt+2t) = \sum_{k=0}^{\infty} [t^{k+1}P_{k}(x)] \right]$ $-\frac{1}{2}(1-2xt+4t)^{\frac{1}{2}}(-2xt+2t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k+1}P_{k}(x)] \int \Rightarrow$ $(x-t)(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k+1}P_{k}(x)] \int \Rightarrow$ $(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}'(x)] \int \Rightarrow$ $t(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}'(x)] \int \Rightarrow$ $t(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}'(x)] \int \Rightarrow$ $t(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}'(x)] \int \Rightarrow$ $t(1-2xt+4t)^{\frac{1}{2}} = \sum_{k=0}^{\infty} [t^{k} P_{k}'(x)] \int \Rightarrow$

 $\begin{array}{l} t \sum_{k=0}^{\infty} \left[n t^{k+1} P_{k}(\omega) \right] = \langle \alpha, + \rangle \sum_{k=0}^{\infty} \left[t^{k+1} P_{k}'(\omega) \right] \\ \sum_{k=0}^{\infty} \left[n t^{k+1} P_{k}(\omega) \right] = \sum_{k=0}^{\infty} \left[\alpha, t^{k+1} P_{k}'(\omega) - t^{k+1} P_{k}'(\omega) \right] \\ \theta \text{ whit composite or movies or } t_{1} \text{ say} \left[t^{k-1} \right] \\ h P_{k}(\omega) = \alpha, P_{k}'(\omega) - P_{k}'(\omega) \end{array}$

- $\begin{array}{c} \textbf{d} \end{array} & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ n P_{n}(z) = \infty P_{n}'(x) P_{n-1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) P_{n-1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad \text{FPSU} \quad \underbrace{(\textbf{b})}_{n}: \ (2n+1) P_{n}(z) = P_{n+1}'(x) \\ & \bullet \quad (2n+1) P_{n}(z) = P_{n+1}'(x)$
 - Site with the fourtient theorem $P_{a}(x) = P_{a,n}(x) \alpha P_{a}(x)$ (1) $P_{a}(x) = P_{a,n}(x) - \alpha P_{a}(x)$ It there

Question 15

Ĉ.Ŗ

I.C.B.

The generating function for the Legendre's polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

Use this result to show that ...

... if *n* is even, $P_n(x)$ is an even polynomial in *x*.

... if *n* is odd, $P_n(x)$ is an odd polynomial in *x*.

$\begin{array}{l} \text{Control Type Transmitting for a strength the formula for the test of test$

K.C.

- $\implies (1 + 2\alpha t + t^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} t^k P_k(-a)$
- NOW DEPRADE + FAR -+
- $\implies (1 2zt + t^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} (-t)^k P_k(z)$ $\implies \sum_{k=0}^{\infty} t^k P_k(z) = \sum_{k=0}^{\infty} t^k (-t)^k P_k(z)$
- Comparise configurate of f^{*}
- $\Rightarrow P_{\mu}(x) = P_{\mu}(-x)(-1)^{\mu}$
- MULTIPLY THE (1)¹¹ TO THE OHHR SID \implies (-1)¹ P₂(x) = (-1)¹ (-0¹)² P₂(x)
- $\Rightarrow (-)^{*} R(\omega) = (-)^{*} R_{\mu}(\omega)$ $\Rightarrow (-)^{*} R(\omega) = (-)^{*} R_{\mu}(\omega)$
- $\begin{array}{c} \left[\begin{array}{c} P_{x}(z) = C_{1}^{A} P_{x}(z) \\ P_{xu}(-x) = C_{1}^{A} P_{xu}(z) \\ P_{xu}$
 - IF IT IS OND Py(a) IS AN AND POWNDAMAL

C.A.

Question 16

i G.B.

I.C.P.

The generating function for the Legendre's Polynomials $P_n(x)$, satisfies

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)]$$

a) Use this result to show that

$$P_{2n}(0) = \frac{(-1)^n (2n)!}{2^{2n} n!}.$$

b) Deduce the value of $P_{2n+1}(0)$.

C.p.

a) @ STACTING ROW THE GRUCEA $\left(\left(1-2\alpha t+t^{2}\right)^{-\frac{1}{2}}=\sum_{h=0}^{\infty}t^{h}P_{h}(a)\right)$ \mathcal{O} Let $q=0 \implies (1+t^2)^{-\frac{1}{2}} = \sum_{h=0}^{\infty} t^h P_{q}(o)$

5C.

- 2.H.J. SHT (NO YU)ALMOURE JUICLERAS 😕
- $= \left(\left(1 + \frac{1}{2} \right)^{-\frac{1}{2}} = \left(1 + \frac{-\frac{1}{2}}{1} + \frac{1}{2} + \frac{-\frac{1}{2} \left(-\frac{1}{2} \right)}{(\times 2)} + \frac{-\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{1}{2} \right)}{(\times 2 \times 3)} + \frac{1}{2} + \frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2} + \frac$
- $= \gg \left(\left(l + \frac{l}{l} \right)^{\frac{l}{2}} = l \frac{1}{2} t^{2s} + \frac{l \times 3}{2^{2s} \times 2^{l}} t^{s} \frac{l \times 3 \times 5}{2^{4} \times 3^{l}} t^{s} + \dots \frac{(-l)}{2^{s} \times 3^{s} \times 5^{s} (3l-1)} t^{2s} + \dots \right)$ 6 COMPACING COEFFICIENTS OF t²⁴
- $\Rightarrow P_{2h_1}(o) = \frac{(-1)^{b_1} (\mathcal{D}_{h-1}) (\mathcal{D}_{h-5}) \dots (S \times S \times 2)}{2^{b_1} n_1^{1}}$
- $\implies \bigcap_{n}(o) = \frac{(-1)^n}{2^n n!} \times \frac{2n(2n-1)(2n-2)(2n-3)(2n-4)....6\chi Sx^4\chi S^3\chi^2}{2n(2n-2)(2n-4)....6\chi 4\chi Z}$
- $\Rightarrow P_{2\eta}(v) = \frac{(-1)^{\eta}}{2^{\eta} n!} \times \frac{(2n)!}{2^{\eta} (n!)}$
- $\Rightarrow \hat{P}_{a_{t}}(o) = \frac{(-1)^{n} \hat{Q}_{n}}{2^{2n} n!}$

6) (OMPARIANG) WE DEDUCE $P_{2nd}(o) = 0$

Question 17

I.C.B.

I.C.P.

Legendre's equation is given below

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0, \ n \in \mathbb{R}.$$

Use the substitution $x = \cos \theta$ to show that

3

proof

AS REQUIRES

6

I.C.B.

1.4.5

1

.

Question 18

Find the two independent solutions of Legendre's equation

Question 19

F.C.I.

I.C.B.

The generating function for the Legendre's Polynomials $P_n(x)$, satisfies

 $\left(1-2xt+t^2\right)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} \left[t^n P_n(x)\right].$

Using this result, and integrating both sides with respect to t, from 0 to 1, show that

 $\sum_{n=0}^{\infty} \left[\frac{P_n(\cos \theta)}{n+1} \right] = \ln \left[1 + \operatorname{cosec} \left(\frac{1}{2} \theta \right) \right].$

proof

F.C.P.

STARTING BUN THE GRIERATING PONCTION FOR LEGRIDDE'S POLYNOMIALS?	J.	
$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} t^k P_{q_k}(x)$		
WHEREATE BOTH SIDES WITH RESPECT TO E, PROM too to to!		
$\Longrightarrow \int_{0}^{t} \frac{1}{\sqrt{1-2\lambda t + t^{2}}} dt = \int_{0}^{t} \left[\sum_{k=0}^{\infty} t^{k} P_{k}(\omega) \right] dt.$		
$\implies \int_{0}^{1} \frac{1}{\sqrt{1-2\chi t+t^{2}}} dt = \sum_{k=0}^{\infty} \left[P_{k}(x) \int_{0}^{1} t^{k} dt \right]$		
<pre>@Let x = insθ</pre>		
$ \longrightarrow \int_{0}^{1} \frac{1}{\sqrt{1-2t}\alpha d\beta + t^{2}} dt = \sum_{k=0}^{\infty} \begin{bmatrix} p_{k}(t\alpha b) \\ p_{k}(t\alpha b) \end{bmatrix}_{0}^{1} t^{k} dt] $		
$\longrightarrow \int_{0}^{1} \frac{1}{\sqrt{(t - \omega_{S}\theta)^{\alpha} - \omega_{S}^{2}\theta + 1}} dt = \sum_{k=0}^{\infty} \left[P_{k}(\omega_{S}\theta) \left[\frac{t}{\lfloor \frac{k}{N+1}} \right]_{0}^{1} \right]$		
$\implies \int_{0}^{1} \frac{1}{\sqrt{(\pm - \lambda \alpha \beta)^{2} + s \omega \beta \theta}} dt = \sum_{k=0}^{\infty} \frac{P_{k}(\lambda \alpha \beta)}{\kappa + 1}$	1	
$\Longrightarrow \sum_{h=0}^{\infty} \frac{P_{q}(\omega_{h})}{n_{H}} = \int_{0}^{1} \frac{1}{\sqrt{(t-\omega_{h})^{2}+2s_{h}^{2}}} dt$,i	1
$\begin{cases} g_{2M} - \frac{1}{2} = u^{-\frac{1}{2}} \\ g_{2M} - \frac{1}{2} = u^{-\frac{1}{2}} \\ g_{2M} - \frac{1}{2} = u^{-\frac{1}{2}} \\ g_{2M} - \frac{1}{2} = u^{-\frac{1}{2}} \end{cases}$	l	-
Quaran ant games and games	I	II.
$\Rightarrow \sum_{n=0}^{N=0} \frac{b^n(n2\theta)}{b^n(n2\theta)} = \int_{1-(n2\theta)}^{-(n2\theta)} \frac{1}{n^{n-(n2\theta)}} dn$		7

$\longrightarrow \sum_{h=0}^{h=0} \frac{p_{h=0}}{p_{h=1}} = \left[\arg h \left(\frac{u}{2\eta b} \right) \right]_{h=1-\eta b}^{h=-\eta b}$
$\Rightarrow \sum_{\infty}^{N=0} \frac{y_{k+1}}{b_{k}^{1}(\infty \theta)} = \left[\rho^{1} \left(\frac{2w\theta}{n} + \sqrt{\frac{2k_{k}^{2}\theta}{\sigma_{m}^{2}} + 1} \right) \right]_{1-\infty f_{k}}^{\eta \sim -\infty \theta}$
$ = \sum_{k=0}^{\infty} \frac{P_k(\omega_k)}{w_{k+1}} = \left[b_k \left[\frac{w}{w_{k+1}} + \frac{1}{\sqrt{w_{k+1}}} \right]_{w_{k-1}} \right]_{w_{k-1}}^{\infty} = 0 $
$\int_{\theta=0}^{\infty} \frac{\beta_{1}(\log_{\theta})}{\theta_{1}(1-1)} = \int_{\theta} \int_{\theta} \frac{1}{1-\theta_{1}(1-1)} = \frac{1}{1-\theta_{1}(1-1$
$= \frac{1}{2} \sum_{k=1}^{N(k-1)} \frac{e^{k+1}}{e^{k+1}} - \frac{1}{2} \int_{M} \left(\frac{1}{1-e^{k+1}} - \frac{1}{2} \int_{M} \frac{1}{e^{k+1}} \right) \frac{1}{2} \int_{M} \frac{1}{e^{k+1}} \int_{M} \frac{1}{1-e^{k+1}} \frac{1}{2} \int_{M} \frac{1}{1-e^{k+1}} \frac{1}{2} \int_{M} \frac$
$\implies \sum_{\emptyset=0}^{N=0} \frac{\alpha^{N+1}}{b^{N}(rag)} = \left[N \left[\frac{1 - rag}{1 - rag} + \sqrt{1 - 3rag} + rag (n+2n) f_{0} \right] \right]$
$\Longrightarrow \underset{h \in \mathcal{O}}{\overset{h}{\underset{h + \mathcal{O}}{\sum}}} \frac{h_{\uparrow}(usb)}{h_{\uparrow}} = \left h \left[\frac{1 - us\theta + \sqrt{2 - 2us\theta^{\dagger}}}{1 - us\theta} \right] \right $
$\Longrightarrow \sum_{h=0}^{\infty} \frac{P_{u_{h}}(\omega \theta)}{h+1} = \int_{H} \left[\frac{(1-\omega_{h}\theta) + \sqrt{2}\sqrt{1-\omega_{h}\theta}}{1-\omega_{h}\theta} \right]$
$\implies \sum_{h=0}^{\infty} \frac{P_{h}(h(b))}{h(h(b))} = h_{h} \left[\frac{\sqrt{1-c_{2}b^{2}} + \sqrt{2}}{\sqrt{1-c_{2}b}} \right]$
$\implies \sum_{\substack{h=0\\here}}^{\infty} \frac{\frac{2}{h_1(u_0Q)}}{h_{n+1}} = \left[h \left[\frac{\sqrt{1-(1-25h_1^2Q)}}{\sqrt{1-(1-25h_1^2Q)}} + \sqrt{2} \right] \right]$
$\implies \sum_{i=0}^{ q =0} \frac{ q+i }{ q } = \mu \left(\frac{\sqrt{2\pi M_{\overline{A}_{i}}^{2}} + \sqrt{2}}{\sqrt{2\pi M_{\overline{A}_{i}}^{2}} + \sqrt{2}} \right) = \mu \left(\frac{\sqrt{2\pi M_{\overline{A}_{i}}^{2}} + \sqrt{2}}{\sqrt{2} \sqrt{2} \sqrt{2}} \right)$
$\int_{-\infty}^{\infty} \frac{1}{2} \frac{d^{2}}{d^{2}} \frac{d^{2}}{d^{2}} = \left(\frac{\partial 2\omega}{\partial t}\right)_{0}^{2} \frac{1}{t_{1}} + \left($

Question 20

The generating function g for the Legendre's polynomials $P_n(x)$, satisfies

$$g(x,t) = (1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} [t^n P_n(x)].$$

a) By differentiating g with respect to t, prove that

$$(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x).$$

b) By differentiating g once with respect to t and once with respect to x, prove that

$$nP_n(x) = xP'_n(x) - P'_{n-1}(x).$$

c) Use parts (a) and (b) to show that

b) to show that

$$(2n+1)P_n(x) = P'_{n+1}(x) + P'_{n-1}(x).$$

d) Use parts (b) and (c) to deduce that

$$(n+1)P_n(x) = P'_{n+1}(x) - xP'_n(x).$$

e) Use parts (b) and (d) to show that

$$(1-x^2)P'_n(x) = n\left[P_{n-1}(x) - xP_n(x)\right].$$

f) Use parts (a) and (e) to show that

$$-x^{2} P_{n}'(x) = (n+1) [xP_{n}(x) - P_{n+1}(x)]$$

proof

[solution overleaf]

"dis)

Question 21

Find one series solution for the Legendre's equation

$$(1-x^2)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+n(n+1)y=0, n \in \mathbb{R},$$

about x = 1.

1311S.C.

I.V.G.B.

21/15

I.F.G.B.

t a THE HIGHEST IS to

$\alpha_{\Gamma+I} = -\frac{(\Gamma+C)(\Gamma+C+I)}{2(\Gamma+C+I)^2} - \alpha_{\Gamma}$

- RELATION BECOMES $= \frac{r(r+1) - N(n+1)}{2(r+1)^2} O_{f}$
- $Q_{T+i} = \frac{(h-r)(n+r+1)}{2(r+i)^2} Q_r$ $\Gamma = 0$ $O_1 = \frac{\eta(n+i)}{2 \times i^2} O_0$
- $l=1 \qquad 0_2 \ = \ \frac{(n-1)(m_2)}{2 \times 2^2} \, 0_1 \ = \ \frac{n(n-1)(n+1)(n+2)}{2^2 \times (1 \times 2)^2} \, 0_0$ $\begin{bmatrix} z & 0_3 &= \frac{(y-2)(y+3)}{2\times 3^3} \alpha_2 &= \frac{(y-2)(y-1)y_1(y+3)(y+2)(y+3)}{2^3\times (1\times 2\times 3)^2} a_0$ $a_{\frac{1}{4}} = \frac{(n-3)(n+4)}{2\times 4^{3}} a_{\frac{3}{4}} = \frac{(n-3)(n-2)(n-1)n(n+1)(n+2)}{2^{4}\times (N+2)^{3}}$
- $= \frac{(n+4)!}{(n-4)!} = \frac{\Gamma(n+4)}{\Gamma(n-3)}$ So THE K THEM WILL BE

$O_{k} = \frac{(h+k)!}{(h-k)!} \times \frac{a_{o}}{2^{k}(k!)^{2}}$

$= \left[2a_{o}c(-1) + 2a_{o}c\right]t^{c-1} + \sum_{r=0}^{\infty}a_{r}(r+c)(r+c-1)t^{r+1}\right]$ $+ \sum_{\infty}^{\infty} 2a_{\tau}(t+c)(t+c-1) +$

 $+ \sum_{k=1}^{\infty} 2a_k(r_kc) + \sum_{k=1}^{r_{kl}} a_k(r_kc) + \sum_{k=1}^{r_{kl}}$ $+ \sum_{r=1}^{\infty} 2a_r(r+c) + r+c-l$

ins,

 $\left[\frac{x-1}{x-1} \right]$

.G.

k

- $-n(n_{H}) \stackrel{g_0}{\leq} \alpha_{\Gamma} t^{\Gamma+C}$ (IND) GAL EQUATION $20_0 [c^2 - c + c] t^{c_+} = 0$
 - $C = 0 \qquad \alpha_0 \neq 0$ $C = 0 \qquad (RARATRO)$
- DUCT THE SUUMATIONS SO THEY ALL SITNET FROM N=0 $\sum_{l=0}^{\infty} \left[\alpha_{r}(r+c)(r+c-i) + 2\alpha_{r}(r+c+i)(r+c) + 2\alpha_{r}(r+c) + 2\alpha_{r+i}(r+c+i) - 4(n+i)\alpha_{r} \right] t^{1+c} = 0$
- $= \mathcal{O}_{h}\left[\left(L+C\right)\left(L+C-1\right) + 5\left(L+C\right) \mu\left(2h+1\right)\right] = -\left[S\left(L+C+1\right)\left(L+S\right) + S\left(L+C+1\right)\right] \mathcal{O}^{h+1}$
- $\Rightarrow Q_{[t_{H}]} = \frac{(r_{tc})(r_{tc-1}) + 2(r_{tc}) h(v_{H1})}{2(r_{tc}) + 2(r_{tc}) + 2(r_{tc})} Q_{\Gamma}$ $\Rightarrow O_{fk} = - \frac{(r+c)(r+c-1+2) - N(N+1)}{2(r+c+1)(r+c+1)} O_{f}$
- Ø Titus y = Son ar trik $g = \sum_{r=0}^{\infty} \left[\frac{(n+r)!}{(n-r)!} \frac{\alpha_{e} t^{r}}{\partial^{r} (r_{i}^{r})^{2}} \right]$
- $\mathcal{Q} = \mathcal{Q}_{0} \sum_{n=0}^{\infty} \frac{(n+r)!}{(n+r)!} \times \frac{1}{(r!)^{2}} \times \left(\frac{1}{2}\right)^{r}$ 26480.51NG BACK INSO 2 WE OBTAIN ONE SOUTHING
- $\mathcal{J} = \mathcal{A} \sum_{r=n}^{\infty} \left[\frac{(n+r)!}{(n+r)!} \times \frac{(t!)^2}{(t!)^2} \left(\frac{2}{2} \right)^r \right]$