LAPLACE TRANSFORMS INTRODUCTION

SUMMARY OF THE LAPLACE TRANFORM
The Laplace Transform of a function $f(t), t \geq 0$ is defined as

$$
\mathcal{L}[f(t)] \equiv \bar{f}(s) \equiv \int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t
$$

where $s \in \mathbb{C}$, with $\operatorname{Re}(s)$ sufficiently large for the integral to converge.

The Laplace Transform is a linear operation

$$
\mathcal{L}[a f(t)+b g(t)] \equiv a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)] .
$$

Laplace Transforms of Common Functions

- $\mathcal{L}\left(t^{n}\right)=\frac{n}{s^{n+1}}$

$$
\mathcal{L}(1)=\frac{1}{s}, \quad \mathcal{L}(a)=\frac{a}{s}, \quad \mathcal{L}(t)=\frac{1}{s^{2}}, \quad \mathcal{L}\left(t^{2}\right)=\frac{2}{s^{3}}, \quad \mathcal{L}\left(t^{3}\right)=\frac{3}{s^{4}}, \ldots
$$

- $\mathcal{L}\left(\mathrm{e}^{a t}\right)=\frac{1}{s-a}, \mathcal{L}\left(\mathrm{e}^{-a t}\right)=\frac{1}{s+a}$
- $\mathcal{L}(\cos a t)=\frac{s}{s^{2}+a^{2}}, \mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}}$
- $\mathcal{L}(\cosh a t)=\frac{s}{s^{2}-a^{2}}, \mathcal{L}(\sinh a t)=\frac{a}{s^{2}-a^{2}}$

Laplace Transforms of Derivatives

- $\mathcal{L}[x(t)]=\bar{x}(t)$
- $\mathcal{L}[\dot{x}(t)]=s \bar{x}(t)-x(0)$
- $\mathcal{L}[\ddot{x}(t)]=s^{2} \bar{x}(t)-s x(0)-\dot{x}(0)$
- $\mathcal{L}[\dddot{x}(t)]=s^{3} \bar{x}(t)-s^{2} x(0)-s \dot{x}(0)-\ddot{x}(0)$

Laplace Transforms Theorems

- $1^{\text {st }}$ Shift Theorem

$$
\mathcal{L}\left[\mathrm{e}^{-a t} f(t)\right]=\bar{f}(s+a) \quad \text { or } \quad \mathcal{L}\left[\mathrm{e}^{a t} F(t)\right]=\bar{f}(s-a)
$$

$$
t+a)]=\mathrm{e}^{a s} \bar{f}(s), t>-a
$$

$$
\mathcal{L}[\mathrm{H}(t-a) f(t-a)]=\mathrm{e}^{-a s} \bar{f}(s) \text { or } \mathcal{L}[\mathrm{H}(t+a) f(t+a)]=\mathrm{e}^{a s} \bar{f}(s)
$$

- Multiplication by t^{n}
- Division by t

$$
\mathcal{L}\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} \bar{f}(\sigma) d \sigma
$$

provided that $\lim _{t \rightarrow 0}\left(\frac{f(t)}{t}\right)$ exists and the integral converges.

- Initial/Final value theorem

$$
\lim _{t \rightarrow 0}[f(t)]=\lim _{s \rightarrow \infty}[s \bar{f}(s)] \quad \text { and } \quad \lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[s \bar{f}(s)]
$$

Created by T. Madas

The Impulse Function / The Dirac Function

1. $\boldsymbol{\delta}(t-c)=\left\{\begin{array}{ll}\infty & t=c \\ 0 & t \neq c\end{array}, \quad \delta(t)= \begin{cases}\infty & t=0 \\ 0 & t \neq 0\end{cases}\right.$
2. $\int_{a}^{b} \delta(t-c) d t=\left\{\begin{array}{lc}1 & a \leq c \leq b \\ 0 & \text { otherwise }\end{array}\right.$
3. $\int_{a}^{b} f(t) \delta(t-c) d t=\left\{\begin{array}{cl}f(a) & a \leq c \leq b \\ 0 & \text { otherwise }\end{array}\right.$
4. $\mathcal{L}[\delta(t-c)]=\mathrm{e}^{-c s}$
5. $\mathcal{L}[f(t) \delta(t-c)]=f(c) \mathrm{e}^{-c s}$
6. $\frac{d}{d t}[\mathrm{H}(t-c)]=\delta(t-c)$

LAPLACE TRANSFORMS FROM FIRST PRINCIPLES

Question 1
Find, from first principles, the Laplace Transform of
where k is non zero constant.

$$
f(t)=k, t \geq 0
$$

Question 2
Use integration to find the Laplace Transform of

$$
f(t)=\mathrm{e}^{a t}, t \geq 0
$$

where a is non zero constant.

Question 3
Find, from first principles, the Laplace Transform of

$$
f(t)=\cos (a t), \quad t \geq 0
$$

$$
g(t)=\sin (a t), t \geq 0
$$

where a is non zero constant.

$$
\bar{f}(s)=\frac{s}{s^{2}+a^{2}}, \quad \bar{g}(s)=\frac{a}{s^{2}+a^{2}}
$$

Question 4
Use integration to find the Laplace Transform of

$$
f(t)=\cosh (a t), t \geq 0
$$

where a is non zero constant.

Question 5
Find, from first principles, the Laplace Transform of

$$
f(t)=\sinh (a t), t \geq 0
$$

where a is non zero constant.

$$
\bar{f}(s)=\frac{a}{s^{2}-a^{2}}
$$

Question 6
Use integration to find the Laplace Transform of

$$
f(t)=t^{n}, t \geq 0
$$

where $n \neq \ldots-4,-3,-2,-1,0$.

$$
\bar{f}(s)=\frac{\Gamma(n+1)}{s^{n+1}}=\frac{n!}{s^{n+1}}
$$

Question 7
The Heaviside function $\mathrm{H}(t)$ is defined as

$$
\mathrm{H}(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Determine the Laplace transform of $\mathrm{H}(t-c)$.

Question 8
The Heaviside step function $\mathrm{H}(t)$ is defined as

$$
\mathrm{H}(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Determine the Laplace transform of $\mathrm{H}(t-c) f(t-c)$, where $f(t)$ is a continuous or piecewise continuous function defined for $t \geq 0$.

$$
\mathcal{L}(\mathrm{H}(t-c) f(t-c))=\mathrm{e}^{-c s} \mathcal{L}(f(t))
$$

Question 9
Find the Laplace transform of $\delta(t-c)$, where c is a positive constant, and hence state the Laplace transform of $\delta(t)$.

$$
\mathcal{L}[\delta(t-c)]=\mathrm{e}^{-c s}, \mathcal{L}[\delta(t)]=1
$$

\square

Created by T. Madas

Question 10
Given that $F(t)$ is a piecewise continuous function defined for $t \geq 0$, find the Laplace transform of $F(t) \delta(t-c)$, where c is a positive constant.

$$
\mathcal{L}[F(t) \delta(t-c)]=F(c) \mathrm{e}^{-c s}
$$

\square

LAPLACE

 TRANSFORM

 TRANSFORM}

GENERAL
 PRACTICE

Question 1
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(t^{3}+2 \mathrm{e}^{-2 t}\right)$
b) $\mathcal{L}\left(\mathrm{e}^{-2 t} \cosh 3 t\right)$
c) $\mathcal{L}\left(t^{2} \sin t\right)$
d) $\mathcal{L}\left(\frac{\mathrm{e}^{t}-1}{t}\right)$
e) $\mathcal{L}^{-1}\left(\frac{2}{2 s-3}\right)$
f) $\quad \mathcal{L}^{-1}\left(\frac{6 s-17}{s^{2}-6 s+9}\right)$
$, \frac{6}{s^{4}+\frac{2}{s+2}}, \frac{s+2}{s^{2}+4 s-5}, \frac{6 s^{2}-2}{\left(s^{2}+1\right)^{3}}$ $\ln \left(\frac{s}{s-1}\right), \mathrm{e}^{\frac{1}{2} t}, 6 \mathrm{e}^{3 t}+t \mathrm{e}^{3 t}$
a) by standated resucts $\mathcal{L}\left[t^{3}+2 e^{-2 t}\right]=\frac{3!}{s^{3+1}}+2 \times \frac{1}{s+2}=\frac{6}{s^{4}}+\frac{2}{s^{s+2}}$
b)

OBThin THE TEASSEM of cosh 3t fier
$L[$ osh $3 t]=\frac{s}{s^{2}-3^{2}}=\frac{s}{s^{2}-9}$ Now vanc 4 SthT" Ttreerm $\mathcal{L}\left[e^{-2} \cosh 3 t\right]=\frac{(x+2)}{(5+2)^{2}-9}=\frac{\frac{5+2}{s^{2}+4 x-5}}{\frac{1}{4}}$ Aurfanatwe in expanitiois $\mathcal{L}\left[e^{-2 t} \cosh 3 t\right]=\mathcal{L}\left[e^{-t} \times \frac{1}{2}\left(e^{3 t}+e^{-3 t}\right)\right]=\frac{1}{2} \mathcal{L}\left[e^{t}+e^{-s t}\right]$ $=\frac{1}{2}\left[\frac{1}{s-1}+\frac{1}{s+s}\right]=\frac{1}{2}\left[\frac{s+s+s-1}{(s-1)(s+q)}\right]$
 c)

Siner writ the tenosfoen of sint $L[$ sint $]=\frac{1}{s^{2}+1^{2}}=\frac{1}{8^{2}+1}$ Using the resout of nuvarpaing by t^{2} a as truct $d[\operatorname{tsn} t]=-\frac{d}{d s}[d[\sin t]]=-\frac{d}{d x}\left[\frac{1}{s^{2}+1}\right]=-\frac{d}{d}\left[\left(s^{2}+1\right)^{-1}\right]$ $=-\left[-\left(s^{2}+1\right)^{2} \times(2 s)\right]=\frac{2 s}{\left(s^{2}+1\right)^{2}}$
 $=-\frac{\left(x^{2}+1\right)^{2} \times 2-45\left(s^{2}+1\right) \times 25^{5}}{\left(5^{2}+1\right)^{4}}=\frac{85^{4}\left(5^{2}+1\right)-2\left(5^{2}+1\right)^{2}}{\left(x^{2}+1\right)^{4}}$ $=\frac{\frac{6}{5}-2\left(s^{2}+1\right)}{\left(s^{2}+1\right)^{3}}=\frac{\frac{6 s^{2}-2}{\left(s^{2}+1\right)^{3}} / f}{}$

Created by T. Madas

Question 2
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}(3 \cos 2 t-2 \sinh 3 t)$
b) $\mathcal{L}\left(2 \mathrm{e}^{-3 t} \cosh 4 t\right)$
c) $\mathcal{L}\left(4 t \mathrm{e}^{-t}\right)$
d) $\mathcal{L}\left(\frac{\sin t}{t}\right)$
e) $\mathcal{L}^{-1}\left[\frac{6}{(s-4)^{3}}\right]$
f) $\mathcal{L}^{-1}\left(\frac{s+2}{s^{2}+4 s+13}\right)$
$\frac{3 s}{s^{2}+4}-\frac{6}{s^{2}-9}, \frac{2 s+6}{s^{2}+6 s-7}$, $\frac{4}{(s+1)^{2}}, \arctan \left(\frac{1}{s}\right), 3 t^{2} \mathrm{e}^{4 t}, \mathrm{e}^{-2 t} \cos 3 t$ 18

Question 3
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(\mathrm{e}^{3 t}+3 \sin 2 t\right)$
b) $\mathcal{L}\left(3 \mathrm{e}^{3 t} \sin 2 t\right)$
c) $\mathcal{L}(t \cosh 2 t)$
d) $\mathcal{L}\left(\frac{1-\cos t}{t}\right)$
e) $\mathcal{L}^{-1}\left(\frac{5 s+1}{s^{2}-s-12}\right)$
f) $\mathcal{L}^{-1}\left(\frac{s}{s^{2}-6 s+10}\right)$
$\mathrm{e}^{3 t}(\cos t+3 \sin t)$

Created by T. Madas

Question 4
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(\frac{2 t^{4}+5 t^{2}}{t}\right)$
b) $\mathcal{L}\left(\mathrm{e}^{2 t} \cos t\right)$
c) $\mathcal{L}(4 t \sinh 3 t)$
d) $\mathcal{L}\left(\frac{\mathrm{e}^{-t}-1}{t}\right)$
e) $\mathcal{L}^{-1}\left(\frac{9 s-8}{s^{2}-2 s}\right)$
f) $\mathcal{L}^{-1}\left(\frac{2 s-10}{s^{2}+2 s+17}\right)$
$\frac{12}{s^{4}+\frac{5}{s^{2}}, \frac{2 s+6}{s^{2}+6 s-7}}$,
$\frac{24 s}{s^{2}+9}$, $\ln \left(\frac{s}{s-1}\right), 4+5 \mathrm{e}^{2 t}, \mathrm{e}^{-t}(2 \cos 4 t-3 \sin 4 t)$

Question 5
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(2 t^{2}-5\right)$
b) $\mathcal{L}\left(\mathrm{e}^{t} \sinh 2 t\right)$
c) $\mathcal{L}\left(t^{3} \mathrm{e}^{2 t}\right)$
d) $\mathcal{L}\left(\frac{\sin 2 t}{t}\right)$
e) $\mathcal{L}^{-1}\left(\frac{3 s+4}{s^{2}+9}\right)$
f) $\mathcal{L}^{-1}\left(\frac{2-s}{s^{2}+4 s-12}\right)$

$\frac{4}{s^{3}}-\frac{5}{s}, \frac{2}{s^{2}-2 s-3}$

$\frac{6}{(s-2)^{4}}$ $\arctan \left(\frac{2}{s}\right), 3 \cos 3 t+\frac{4}{3} \sin 3 t,-\mathrm{e}^{-6 t}$

Question 6
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}[(t+2)(t+3)]$
b) $\mathcal{L}\left(\mathrm{e}^{4 t} \sin 2 t\right)$
c) $\mathcal{L}\left[8 t \cosh \left(\frac{1}{2} t\right)\right]$
d) $\mathcal{L}\left(\frac{1-\cos 2 t}{t}\right)$
e) $\mathcal{L}^{-1}\left(\frac{2 s-14}{s^{2}-8 s+20}\right)$
f) $\mathcal{L}^{-1}\left[\frac{s^{2}-15 s+41}{(s+2)(s-3)^{2}}\right]$
$\frac{2}{s^{3}}+\frac{5}{s^{2}}+\frac{6}{s}, \frac{6}{s^{2}-6 s+13}$ \square
$\frac{128 s^{2}+32}{\left(4 s^{2}-1\right)^{2}}$,
$\ln \sqrt{\frac{s^{2}+4}{s^{2}}}$, $\mathrm{e}^{4 t}(2 \cos 2 t-3 \sin 2 t)$, $3 \mathrm{e}^{-2 t}+(t-2) \mathrm{e}^{3 t}$
\square

Question 7
Determine each of the following inverse Laplace transforms, showing, if appropriate, the techniques used.
a) $\mathcal{L}^{-1}\left[\frac{4 s^{2}-5 s+6}{(s+1)\left(s^{2}+4\right)}\right]$
b) $\mathcal{L}^{-1}\left[\frac{3\left(s^{2}+3\right)}{s^{4}-81}\right]$
c) $\mathcal{L}^{-1}\left[\frac{s^{2}+4}{\left(s^{2}-4\right)^{2}}\right]$
d) $\mathcal{L}^{-1}\left[\frac{6 s^{2}-2}{\left(s^{2}+1\right)^{3}}\right]$

$$
3 \mathrm{e}^{-t}+\cos 2 t-3 \sin 2 t, \frac{1}{3}(\sin 3 t+2 \sinh 3 t), t \cosh 2 t, t^{2} \sin t
$$

Question 8
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}(\cos 6 t)$
b) $\mathcal{L}\left(t^{5} \mathrm{e}^{2 t}\right)$
c) $\mathcal{L}^{-1}\left(\frac{6}{s^{2}+6 s+18}\right)$
d) $\mathcal{L}\left[(t-3)^{3} \mathrm{H}(t-2)\right]$
e) $\mathcal{L}[4 \delta(t-2)]$
f) $\mathcal{L}^{-1}\left(\frac{5 \mathrm{e}^{-s}}{s}\right)$

Question 9
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(\mathrm{e}^{3 t} \cosh 4 t\right)$
b) $\mathcal{L}\left(t^{2} \cosh t\right)$
c) $\mathcal{L}^{-1}\left(\frac{s+6}{s^{2}-6 s+18}\right)$
d) $\mathcal{L}[\mathrm{H}(t-1) \sin (3 t-3)]$
e) $\mathcal{L}\left[\mathrm{e}^{t} \delta(t-2)\right]$
$\frac{s-3}{s^{2}-6 s-7}, \frac{2 s^{3}+6 s}{\left(s^{2}-1\right)^{3}}, \mathrm{e}^{3 t}(\cos 3 t+3 \sin 3 t), \frac{3 \mathrm{e}^{-s}}{s^{2}+9}, \mathrm{e}^{-2(s+2)}$

Question 10
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left(t^{2} \mathrm{e}^{-\frac{1}{2} t}\right)$
b) $\mathcal{L}^{-1}\left(\frac{6 s+1}{9 s^{2}+1}\right)$
c) $\mathcal{L}\left[\mathrm{e}^{t-5} \mathrm{H}(t-5)\right]$
d) $\mathcal{L}^{-1}\left(\frac{8 \mathrm{e}^{-4 s}}{s^{2}+4}\right)$
e) $\mathcal{L}\left[t^{3} \mathrm{e}^{\frac{1}{3} t} \delta(t-3)\right]$
f) $\mathcal{L}\left[\mathrm{e}^{t} \mathrm{H}(t-2)\right]$

Created by T. Madas

Question 11
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left[t \sin \left(\frac{1}{2} t\right)\right]$
b) $\mathcal{L}^{-1}\left[\frac{1}{(s-2)^{6}}\right]$
c) $\mathcal{L}[(t-5) \mathrm{H}(t-5)]$
d) $\mathcal{L}^{-1}\left[\frac{3 \mathrm{e}^{-2 s}}{s^{2}-1}\right]$
f) $\mathcal{L}\left(2^{t}\right)$

$$
\frac{16 s}{\left(4 s^{2}+1\right)^{2}}, \frac{t^{5} \mathrm{e}^{-2 t}}{120}, \frac{\mathrm{e}^{-5 s}}{s}, \frac{3 \mathrm{H}(t-2) \sinh (t-2)}{s}, 9 \mathrm{e}^{-3 s}, \frac{1}{s-\ln 2}
$$

$+3$
\cdots

$$
\text { e) } \mathcal{L}\left[t^{2} \delta(t-2)\right]
$$

Question 12
Find each of the following Laplace transforms or inverse Laplace transforms, showing, where appropriate, the techniques used.
a) $\mathcal{L}\left[\mathrm{H}(t-2) \sin \left(\frac{1}{2} t-1\right)\right]$
b) $\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-4 s}}{s^{2}}\right]$
c) $\mathcal{L}\left[2 t \sin t \delta\left(t-\frac{\pi}{2}\right)\right]$
d) $\mathcal{L}\left[\mathrm{t}^{2} \mathrm{e}^{-\frac{1}{2} t} \mathrm{H}(t-2)\right]$

$$
\frac{2 \mathrm{e}^{-2 s}}{4 s^{2}+1}, \frac{(t-4) \mathrm{H}(t-4)}{}, \frac{\pi \mathrm{e}^{-\frac{1}{2} \pi s}}{}, \frac{8 \mathrm{e}^{-2(s+2)}}{(2 s+1)^{3}}\left[4 s^{2}+8 s+5\right]
$$

HEAVISIDE

FUNCTION

Question 1
The Heaviside function $\mathrm{H}(t)$ is defined as

$$
\mathrm{H}(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Determine the Laplace transform of $\mathrm{H}(t-c)$.

Question 2
The Heaviside step function $H(t)$ is defined as

$$
\mathrm{H}(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Determine the Laplace transform of $\mathrm{H}(t-c) f(t-c)$, where $f(t)$ is a continuous or piecewise continuous function defined for $t \geq 0$.

$$
\mathcal{L}(\mathrm{H}(t-c) f(t-c))=\mathrm{e}^{-c s} \mathcal{L}(f(t))
$$

Question 3
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\left\{\begin{array}{cc}
4 & 0 \leq t \leq 2 \\
12-4 t & 2<t \leq 4 \\
t-8 & t>4
\end{array}\right.
$$

a）Sketch the graph of $f(t)$ ．
b）Express $f(t)$ in terms of the Heaviside step function，and hence find the Laplace transform of $f(t)$ ．
$f(t)=4 \mathrm{H}(t)-4(t-2) \mathrm{H}(t-2)+5(t-4) \mathrm{H}(t-4), \mathcal{L}(f(t))=\frac{8}{s}-\frac{4 \mathrm{e}^{-2 s}}{s^{2}}+\frac{5 \mathrm{e}^{-4 s}}{s^{2}}$

b）Expergans Tit geret in trens of＂Hfavisises＂
$\rightarrow f(t)=4 H(t)-4 H(t-2)$
$+\frac{(12-4 t) H(t-2)}{}-\frac{(12-4 t) H(t-4)}{(t-8) H(t-4)}$ （t－8）$H(t-4)$ $\Rightarrow f(t)=4 H(t)+(8-4 t) H(t-2)+(5 t-20) H(t-4)$ $\Rightarrow f(t)=4 H(t)-4(t-2)+(t-2)+5(t-4) H(t-4)$ $\Rightarrow \bar{f}(s)=\frac{4 e^{0 s}}{s}-4\left(\frac{e^{-2 s}}{p^{2}}\right)+5\left(\frac{e^{-4 s}}{s^{2}}\right)$ $\Rightarrow \bar{f}(s)=\frac{4}{s}-\frac{4}{s^{2}} e^{-2 s}+\frac{5}{s^{2}} e^{-4 s} /$ Nat（ म十⿵冂 $\mathcal{L}[f(t-a) H(t-a)]=e^{-a s} \mathcal{L}[f(t)]$

Question 4
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\left\{\begin{array}{cc}
8 & 0 \leq t \leq 4 \\
12-t & 4<t \leq 6 \\
6 & 6<t \leq 10 \\
11-\frac{1}{2} t & t>10
\end{array}\right.
$$

Express $f(t)$ in terms of the Heaviside step function, and hence find the Laplace transform of $f(t)$.

$$
f(t)=8 \mathrm{H}(t)-(t-4) \mathrm{H}(t-4)+(t-4) \mathrm{H}(t-6)-\frac{1}{2}(t-10) \mathrm{H}(t-10) \text {, }
$$

$$
\mathcal{L}(f(t))=\frac{8}{s}-\frac{\mathrm{e}^{-4 s}}{s^{2}}+\frac{\mathrm{e}^{-6 s}}{s^{2}}-\frac{\mathrm{e}^{-10 s}}{2 s^{2}}
$$

Question 5
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\left\{\begin{array}{cc}
7-2 t & 0<t \leq 3 \\
1 & 3<t \leq 7 \\
t-6 & 7<t \leq 15 \\
0 & |t-7.5|>7.5
\end{array}\right.
$$

Express $f(t)$ in terms of the Heaviside step function, and hence find the Laplace transform of $f(t)$.

$$
f(t)=(7-2 t) \mathrm{H}(t)+2(t-3) \mathrm{H}(t-3)+(t-7) \mathrm{H}(t-7)-(t-15) \mathrm{H}(t-15)-9 \mathrm{H}(t-15),
$$

$$
\mathcal{L}(f(t))=\frac{s\left(7-9 \mathrm{e}^{-15 s}\right)-2+2 \mathrm{e}^{-3 s}+\mathrm{e}^{-7 s}-\mathrm{e}^{-15 s}}{s^{2}}
$$

Question 6
The piecewise continuous function $f(t)$ is defined as

Question 7
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-2 s}}{s^{2}}\left(3 s \mathrm{e}^{2 s}-4 \mathrm{e}^{s}+5\right)\right]
$$

a) Determine an expression for $f(t)$.
b) Sketch the graph of $f(t)$.

$$
f(t)=3 \mathrm{H}(t)-4(t-1) \mathrm{H}(t-1)+5(t-2) \mathrm{H}(t-2)
$$

Question 8
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}}\left(2-2 \mathrm{e}^{-4 s}-\mathrm{e}^{-6 s}\right)\right]
$$

Sketch the graph of $f(t)$.
\square , graph
\qquad

- (nuegting inio "Hefulsiots"
$f(t)=\mathcal{S}^{-1}\left[\frac{2}{s^{2}}-\frac{2 e^{-4 s t}}{\delta^{2}}-\frac{e^{-6 \delta}}{\delta^{2}}\right]$
$f(t)=2 t-2(t-4) H(t-4)-(t-6) H(t-6)$
$F(t)=2 t H(t)-2(t-4) H(t-4)-(t-6) H(t-6)$
- USt A TABle to Extract taf function

INTVONA	$2 t H(t)$	$-x(t-4) H(t-4)$	$-(t-6) H(t-6)$	$f(t)$
$0<t<4$	$2 t$	0	0	$2 t$
$4<t \leqslant 6$	$2 t$	$8-2 t$	0	8
$t>6$	$2 t$	$8-2 t$	$6-t$	$14-t$

- Finatay brfore sectornder afok for conminuty at $x=4, x=6$ $f(t)$
10
\square

Question 9
The piecewise continuous function $f(t)$ is defined as P

$$
f(t)=\mathcal{L}^{-1}\left[\frac{2-3 \mathrm{e}^{-4 s}+\mathrm{e}^{-8 s}}{s^{2}}\right]
$$

Sketch the graph of $f(t)$.

Question 10
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{s\left(7-9 \mathrm{e}^{-15 s}\right)-2+2 \mathrm{e}^{-3 s}+\mathrm{e}^{-7 s}-\mathrm{e}^{-15 s}}{s^{2}}\right]
$$

Sketch the graph of $f(t)$.

Question 11
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{\left(1-\mathrm{e}^{-2 s}\right)\left(1+\mathrm{e}^{-4 s}\right)}{s^{2}}\right]
$$

PERIODIC

FUNCTIONS

Question 1
The piecewise continuous function $f(t)$ is defined for $t \geq 0$ and further satisfies $f(t+\omega)=f(t)$.

Show from the definition of a Laplace transform, that

Question 2

$$
f(t)=\left\{\begin{array}{rr}
1 & 0 \leq t \leq 1 \\
-1 & 1<t<2
\end{array} \quad \text { and } \quad f(t+2)=f(t), t \geq 0 .\right.
$$

Determine the Laplace transform of $f(t)$.

Question 3

$$
f(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq 1 \\
0 & 1<t<2
\end{array} \quad \text { and } \quad f(t+2)=f(t), t \geq 0\right.
$$

Determine the Laplace transform of $f(t)$.

$$
\mathcal{L}(f(t))=\frac{1}{s\left(1+\mathrm{e}^{-s}\right)}
$$

Question 4

$$
f(t)=\left\{\begin{array}{ll}
2 & 0 \leq t \leq 3 \\
0 & 3<t<4
\end{array} \quad \text { and } \quad f(t+4)=f(t), t \geq 0 .\right.
$$

Determine the Laplace transform of $f(t)$.

Question 5

$$
f(t)=\left\{\begin{array}{ll}
2 & 0 \leq t \leq 1 \\
0 & 1<t<3
\end{array} \quad \text { and } \quad f(t+4)=f(t), t \geq 0\right.
$$

Determine the Laplace transform of $f(t)$.

Created by T. Madas

Question 6

$$
f(t)=\mathrm{e}^{t}, t \geq 0 \quad \text { and } \quad f(t+2)=f(t)
$$

Determine the Laplace transform of $f(t)$.

$$
\mathcal{L}(f(t))=\frac{\mathrm{e}^{2(1-s)}-1}{(1-s)\left(1-\mathrm{e}^{-2 s}\right)}=\frac{\mathrm{e}^{2 s}-\mathrm{e}^{2}}{(s-1)\left(\mathrm{e}^{2 s}-1\right)}
$$

Question 7

$$
f(t)=2 t, t \geq 0 \quad \text { and } \quad f(t+2)=f(t)
$$

Show that the Laplace transform of $f(t)$ is

$$
\frac{2\left(\mathrm{e}^{2 s}-2 s-1\right)}{s^{2}\left(\mathrm{e}^{2 s}-1\right)}
$$

Created by T. Madas

Question 8

$$
f(t)=\left\{\begin{array}{cl}
\sin t & 0 \leq t \leq \pi \\
0 & \pi<t<2 \pi
\end{array} \quad \text { and } \quad f(t+2 \pi)=f(t), t \geq 0\right.
$$

Show that the Laplace transform of $f(t)$ is

Question 9

$$
f(t)=t^{2}, t \geq 0 \quad \text { and } \quad f(t+3)=f(t)
$$

Show that the Laplace transform of $f(t)$ is

Question 10
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{1-2 \mathrm{e}^{-s}+\mathrm{e}^{-2 s}}{s\left(1-\mathrm{e}^{-2 s}\right)}\right]
$$

Find an expression for $f(t)$.

$$
f(t)=\left\{\begin{array}{rr}
1 & 0 \leq t \leq 1 \\
-1 & 1<t<2
\end{array} \quad f(t+2)=f(t)\right.
$$

Question 11
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{2\left(1-\mathrm{e}^{-s}\right)}{s\left(1-\mathrm{e}^{-3 s}\right)}\right]
$$

Find an expression for $f(t)$.

$$
f(t)=\left\{\begin{array}{ll}
2 & 0 \leq t \leq 1 \\
0 & 1<t<3
\end{array} \quad f(t+3)=f(t)\right.
$$

Question 12
The piecewise continuous function $f(t)$ is defined as

$$
f(t)=\mathcal{L}^{-1}\left[\frac{2 \mathrm{e}^{3 s}-2-6 s-9 s^{2}}{s^{3}\left(\mathrm{e}^{3 s}-1\right)}\right]
$$

Find an expression for $f(t)$.

$$
f(t)=t^{2} \quad 0 \leq t \leq 3 \quad f(t+3)=f(t)
$$

\square
(2 Thes $0 \leqslant t \leqslant 3$
(2) Tive Furittre
$f(t)=t^{2}-6 t+9=(t-3)^{2} \ldots 3 \leqslant t \leq 6$

SOLVING

 SIMPLE

 SIMPLE}

O.D.E.S

Question 1
Use Laplace transforms to solve the differential equation

$$
\frac{d x}{d t}-2 x=4, t \geq 0
$$

subject to the initial condition $x=1$ at $t=0$.
\square ,$x=3 \mathrm{e}^{2 t}-2$

Question 2
Use Laplace transforms to solve the differential equation

$$
\frac{d y}{d x}+2 y=10 \mathrm{e}^{3 x}, x \geq 0
$$

subject to the boundary condition $y=6$ at $x=0$.

Created by T. Madas

Question 3
Use Laplace transforms to solve the differential equation

$$
\frac{d y}{d x}-4 y=2 \mathrm{e}^{2 x}+\mathrm{e}^{4 x}, x \geq 0
$$

subject to the boundary condition $y=0$ at $x=0$.

$$
y=x \mathrm{e}^{4 x}+\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}
$$

\square

Question 4
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=2 \mathrm{e}^{3 x}, x \geq 0
$$

subject to the boundary conditions $y=5, \frac{d y}{d x}=7$ at $x=0$.

$$
y=2 \mathrm{e}^{3 x}+4 \mathrm{e}^{x}
$$

Created by T. Madas

Created by T. Madas

Question 5
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} z}{d t^{2}}-2 \frac{d z}{d t}+10 z=10 \mathrm{e}^{2 t}
$$

subject to the initial conditions $z=0, \frac{d z}{d t}=1$ at $t=0$.

$$
y=\mathrm{e}^{2 t}+\cos 3 t+\sin 3 t
$$

Question 6
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}-4 y=24 \cos 2 x, x \geq 0
$$

\square $y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-2 x}-3 \cos 2 x$
$\frac{d^{2} y}{d x^{2}}-4 y=24 \cos 2 x, x \geqslant 0, x=0, y=3, \frac{d y}{d x}=4$

$\Rightarrow y^{\prime \prime}-4 y=24 \cos 2 x$
$\Rightarrow \delta^{2} \bar{y}-5 y_{0}-y_{0}^{\prime}-4 \bar{y}=\mathcal{L}[24 \cos 2 x]$
$\Rightarrow 5^{2} y-3 s-4-4 \bar{y}=24 \times \frac{\delta^{2}}{\xi^{2}+4}$
$\Rightarrow\left(\delta^{2}-4\right) \bar{y}=3 \bar{\phi}+4+\frac{24 \xi^{\prime}}{\phi^{2}+4}$
$\rightarrow \bar{y}=\frac{3 x+4}{s^{2}-4}+\frac{245}{\left(s^{2}-4\right)\left(s^{2}+4\right)}$
$\Rightarrow \bar{y}=\frac{3 s+4}{(\xi-2)(s+2)}+\frac{a t s}{(\$-2)(\xi+2)\left(s^{2}+4\right)}$ Pherat feactans ntinly by instation (ouve of)
$\Rightarrow \bar{y}=\frac{\frac{10}{4}}{s-2}+\frac{\frac{-2}{4}}{\$+2}+\frac{\frac{48}{4 \times 8}}{5-2}+\frac{\frac{-4}{4+8}}{j^{2}+2}+\frac{4 s+B}{s^{2}+4}$
$\Rightarrow \bar{y}=\frac{\frac{5}{x}}{f-2}+\frac{\frac{1}{2}}{5+2}+\underbrace{\frac{\frac{3}{2}}{x-2}+\frac{\frac{2}{s}+2}{5}+\frac{k+8}{5+8}}$

Question 7
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=36 t+6
$$

$$
\frac{d x}{d t}+y=\mathrm{e}^{-t} \quad \text { and } \quad \frac{d y}{d t}-x=\mathrm{e}^{t} .
$$

Use Laplace transformations to solve the above simultaneous differential equations, subject to the initial conditions $x=0, y=0$ at $t=0$.
$x=-\cosh t+\sin t+\cos t, \quad y=\cosh t+\sin t-\cos t$

Question 9

$$
\frac{d x}{d t}=x+\frac{2}{3} y \quad \text { and } \quad \frac{d y}{d t}=3 y-\frac{3}{2} x
$$

Use Laplace transformations to solve the above simultaneous differential equations, subject to the initial conditions $x=1, y=3$ at $t=0$.

$$
x=\mathrm{e}^{2 t}+t \mathrm{e}^{2 t}, \quad y=3 \mathrm{e}^{2 t}+\frac{3}{2} t \mathrm{e}^{2 t}
$$

$\rightarrow y=\frac{3}{3 / 2}\left[1+\frac{2}{2}\right]$	

Question 10

$$
\frac{d^{2} x}{d t^{2}}=15 \frac{d y}{d t}-9 y+22 \mathrm{e}^{t} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=2 x+\mathrm{e}^{3 t}
$$

The functions $x=f(t)$ and $y=g(t)$ satisfy the above simultaneous differential equations, subject to the initial conditions

$$
x=2, \quad y=-3, \frac{d x}{d t}=10, \frac{d y}{d t}=-1 \quad \text { at } t=0 .
$$

a) By using Laplace transforms, show that

$$
\left(s^{4}-30 s+18\right) \bar{y}=\frac{-3 s^{5}+11 s^{4}+90 s^{2}-384 s+198}{(s-1)(s-3)}
$$

where $\bar{y}=\mathcal{L}[g(t)]$.
b) Given further that $s^{4}-30 s+18$ is a factor of $-3 s^{5}+11 s^{4}+90 s^{2}-384 s+198$, find expressions for x and y.

$$
x=4 \mathrm{e}^{3 t}-2 \mathrm{e}^{t}, \quad y=\mathrm{e}^{3 t}-4 \mathrm{e}^{t}
$$

By ustection of $\left[s^{s}\right]$ \& $\left[s^{0}\right]$
$\left(s^{4}-30 p^{2} 115^{2}\right) \bar{y}=\frac{\left.\left(c^{4}-30 s+118\right)(-3)^{\prime}+11\right)}{(x-1)(\$-3)}$ $\bar{y}=\frac{11-35}{(5-1)(5-3)}$
$\bar{y}=\frac{-4}{5-1}+\frac{1}{s-3}$
$\therefore y=e^{3 t}-4 e^{t}$
Now $x=\frac{1}{2}\left[\frac{d^{2} y}{a x 2}-e^{3 x}\right]$
$x=\frac{1}{2}\left[\left(9 e^{3 t}-4 e^{t}\right)-e^{3 t}\right]$
$x=\frac{1}{2}\left[B e^{x}-A e^{t}\right]$

Question 11
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}+x=f(t)
$$

Question 12
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=\delta(t-2)
$$

Question 13
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x=2 \delta(t-6)
$$

$$
x=\mathrm{e}^{-3 t}\left[\mathrm{e}^{2 t}-1\right]+\mathrm{e}^{-3 t} \mathrm{e}^{6}\left[\mathrm{e}^{12}-\mathrm{e}^{2 t}\right] \mathrm{H}(t-6)
$$

$\{\ddot{x}+4 \dot{x}+3 x=28(t-6)$
tating haplece trandsgens
$\Rightarrow\left[\$^{2} \bar{x}-\$ x_{0}-\dot{x}_{0}\right]+4\left[\$ \bar{x}-x_{0}\right]+3 \bar{x}=\alpha[2 \delta(t-6)]$
$\Rightarrow \$^{2} \bar{x}-2+4 \$ \bar{x}+3 \bar{x}=2 e^{-6 s^{\prime}}$
$\Rightarrow \bar{x}\left(\delta^{2}+4 s+3\right)=2-2 e^{-6 \delta}$
$\Rightarrow \bar{x}=\frac{\left.2 c_{1}-e^{-6 s}\right)}{s^{2}+45+3}$
$\Rightarrow \bar{x}=2\left(1-e^{-6 S}\right) \times \frac{1}{(x+1)(S+3)} \leftarrow$ FAREAL FRECTONS
$\Rightarrow \bar{x}=2\left(1-e^{-6 x}\right) \times\left[\frac{\frac{1}{2}}{s+1}-\frac{\frac{1}{2}}{s+3}\right]$
$\Rightarrow \bar{x}=\frac{1-e^{-\sqrt{s}}}{\bar{s}+1}-\frac{1-e^{-6 s}}{\delta+3}$
$\Rightarrow \bar{x}=\frac{1}{s+1}-\frac{e^{-6 s}}{s+1}-\frac{1}{s+3}+\frac{e^{-6 s}}{s+3}$
Incteting ...
$x(t)=e^{-t}-e^{(t-6)} H(t-6)-e^{-3 t}+e^{-3(t-6)} H(t-6)$
$x(t)=e^{-t}-e^{-3 t}+e^{3 t} e^{18} H(t-6)-e^{-t} e^{6} H(t-6)$
$X(t)=e^{-3 t}\left[e^{2 t}-1\right]+e^{-3 t} e^{6} H(t-6)\left[e^{12}-e^{2 t}\right]$

Question 14
Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}+y=f(t)
$$

given further that $y=0, \frac{d y}{d t}=1$ at $t=0$, and $f(t)$ is a known function which has a Laplace transform.

You may leave the final answer containing a convolution type integral.

$$
y=\sin t+\int_{0}^{t} f(u) \sin (t-u) d u
$$

Question 15

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=f(t)
$$

a) Use Laplace transforms to solve the above differential equation, given further that $\quad x=0, \frac{d x}{d t}=0$ at $t=0$, and $f(t)$ is a known function which has a Laplace transform.
You may leave the answer containing a convolution type integral.
b) If $f(t)=\mathrm{e}^{2 t}$ find $x=x(t)$ explicitly.

$$
x=\int_{0}^{t} f(t-u) \mathrm{e}^{-u} \sin u d u, x=-\frac{1}{10} \mathrm{e}^{-t}[3 \sin t+\cos t]+\frac{1}{10} \mathrm{e}^{2 t}
$$

