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LEGENDRE’S
EQUATION

including Legendre’s functions and Legendre’s polyomials
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Summary on Legendre Functions/Polynomials

Legendre’s Differential Equation
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General Solution of Legendre’s Differential Equatio
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If nis an even integer, the first solution terminaaéer a finite number of

terms, while the second one produces an infiniiese

If nis an odd integer, the second solution terminates a finite number of

terms, while the first solution produces an infrseries.

The finite solutions are the Legendre Polynomialsp known as solutions o

the first kind, denoted b, (X).

The infinite series solutions are known as solgiaf the second kind,

denoted byQ, ().

The second solutionQ, (x) can be written in terms of P, (x) by

i
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The infinite series form for the Legendre’s polynonmal Pn(x) is given by

(2n- 2k)!

Pa(x) = (-9 2,

o 2 Ki(n=K)!(r2K)!

where N is the floor function

%n if nis even
N =

1 . .
§(n- 1) if nis odd

The generating function for the Legendre’s polynomal B, ( x) is given by

-1 ¥
(1- 2xt+ t2) ?= "R, (%)
n=0
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Question 1

Find the two independent solutions of Legendrelsagiqn

AL AP i
(1 X)dx2 2x&+ n(r 1) ¥ O, ni
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Question 2
Legendre’s equation is given below

2\ dw dw
(1-t )ﬁ- Za‘l' n(ﬁ' ])VF 0, nl

a) By assuming a series solution of the form

w(t)= g t', a0,
r=0

show by a detailed method that

(n-r)(n+ r+ 1)
(r+2)(r+2

B2 ="

b) By rewriting the recurrence relation of pdd) backwards, and taking the
value ofa, as

'
¢ (2n- 2m+ 1)
@n _O n! ’
mel

show further that the Legendre’s polynomiﬂws(t) can be written as

_ (2n- 2k)! -
l1)= . 2 ki(n- K)(n Zk)!(_l) t

where N is the floor function

%n if nis‘even
N =
$(n-1) if nis odd

proof

[ solution overleaf ]
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Question 3

It can be shown that the Legendre’s polynomlal(sx) can be written as

(2n- 2k)!

Py (4= U

o 2 k!(n- K)!(nr 2K

where N is the floor function

l . .
2n if nis even

$(n-1) if nis odd

Show that the generating function fBy(x) satisfies

(1- 2xt+ tz)_% = "R, (%) .
n=0

proof
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Question 4

The generating function for the Legendre’s polyraisiP,(x), satisfies

Nl

(- 2a+ ) 2= "R(X) .
n=0

Use this relationship to prove that
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Question 5

The generating functiog(x t) for the Legendre’s polynomialg, (x), satisfies

Nl

g(x1)=(1- 2t 2] ° = 'R(X .

n=0
Use this relationship to prove that

oo+ a(xd = x o)
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Question 6
f(x)°10¢- 3x& x 1,
Expressf (x) as a linear combination of Legendre’s polynomi&g|x) .

You may assume
R(x)=1

R (%)= x

(3:22-1)
(52~ 34,

(35x4 - 302+ g

P>(%)

ok N N

P3(x)

Py (%)

f(x)=4R(x)- 2RB( X+ 7R( - 28( X
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Question 7

The generating function for the Legendre’s polyraisP,(x), satisfies

Nl

(-2 ) 2= R(X) .
n=0

By differentiating the above relationship with resptot, prove that
(2n+2)xR(X- (rr ) Ry( 3+ nR4( ¥= 0.
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Question 8

The generating function for the Legendre’s polyraisP,(x), satisfies

Nl

(-2 ) 2= R(X) .
n=0

By separately differentiating the above relatiopsbince with respect tband once
with respect tox, prove that

nR ()= xR - R&( ¥.
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Question 9

The generating function for the Legendre’s polyraisP,(x), satisfies

Nl

(-2 ) 2= R(X) .
n=0

a) Use this result to show that
R (1)=1

b) By using the result of paf&) and Legendre’s equation, deduce that

Prgi(l):%n(ml).
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Question 10
Use trigonometric identities to show that

sin®g = 35 (cosq) (COS7)+ T85PO( cog)

You may assume
R (x)=1
R(x)=x
P (%)

o
A
\—/
1
ok N N

(3¢-1)
(5:¢- 34,
(35 - 304+ 3

P (%)

proof
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Question 11

The generating functiog(x t) for the Legendre’s polynomialg, (x), satisfies

Nl

o(x 1) =(1- 2xt+ £) 7 = 'R(Y .

n=0

Verify that g = g( X, t) is a solution of the differential equation

et (.20
tﬂtz[tg]J’ﬂX (1 Xz)ﬂx

proof
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Question 12

The generating function for the Legendre’s polyraisP,(x), satisfies

1 ¥
(-2t ) 2= R(X) .
n=0
a) Use this result to show that
Pa(- 0= (1)

b) By using the result of pa(d) and Legendre’s equation, deduce that

Ro(- = (e ¢ 97
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Question 13

The Legendre’s ponnomidPn(x) is a solution of the differential equation

2
(1- Xz)%_ ZX% n(r )y 0, ni
Show that
n(n+1) *
pe() =" ey o
1- x 1

proof
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Question 14
The generating function for the Legendre’s polyndsnRy(x), satisfies

(1- 2xt+ ) 2 = ¥ "Ry (%) .
n=0

Nl

a) By differentiating the above relationship with resptot, prove that
(2n+)xR(N=(n+Y Ru( 3+ nRy( X

b) By separately differentiating the generating fumctifor the Legendre’s
polynomials once with respect toand once with respect to, prove that

Nk (%)= xR - R&( }.
c) Use partga) and(b) to show that
(2n+D) Ry (%) = Ra( X+ R4( ).
d) Use partgb) and(c) to deduce that

(N+D) R (¥ = Rha(%- xRE ¥.

proof
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Question 15

The generating function for the Legendre’s polyndsnRy(x), satisfies

Nl

(-2 ) 2= R(X) .
n=0

Use this result to show that ...

.. if n is even,P,(X) is an even polynomial ix.
.. if n is odd,R,(x) is an odd polynomial irx.

proof
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Question 16

The generating function for the Legendre’s PolyndsnR (), satisfies

Nl

(-2 ) 2= R(X) .
n=0

a) Use this result to show that

on(0)= L

b) Deduce the value o,,(0).

I
o

P2n+1(0)
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Question 17
Legendre’s equation is given below

AL AP i
(1 X)dx2 ZXE; n(r 1)y O, ni

Use the substitutiox = cosg to show that

1 d dy .
—— — —=sing +n(n+l}y=0C
sing dg dg 79 ( )y

proof
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Question 18
Find the two independent solutions of Legendreisa¢ign

d?y _dy
1- X2 |—2- 2x—% 2% 0.
( )olx2 ax T
y:AX+B§|n g -1
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Question 19

The generating function for the Legendre’s PolyraisR, (x), satisfies

Nl

(-2 ) 2= R(X)
n=0

Using this result, and integrating both sides wé$pect tat, from 0 to 1, show that

P, (cosg) _ 1
e =In 1+cose<€§q) .
n=0

proof
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Question 20

The generating functiog for the Legendre’s polynomiaIIQ](x), satisfies

o(x 1) =(1- 2xt+ £) 2 = ¥ 'R(X .

n=0

Nl

a) By differentiatingg with respect ta, prove that

(2n+) xR (X =(n+D) By( 3+ nR4( X

b) By differentiatingg once with respect tb and once with respect to, prove
that

Nk (%)= xR - R4( }.

c) Use partga) and(b) to show that

(2n+D) R (¥ = Rha( X+ RG( ¥
d) Use partgb) and(c) to deduce that

(n+1) Ry (x) = Rl (- xRE 3.
e) Use partgb) and(d) to show that

(1- ) P(X= n B1(} xR( ¥ .

f) Use partga) and(e)to show that

(1- ) PR(X= (n 1) xB( ¥ Bl ¥

proof

[ solution overleaf ]
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Question 21
Find one series solution for the Legendre’s equatio

AL AP i
(1 X)dx2 2x&+ n(r 1) ¥ O,ni

aboutx=1.
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