LAPLACE TRANSFORMS TRANSFORMS LAPLA TRANSFC FURTHER

SUMMARY OF THE LAPLACE TRANFORM

The Laplace Transform of a function f(t), $t \ge 0$ is defined as

$$\mathcal{L}\left[f(t)\right] \equiv \overline{f}(s) \equiv \int_0^\infty e^{-st} f(t) dt$$

where $s \in \mathbb{C}$, with $\operatorname{Re}(s)$ sufficiently large for the integral to converge.

The Laplace Transform is a linear operation

$$\mathcal{L}\left[af(t)+bg(t)\right] \equiv a\mathcal{L}\left[f(t)\right]+b\mathcal{L}\left[g(t)\right].$$

Laplace Transforms of Common Functions

 $\mathcal{L}(t^n) = \frac{n}{s^{n+1}}$

$$\mathcal{L}(1) = \frac{1}{s}, \quad \mathcal{L}(a) = \frac{a}{s}, \quad \mathcal{L}(t) = \frac{1}{s^2}, \quad \mathcal{L}(t^2) = \frac{2}{s^3}, \quad \mathcal{L}(t^3) = \frac{3}{s^4}, \dots$$

•
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}, \ \mathcal{L}(e^{-at}) = \frac{1}{s+a}$$

$$\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}, \ \mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$$

•
$$\mathcal{L}(\cosh at) = \frac{s}{s^2 - a^2}, \ \mathcal{L}(\sinh at) = \frac{a}{s^2 - a^2}$$

Laplace Transforms of Derivatives

ma.

•
$$\mathcal{L}[x(t)] = \overline{x}(t)$$

• $\mathcal{L}[\dot{x}(t)] = s\overline{x}(t) - x(0)$
• $\mathcal{L}[\ddot{x}(t)] = s^2\overline{x}(t) - sx(0) - \dot{x}(0)$

•
$$\mathcal{L}[\ddot{x}(t)] = s^3 \overline{x}(t) - s^2 x(0) - s \dot{x}(0) - \ddot{x}(0)$$

Laplace Transforms Theorems

1st Shift Theorem

$$\mathcal{L}\left[e^{-at}f(t)\right] = \overline{f}(s+a) \text{ or } \mathcal{L}\left[e^{at}F(t)\right] = \overline{f}(s-a)$$

2nd Shift Theorem in.

2nd Shift Theorem

$$\mathcal{L}[f(t-a)] = e^{-as} \overline{f}(s), t > a \text{ or } \mathcal{L}[f(t+a)] = e^{as} \overline{f}(s), t > -a.$$

$$\mathcal{L}\left[\mathrm{H}(t-a)f(t-a)\right] = \mathrm{e}^{-as}\,\overline{f}(s) \quad \text{or} \quad \mathcal{L}\left[\mathrm{H}(t+a)f(t+a)\right] = \mathrm{e}^{as}\,\overline{f}(s)$$

Multiplication by t^n

$$\mathcal{L}\left[t^{n} f(t)\right] = \left(-\frac{d}{ds}\right)^{n} \left[\overline{f}(s)\right] \text{ or } \mathcal{L}\left[t f(t)\right] = -\frac{d}{ds}\left[\overline{f}(s)\right]$$

Division by t

$$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} \overline{f}(\sigma) \ d\sigma$$

provided that $\lim_{t\to 0} \left(\frac{f(t)}{t}\right)$ exists and the integral converges.

Initial/Final value theorem

$$\lim_{t \to 0} \left[f(t) \right] = \lim_{s \to \infty} \left[s \overline{f}(s) \right] \text{ and } \lim_{t \to \infty} \left[f(t) \right] = \lim_{s \to 0} \left[s \overline{f}(s) \right]$$

às màins col

C.B. Madasman

1. K.C.B. 11121/28m

Madasmans.com

202.S.

I.V.C.B

1.4

asmaths.com The Impulse Function / The Dirac Function

$$\mathbf{1}, \quad \boldsymbol{\delta}(t-c) = \begin{cases} \infty & t=c \\ 0 & t\neq c \end{cases}, \quad \boldsymbol{\delta}(t) = \begin{cases} \infty & t=0 \\ 0 & t\neq 0 \end{cases}$$

2.
$$\int_{a}^{b} \delta(t-c) dt = \begin{cases} 1 & a \le c \le b \\ 0 & \text{otherwise} \end{cases}$$

2.
$$\int_{a}^{b} \delta(t-c) dt = \begin{cases} 1 & a \le c \le b \\ 0 & \text{otherwise} \end{cases}$$

3.
$$\int_{a}^{b} f(t) \delta(t-c) dt = \begin{cases} f(a) & a \le c \le b \\ 0 & \text{otherwise} \end{cases}$$

4.
$$\mathcal{L}[\delta(t-c)] = e^{-cs}$$

5.
$$\mathcal{L}[f(t)\delta(t-c)] = f(c)e^{-cs}$$

$$4. \quad \mathcal{L}\big[\delta(t-c)\big] = e^{-ct}$$

23ST12115.COJ

I.Y.C.B.

asmaths Com

adasmans.com

17.

>

wasmal

.

5.
$$\mathcal{L}[f(t)\delta(t-c)] = f(c)e^{-c}$$

5.
$$\mathcal{L}[f(t)\delta(t-c)] = f(c)$$

6. $\frac{d}{dt}[H(t-c)] = \delta(t-c)$

I.F.G.B.

Created by T. Madas

nadasmaths.com

uasillains.com

asmaths.com VARIOUS VARIOUS VAPLACE AL TRANSFOL QUESTIONS P. Madasmanns.com I. Y. C.B. Manasm

Question 1

F.G.B.

I.C.B.

The function x = x(t) is suitably defined for $t \ge 0$.

a) Show from first principles that

$$\mathcal{L}\left[\frac{dx}{dt}\right] = s\mathcal{L}[x(t)] - x(0)$$

b) Hence show further that

$$\mathcal{L}\left[\frac{d^2x}{dt^2}\right] = s^2 \mathcal{L}\left[x(t)\right] - s \ x(0) - \frac{dx}{dt}(0).$$

{ x = x(t) t ≥
a) $\int \left[\frac{dx}{dt} \right] = \int_{0}^{\infty} \frac{dx}{dt} e^{\frac{1}{2}t} dt \dots$ interation by their
e st -se st
alt da
$= \left(\Im \mathfrak{C} \right) e^{\mathfrak{C}} \int_{t=0}^{t=\infty} - \int_{0}^{\infty} - \mathcal{L} \mathfrak{C} \mathfrak{C} e^{\mathfrak{C}} dt$
$= 0 - a(o) + \beta \int_{0}^{\infty} \alpha(t) e^{itt} dt$
$= \beta \left(- \alpha(e) \right) - \alpha(e)$
b) $\int \left[\frac{d^2 x}{dt^2} \right] = \int_0^\infty \frac{d^2 x}{dt^2} e^{\frac{t^2}{2}t} dt$ BY ARTI-46AN
$= \begin{bmatrix} \frac{d}{dt} e^{\frac{dt}{dt}} \end{bmatrix}_{e_{i}}^{e_{i}} - \int_{e_{i}}^{e_{i}} \frac{dt}{dt} e^{\frac{dt}{dt}} \frac{e^{\frac{dt}{dt}}}{e^{\frac{dt}{dt}}} = \frac{de^{\frac{dt}{dt}}}{dt}$
$= 0 - \frac{d_2}{dd_{too}} + \frac{1}{2} \int_0^{\infty} \frac{dx}{dt} e^{\frac{1}{2}t} dt$
$= -\frac{dx}{dt} + 5 dt \frac{dx}{dt}$
$= -\frac{dx}{d\xi}\Big _{\phi} + \not \lesssim \left[x + \int_{\phi} \int_{\phi} (x) + \chi \right] = -\chi(\phi)$
$= \beta^2 \int \left[x(t) - \beta x(0) - \frac{dx}{dt} 0 \right]$

F.C.P.

nadasn

COM

proof

i G.B.

Created by T. Madas

Question 2

$$f(t) = \begin{cases} 0 & 0 < t \le 4 \\ 3 & t > 4 \end{cases} \text{ and } g(t) = \begin{cases} 3 & 0 < t \le 4 \\ 0 & t > 4 \end{cases}$$

- a) Find the Laplace transform of f(t) from first principles.
- **b**) Hence determine the Laplace transform of g(t).

$$\mathcal{L}\left[f(t)\right] = \frac{3e^{-4s}}{s}, \quad \mathcal{L}\left[g(t)\right] = \frac{3}{s}\left(1 - e^{-4s}\right)$$

Question 3

By considering a suitable differential equation with appropriate initial conditions show clearly that

$$\mathcal{L}\left(t\,\mathrm{e}^{-2t}\right) = \frac{1}{\left(s-2\right)^2}, \ t \ge 0$$

You may not use integration in this question.

FWD THE UPPARE TO WE NEED REPEATED BOOT 1+ (2+2)2=0 : da + 4 da + 42 00

proof

- how t=0, B=1 $x=te^{-2t}$ $x=te^{-2t}$
 - α = ex_2ten t=0, α=0, ά=1
- $$\begin{split} & \stackrel{\scriptstyle (\underline{x} \ + \ \underline{\delta}_{\underline{x}} \ + \ \underline{\delta}_{\underline{x}} \ + \ \underline{\delta}_{\underline{x}} \ \ \underline{\delta}_{\underline{x}} \ \ \underline{\delta}_{\underline{x}} \ \ \underline{\delta}_{\underline{x}} \ + \ \underline{\delta}_{\underline{x}} \ \ \underline{\delta}_{\underline{$$
- $\lfloor \left[t e^{2t} \right] = \frac{1}{s^{12} 4 4 s^{14}} = \frac{1}{\left(\frac{t}{2} + 2 \right)^2}$

Question 4

I.G.B.

I.F.G.B.

Use the differential equation

 $\frac{d^2 y}{dt^2} + a^2 x = 0, \ t \ge 0,$

with appropriate initial conditions to show that

 $\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$ and $\mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$.

Ka

You may not use integration in this question.

COM

1 to

madası

te Dirfterhonal sportnow	
$\frac{d^2 g}{dt^2} + d^2 g = 0$. HAS GENNRAL SOO	ation I = diasat + Bismat {
SIF A=0,B=1, 2= Smat	(IF A=1 Bad, 2 i wat 5
(t=0, a=0, a=a)	(t=0, 1=1, i=0)
: i + da =0	init
	x + a3 = 0
$\int_{0}^{2} \vec{x} f x_{0} - \dot{x}_{0} + u^{2} \vec{x} = 0$	\$ 2-20 - 2 + 2 2 = 0
\$\$ - a + a2 = 0	\$2-5-0+22=0
$\mathcal{I}(\$^2 + \alpha^2) = \alpha$	$(\sharp^2 + \alpha^2) \mathfrak{L} = \sharp$
$\overline{a} = \frac{a}{a}$	St. a _st + a2
$ \lim_{t \to \infty} \frac{1}{t} = \frac{a}{s^2 t a^2} $	[[cosat] = s
*	t <u>a</u>

I.C.B.

I.Y.G.

Created by T. Madas

Question 5

>

274

2

Find each of the following Laplace transforms.

I.F.G.B.

I.F.C.B.

I.V.C.B. Madasmaths.com

11₂₀₂₈₁

I.F.G.B.

a)
$$\mathcal{L}\left[\frac{e^{-at}-e^{-bt}}{t}\right], a > 0, b > 0$$

b)
$$\mathcal{L}\left[\left(1+t\,\mathrm{e}^{-t}\right)^3\right]$$

Find each of the following Laplace transforms.
a)
$$\mathcal{L}\left[\frac{e^{-\alpha t} - e^{-bt}}{t}\right], a > 0, b > 0$$

b) $\mathcal{L}\left[\left(1 + te^{-t}\right)^3\right]$
 $\overline{\mathcal{L}\left[\frac{e^{-\alpha t} - e^{-bt}}{t}\right] = \ln\left[\frac{s+b}{s+a}\right]}, \overline{\mathcal{L}\left[\left(1 + te^{-t}\right)^3\right] = \frac{1}{s} + \frac{3}{(s+t)^2} + \frac{6}{(s+2)^3} + \frac{6}{(s+3)^4}}$
 $\frac{\left[\frac{\left[\frac{s-t}{s}\right]^2}{s+a}\right] + \frac{6}{(s+3)^4} + \frac{6}{(s+3)^4}}{\frac{1}{s+a}\right]}{\frac{1}{s+a}} + \frac{6}{(s+1)^2} + \frac{6}{(s+1)^3} + \frac{6}{(s+3)^4}}$

I.V.C.B.

$$\begin{split} & \int_{c} \frac{e^{-\frac{2}{4}}}{e} \frac{e^{-\frac{1}{4}}}{e} = \ln \left[\frac{y + b}{x + a} \right] \\ & fitty (assided \frac{ta}{e}) = \frac{b}{e} \left[\frac{y + b}{x + a} \right] \\ & \int_{c} \frac{e^{-\frac{1}{4}}}{e} \frac{e^{-\frac{1}{4}}}{e} \frac{e^{-\frac{1}{4}}}{e} \right] = \frac{e}{e} = \frac{e}{e} \sqrt{\frac{1}{2}} \frac{y + b}{2} \frac{e^{-\frac{1}{4}}}{e} \frac{b + b}{e} \frac{b}{e} \frac{e^{-\frac{1}{4}}}{e} \frac{b + b}{e} \frac{b}{e} \frac{b}{e} \frac{b}{e} \frac{e^{-\frac{1}{4}}}{e} \int_{c} \frac{e^{-\frac{1}{4}}}{e} \frac{b + b}{e} \frac{b}{e} \frac{b}{$$

Smaths.com

The Col

I.G.S.

4.6

$$\begin{split} \int \left[\frac{e^{\alpha k} - e^{\alpha k}}{e} \right] &= \int_{\mathcal{X}}^{\infty} \int \left[e^{\alpha k} - e^{\alpha k} \right] dx \\ &= \int_{\mathcal{X}}^{\infty} \frac{1}{\mathcal{X}_{1:\alpha}} - \frac{1}{x_{1:k}} dx \\ &= \left[b_{1} [\delta_{1:\alpha} [- b_{1} [\lambda_{1:k}]] \right]_{\mathcal{X}}^{\infty} \\ &= \left[b_{1} [\frac{\delta_{1:k}}{\delta_{1:k}} \right]_{\mathcal{X}}^{\infty} \\ &= b_{1} [\frac{\delta_{1:k}}{\delta_{1:k}}] \\ &= b_{1} [\frac{\delta_{1:k}}{\delta_{1:k}}] \end{split}$$

$$b) \quad \int_{C} \left[C(t+x)^{3} \right] = \int_{C} \left[1+3te^{t} + 3te^{2st} + te^{st} \right]$$
$$= \frac{1}{s} + 3 \int_{C} \left[te^{st} \right] + 3 \int_{C} \left[te^{st} \right] + 4 \int_{C} \left[te^{st} \right]$$
$$= \frac{1}{s} + \frac{3}{ste^{1}} + \frac{3}{(g_{11})^{2s}} + \frac{3}{(g_{12})^{3s}} + \frac{3}{(g_{12})^{3s}}$$
$$= \frac{1}{s} + \frac{3}{(g_{11})^{2s}} + \frac{2}{(g_{12})^{2s}} + \frac{3}{(g_{12})^{2s}} +$$

aths.com

I.V.C.B. Madasm

Question 6

I.C.B.

I.G.B

Invert each of the following Laplace transforms.

$$\mathbf{i.} \quad \overline{f}(s) = \frac{\mathrm{e}^{-s\pi}}{s^2 \left(s^2 + 1\right)}$$

i.
$$\overline{g}(s) = \frac{1}{(s-1)^4}$$

 $f(t) = t \operatorname{H}(t - \pi) - \sin t \operatorname{H}(t - \pi), \quad g(t) = \frac{1}{6}t^{3} \operatorname{e}^{t}$

q) $$\begin{split} & \overline{f}(x) = \frac{e^{2\pi}}{p_{n}^{2}(x+y^{2})} & \longleftrightarrow \quad \text{Hereal, Hereals} \\ & \quad \text{SPLT INC PHETAL, FORMALS} \\ & \quad \text{SPLT INC PHETAL, FORMALS} & \quad \text{SPLT INC PLANES} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{-y^{2}}{p_{n}^{2}} + \frac{E(y)}{1+y^{2}} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{-y^{2}}{p_{n}^{2}} + \frac{E(y)}{1+y^{2}} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{-y^{2}}{p_{n}^{2}} + \frac{E(y)}{p_{n}^{2}(x+y^{2})} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{e^{2\pi}}{p_{n}^{2}} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{e^{2\pi}}{p_{n}^{2}} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{e^{2\pi}}{p_{n}^{2}} \\ & \quad \text{RF PERDEMICING GAMEN THET} \\ & \quad \frac{1}{p_{n}^{2}} \left(\frac{f(x+y^{2})}{p_{n}^{2}(x+y^{2})} - \frac{e^{2\pi}}{p_{n}^{2}(x+y^{2})} \right) \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{e^{2\pi}}{p_{n}^{2}(x+y^{2})} \\ & \quad \frac{1}{p_{n}^{2}(x+y^{2})} = \frac{1}{p_{n}^{2}(x+y^{2})} \\ & \quad$$

$\overline{g}(s) = \frac{1}{(s-1)^{\frac{1}{2}}} \leftarrow MULTIPLICATION BY e^{\frac{1}{2}}$

• BY TRIAL & ABJUSTMANT $\Rightarrow \int \left[t^{s} \right] = \frac{3!}{s^{s+}} = \frac{6}{s^{s+}}$

6

- $\rightarrow l[t^{2}] = \frac{1}{s^{4}}$
 - =)] [] + et] = [[(S-1)] +
 - : g(t)= ftet

F.C.P.

1.5

Question 7

Find each of the following Laplace transforms.

Question 8

Find the inverse following Laplace transforms of the following functions.

Question 9

Find the following Laplace transform

Question 10

It is given that

 $\mathcal{L}[f(t)] = \frac{1}{s} \exp\left(-\frac{1}{s}\right), \ t \ge 0.$

 $\mathcal{L}\left[\mathrm{e}^{-t}\,f\left(3t\right)\right].$

I.G.B.

Determine a simplified expression for

nadasma,

I.G.B.

I.C.

21/15.COM

I.F.C.p

 $\mathcal{L}\left[e^{-t}f(3t)\right] = \frac{1}{s+1} \exp\left(\frac{1}{s+1}\right)$ $\frac{3}{s+1}$

1. Y. G.B.

the com

¥.G.5.

1+

.

Madasma

Madası

Ins,

I.F.G.B.

1[-f@]=	1 e-#"
and the second second second	1

1721/2ST

$ \begin{array}{l} \text{CSING-} \int \left[e^{-k \frac{t}{t}} f(t) \right] &= -\overline{f} \left(\overline{g} t + k \right) \\ \int \left[f(a t) \right] &= -\frac{1}{4} \cdot \overline{f} \left(\frac{g}{a} \right) \end{array} \right] \text{COMBINING-} $	$\frac{1}{a} \widetilde{f}\left(\frac{d+k}{d}\right)$
$\therefore \int \left[e^{-\frac{1}{2}} f(3t) \right] = \frac{1}{3} \times \frac{1}{\frac{3}{2}+1} \times e^{-\left(\frac{3}{3}+1\right)^{4}}$	
= 1 × 3 × 2 +1 × 2 3 +1	
$= \frac{\epsilon_{XP}\left(-\frac{3}{\beta+1}\right)}{\beta+1}$	

Created by T. Madas

COM

Question 11

Find a simplified expression for

12

 $\mathcal{L}\left[\cosh^2 4t\right].$

 $\begin{aligned} \int \left[\cosh^{2} dt \right] &= \int \left[\frac{1}{2} + \frac{1}{2} \cosh^{2} dt \right] \\ &= \frac{1}{2} \int \left[1 + \cosh^{2} dt \right] \\ &= \frac{1}{2} \int \left[\frac{1}{2} + \frac{1}{$

Question 12

5

The function y = y(t) satisfies the differential equation

 $\frac{dy}{dt} + y = 1, \quad t \ge 0, \quad y(0) = 0.$

Use the initial-final value theorem to find $\lim_{t\to\infty} [y(t)]$.

$\frac{dt}{dt} + d = (d(0) = 0$	
TAKING THE CAPLACE TRANSPER IN Ł	
$\int \left[\frac{du}{dt}\right] + \int \left[y\right] = \int \left[1\right]$	
$s\overline{g} - s\overline{g} + \overline{g} = \frac{1}{s}$	
$\frac{1}{2} = \overline{p}(1+2)$	
$\frac{1}{1+\frac{1}{2}} = \frac{1}{\overline{p}}$	
BY THE INITIAL FINAL VALUE THEOREM	
$ \lim_{S\to\infty} \left[S \overline{f}(\beta) \right] = \lim_{t\to\infty} \left[-f(t) \right] $	
the we get	
$ \lim_{t \to \infty} \left[g(t) \right] = \lim_{s \to \infty} \left[s \overline{g}(s) \right] $	
= Lun [<u>x+i</u>]	
= [

Question 13

maths.com

I.V.G.B.

The function y = f(t) satisfies

 $\mathcal{L}\left[f(t)\right] = \frac{1}{\sqrt{s+2}}.$

nadasma

Determine a simplified expression for f(t).

nadasmaths.com

I.G.B.

I.C.

I.C.B. Madasman

lasmaths.com

I.V.C.B. Madasn

ths.com

the COL

K.G.S.

F.G.

.

	$\int_{-1}^{-1} \left[-\frac{1}{\sqrt{\beta+2^{2}}} \right]$
100.	It is a large of a runation theorem in $\frac{1}{\sqrt{z^*}}$ with the start e^{2t}
911	• WE SUCREDT IT WAY SE $\int \left[t^{w_1} \right] = \frac{w_1!}{t^{w_1+1}} \left(\int_{\infty} w = -\frac{1}{\Sigma} \right)$
00	They denote the the the set of the the set of the set
20	$= \int_{-\infty}^{\infty} \left(\frac{u_{1}^{-1} t_{2}^{-1}}{s_{1}^{-1}} \frac{1}{s_{1}^{-1}} $
C	
On A	$= \frac{1}{5^{\frac{1}{2}}} \int_{0}^{\infty} u^{\frac{1}{2}-1} e^{-u} du$
~(n)	$=\frac{\sqrt{2}}{1}$
×	$= \frac{\sqrt{\pi}}{s^2}$
	$ \int \left(\frac{1}{\sqrt{\pi c}} \right)^{2} = \frac{1}{\sqrt{c^{2}}} $
10	$\int \left(\frac{a_{u}}{\sqrt{\pi t}}\right) = \frac{1}{\sqrt{g-2}}$
L SK	
la Vi	
200	h \forall
100	12.
20.	901
	42.
121	
	100
10	971
P	
n 4	0 × 0.
C/JA	10 1
~(n	V X

Question 14

V.G.B. May

I.C.B.

200

$$\overline{h}(s) = \frac{1}{(s+1)(s+2)}.$$

Invert the above Laplace transform by ...

- a) ... partial fractions
- **b**) ... the convolution theorem

 $h(t) = \mathrm{e}^{-t} - \mathrm{e}^{-2t}$

COM

S,

5

2011

madasn

I.F.C.B.

$h(\beta) = \frac{1}{(\beta+1)(\beta+2)}$

-) W PARTIA REACTIONS (COMP. NP) $\frac{1}{\left(\frac{1}{\left(\frac{1}{2}\right)1}\right)\left(\frac{1}{2}+\frac{1}{2}\right)} = \frac{1}{\left(\frac{1}{2}+\frac{1}{2}\right)^{\frac{1}{2}}} + \frac{1}{\left(\frac{1}{2}+\frac{1}{2}\right)} = \frac{1}{\left(\frac{1}{2}+\frac{1}{2}\right)^{\frac{1}{2}}}$
- $$\begin{split} & \text{Homestage} \\ & \text{In Case } = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ & \text{In Case } = \frac{1}{2} \frac{1}{$$
- $\overline{f^*g} = \overline{f} \frac{\overline{g}}{\overline{g}}$ $\overline{f^*g} = \overline{f} \frac{\overline{g}}{\overline{g}}$ $\overline{f^*g} = \overline{f} \frac{\overline{g}}{\overline{g}}$ $\overline{f^*g} = \overline{f} \frac{\overline{g}}{\overline{g}}$ $\overline{f^*g} = \overline{f} \frac{\overline{g}}{\overline{g}}$
- $\begin{array}{l} \text{Involutions Both SDFS} \\ \text{L}^{-1}\left[\overline{f \ast g}\right] = \text{L}^{-1}\left[\overline{f} \overline{g}\right] \end{array}$
- $f \star g = \int_{-1}^{-1} \left[\frac{1}{(2+1)} \frac{1}{(2+2)} \right]$ The
- $\begin{aligned} & \text{The} \\ & \int_{-\infty}^{\infty} \left[\left[\frac{1}{(k^{\alpha_1})} \left(k^{\alpha_2} \right) \right]_{-\infty}^{-1} = \left(\left\{ f + k^{\alpha_1} \right\} \left(f \right\} \right) = \int_{0}^{0} \frac{1}{e^{\alpha_1} k^{\alpha_2}} \int_{-\infty}^{\infty} \frac{1}{e^{\alpha_2} k^{\alpha_1}} \int_{0}^{\infty} \frac{1}{e^{\alpha_2} k^{\alpha_1}} \int_{0}^{\infty} \frac{1}{e^{\alpha_2} k^{\alpha_2}} \int_{0}^{\infty} \frac{$

Created by T. Madas

Question 15

The convolution [f * g](t), of two functions f(t) and g(t) is defined as

$$[f * g](t) = \int_0^t f(t-u)g(u) \ du$$

Show that

V.C.B. Madasm

COM

I.V.G.B.

2.00

1.1.6.9

$$\mathcal{L}\left\{[f*g](t)\right\} = \mathcal{L}\left[f(t)\right]\mathcal{L}\left[g(t)\right] = \overline{f}(s)\overline{g}(s).$$

$$\underbrace{\left[\left(f*g(t)\right)\right]}_{\left[\left(f*g(t)\right)\right]} = \overline{f}(s)\overline{g}(s).$$

COM

Madası

I.F.G.B.

K.G.S.

6

.

277

.K.G.

Created by T. Madas

2017

N.

Question 16

I.C.B.

I.F.G.B.

Use the differential equation

 $\frac{d^2x}{dt^2} = a^2x, t \ge 0,$

with appropriate initial conditions to show that

 $\mathcal{L}(\cosh at) = \frac{s}{s^2 - a^2}$ and $\mathcal{L}(\sinh at) = \frac{a}{s^2 - a^2}$.

You may not use integration in this question.

.G.S.

~		
WITH GENERAL SOUTTION		
X= Alashat +	Bsonhat	
á = Aasmhat.	+ Ba coshat	
• FICK INITIAL CONDITIONS FOR FACI	H CASE	
t=01 x=1 ' y=0	t=0, a=0, i=a	
→ a = coshat	→ I= sinhat. → X= a coshart:	
⇒ à= asmhat	==> si = a coshart	
THE O. P. E		
$\Rightarrow \ddot{x} = a^2 x$		
\implies $s^2 \tilde{a} - s a_s - \dot{a}_s = a^2 \tilde{a}$.		
$\implies (\sharp^2 - q^2)\mathfrak{T} = \sharp \mathfrak{I}_{\mathfrak{a}} + \mathfrak{I}_{\mathfrak{a}}$		
$ = \frac{1}{2} \frac$		
$=$ $\bar{a} = \frac{\bar{a}}{\bar{a}^2 - a^2}$	$ = \overline{a} = \frac{a}{\chi^2 - a^2} $	
$\Rightarrow d\left[\text{loshat} \right] = \frac{5^2}{5^2 - a^2} \qquad \Rightarrow d\left[\text{Subst} \right] = \frac{a}{5^2 - a^2}$		

I.G.B.

Created by T. Madas

R.

Question 17

The function y = f(t), $t \ge 0$, is twice differentiable.

a) Show from first principles that

 $\mathcal{L}\left[\frac{d^2y}{dt^2}\right] = s^2 \mathcal{L}\left[y(t)\right] - s \ y(0) - \frac{dy}{dt}(0)$

A second function g(t) is defined for $t \ge 0$.

b) Show further that

ŀ.C.B.

I.C.p

 $\mathcal{L}\left[\int_0^t f(t-u)g(u) \, du\right] = \mathcal{L}\left[f(t)\right]\mathcal{L}\left[g(t)\right].$

proof

F.C.A.

Question 19

1.

Use the definition of a Laplace transform to show that

 $\mathcal{L}\left[\int_{0}^{t} f(u) \ du\right] = \frac{1}{s} \mathcal{L}\left[f(u)\right], \ t \ge 0.$

proof

1

Question 20 Determine a simplified expression for

I.C.P.

 $\mathcal{L}\left[t\,\mathrm{e}^{2t}\,\mathrm{cos}\,3t\right]$

 $s^2 - 4s - 5$ $\mathcal{L}\left[t\,\mathrm{e}^{2t}\cos 3t\right] =$ $\left(s^2-4s+13\right)^2$ $\int \left[\cos 3t \right] = \frac{g}{g^2 + 9}$ FIND THE LAPLACE TRANSP $\downarrow \begin{bmatrix} e^{at}(t) \end{bmatrix} = \overline{+}(x-\alpha)$ TH F(\$) = \$ [f(0]] $\Rightarrow \int \left[e^{\frac{1}{2}} e^{\frac{1}{2}} \right] = \frac{2^{-2}}{\left(2^{-2}\right)^2 + 2} = \frac{2^{-2}}{2^{-2}}$ illy of testacist while m $= \int \left[t \left(e^{\frac{2t}{2}} \cos t \right) \right] = -\frac{d}{dg} \left[\frac{d}{g^2 - 4g + 13} \right]$ $= - \frac{(\vec{s}^2 - 4\vec{k} + B) \times 1 - (\vec{s}^{-2})(2\vec{s}^{-4})}{(\vec{s}^2 - 4\vec{s} + B)^2}$ $\frac{\dot{s}^2 - 4\dot{s} + 13 - (2\dot{s}^2 - 8\dot{s} + 1)}{(\dot{s}^4 - 4\dot{s} + 13)^2}$ $\sim \frac{-\sharp^2 + 4 \sharp + 5}{(\sharp^2 - 4 \sharp + 13)^2}$ $\frac{\beta^2 - 4\beta - 5}{(\beta^2 - 4\beta + \beta)^2}$

Question 21

Find the following inverse Laplace transform

Question 22

I.V.C.P.

Maths.com

I.V.G.B

Find the following inverse Laplace transform

Smaths.com

I.F.C.B.

1.¥.C.J

I.Y.C.B. Madasman

 $\mathcal{L}^{-1}\left[\frac{12}{s^3+8}\right].$

 $\frac{12}{s^3+8}$ $= e^{-2t} + 2e^{t} \left[\sqrt{3} \sin\left(\sqrt{3}t\right) - \cos\left(\sqrt{3}t\right) \right] = e^{-2t} + 2e^{t} \sin\left(\sqrt{3}t - \frac{1}{6}\pi\right)$

2	STACT BE SECTIVE ANOTAL RAPITIOUS VING THE SUM OF CUBES LOWITY	5
0	$\frac{12}{\xi^{3}+8} = \frac{12}{\xi^{3}+2^{1}} \equiv \frac{12}{(\xi+2)(\xi^{2}-\xi\xi+4)} \equiv \frac{4}{\xi+2} + \frac{8\xi+1}{\xi^{2}-2\xi+4}$	
10		
G M Cal	$\Rightarrow A(\hat{s}^{4}-2\hat{s}+4) + (\hat{s}^{4}+2)(B\hat{s}^{4}+C) \equiv 12$	
912	$\Rightarrow A_{3}^{2^{2}} + 2A_{3}^{2^{2}} + 4A + B_{3}^{2^{2}} + C_{3} + 2B_{3}^{2^{2}} + 2E \equiv 12$ $\Rightarrow (A+B)_{3}^{2^{2}} + (2s+c-2A)_{3} + (4A+2c) = 12.$	
111 -		
	• $i\frac{1}{2} \neq z-2$ $A(4+q+q) = 12$ (first list) If $A = 12$	
	<u>Aul</u>	
216	• AtB=0 -> <u>B1</u>	
5 A	 • 4k+ 2c.=12, 4 + 2c = 12. 	
	2C=8 C=4	
· · · · · ·	WE GIN NOW INDRET BY INDRECTION	
	$\Rightarrow \int_{-1}^{-1} \left[\frac{12}{5^{2}+8} \right] = \int_{-1}^{-1} \left[\frac{1}{5^{2}2} + \frac{-5}{5^{2}-2^{2}+4} \right]$	١.
	$\Longrightarrow \left[\int_{0}^{1} \left[\frac{ 2 }{g^{3} + B} \right] = \int_{0}^{1} \left[\frac{1}{5 + 2} \right] - \int_{0}^{1} \left[\frac{5 - 6}{5^{2} - 3 + 4} \right]$	
		ł
1	$\rightarrow \int^{-1} \left[\frac{12}{5^2 + 8} \right] = e^{\frac{32}{2}} - \int^{-1} \left[\frac{(3-1)}{(3-1)^2 + 3} \right]$	
	$ = \int_{0}^{1-1} \left[\frac{\eta_{2}}{\lambda^{2} + \theta} \right] = e^{\frac{1}{2}} + \int_{0}^{1-1} \left[\frac{(\xi_{-1})}{(\xi_{-1})^{2} + 4t^{-2}} \right] + \frac{3}{\sqrt{2}} \int_{0}^{1-1} \left[\frac{\sqrt{1}}{(\xi_{-1})^{2} + 4t^{-2}} \right] $	
	$\Rightarrow \int^{d} \left[\frac{1}{\delta^2 + \theta} \right] \Rightarrow e^{it} - e^{it}\cos(i\delta t) + i\delta^2 \sin(i\delta t)$	
	$(\overline{T}, \overline{T}, T$	
No In		
1911 I.		
		k
	A	'n
		ő
	Y/n	
	Not and a second second	1
STAT.		1
~(I.I.)	-Un	
	and a second sec	
10.	10 M A A A A A A A A A A A A A A A A A A	
and the second	·····	
- C.D.		
	100 1. 1	
	_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	7. 5//_	
	m in	
, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m °.C	2
3	D C	2

The Com

'hs.col

N.C.B.

4.4

nadasman

COM

Created by T. Madas

nadasmana Inadasmans. Com

Question 23

Find and verify the following inverse Laplace transform

Question 24

madasmaths.com

I.F.G.B.

I.F.G.B.

ISMaths.com

I.V.C.B. Madasm

SMaths.com

I.V.G.B

>

0

Use the definition of a Laplace transform to show that if x = f(t) then

$$\mathcal{L}\left[t^{2}\frac{d^{2}x}{dt^{2}}\right] = x_{0} - \frac{d}{ds}\left[s^{2}\mathcal{L}(x)\right], \text{ where } x_{0} = f\left(0\right).$$

madasn

COM

proof

naths.col

I.C.S

4.6.

.

Madasma

The Com

I.V.C.B. Madasn

Created by T. Madas

1202

COM

E.C.

Question 25

Y.C.B.

I.C.P.

$$\mathcal{L}[f(t)] = \overline{f}(s) \equiv \int_0^\infty f(t) e^{-st} dt, t \ge 0.$$

a) Show from the above definition that if a is a non zero constant, then

$$\mathcal{L}[f(at)] = \frac{1}{a}\overline{f}\left(\frac{s}{a}\right).$$

b) Deduce that if k is a non zero constant, then

$$\mathcal{L}^{-1}\left[\overline{f}\left(k\,s\right)\right] = \frac{1}{k}f\left(\frac{t}{k}\right)$$

Ĉ.Ŗ

mana.

proof

2

I.C.B. Madasm

COM

I.V.G.B

$$\mathcal{L}[f(t)] \equiv \overline{f}(s), t \ge 0.$$

a) Show clearly that

$$\mathcal{C}\left[k^{t}f(t)\right] \equiv \overline{f}\left(s - \ln k\right), \ k > 0$$

 $\mathcal{L}\left[t^3 e^{-t} 2^t\right].$

I.C.

b) Find in its simplest form

I.F.G.p

1. ¥.G.J

COM

I.V.C.B

1.6.

.

COM

Created by T. Madas

COM

Question 27

Find the following inverse Laplace transform

Question 28

Find the following inverse Laplace transform

Question 29

It is given that

F.G.B.

Y.G.B.

$$\mathcal{L}\left[t\,f\left(t\right)\right] = \frac{1}{s^3 + s}, \ t \ge 0.$$

Determine a simplified expression for

 $\mathcal{L}\Big[\mathrm{e}^{-t}\,f(2t)\Big].$

fra

F(s)

£(\$)

= ±14(\$2+1) - 14\$ + C

 $= \frac{1}{2} \left[\ln(s^2 + i) - 2 \ln s \right]$

 $\frac{1}{2} \ln \left(\frac{x_1}{x_2} \right)$

\mathcal{L} , $\mathcal{L}\left[e^{-t}\right]$	$f(2t) = \frac{1}{2} \ln \left(\frac{\sqrt{s^2 + 2s + 5}}{s + 1} \right)$
y Dino ne Joje	$\Rightarrow \int \left[f(m) \right] \sim \frac{1}{2} h\left(\frac{4\lambda \mu}{2}\right)$
$\frac{1}{p}\left[\frac{1}{p}\left(\frac{1}{q}(\alpha_{j})\right)^{2} = -\frac{1}{q^{2}}\left(\frac{1}{q}(\alpha_{j})\right)\right]$ $\frac{1}{p}\left[\frac{1}{p}\left(\frac{1}{q}(\alpha_{j})\right)^{2} = -\frac{1}{q^{2}}\left(\frac{1}{q}(\alpha_{j})\right)^{2}\right]$ $\frac{1}{q^{2}}\left(\frac{1}{q}(\alpha_{j})\right)^{2} = -\frac{1}{q^{2}}\left(\frac{1}{q}(\alpha_{j})\right)$	$\frac{f_{\text{IVAUY}}}{\left\{ \downarrow \left[e^{\frac{1}{2} \int_{a}^{b} (t_{1}) \int_{a}^{b} e^{\frac{1}{2} \int_{a}^{b} (t_{2} - t_{2}) \int_{a}^{b} (t_{2} - t$
$\begin{split} &-\widetilde{f}(g) &= \int \frac{1}{\chi(d+i)} dx \\ &g_{1}^{*} \frac{\partial}{\partial \phi} \partial \phi_{1} &= \int \frac{1}{\chi^{2}} - \frac{d}{\chi^{2} + 1} dx \end{split}$	$ \rightarrow \int \left[e^{t}(\mathbf{k}) \right] = \frac{1}{2} \ln \left[\frac{(2t+1+k)}{g^{t+1}} \right] $ $ \rightarrow \int \left[e^{t}(\mathbf{k}) \right] = \frac{1}{2} \ln \left[\frac{(2t+2t+1)}{g^{t+1}} \right] $ $ \rightarrow \int \left[e^{t}(\mathbf{k}) \right] = \frac{1}{2} \ln \left[\frac{(2t+2t+1)}{g^{t+1}} \right] $
$\overline{f}(s) = \sqrt{\frac{s}{2}} - \frac{1}{2} ds$	

F.C.B.

Question 30

I.C.B.

I.C.p

Use an appropriate method to show that

$$\mathcal{L}^{-1}\left[\frac{1}{s\sqrt{s+a}}\right] = \frac{1}{\sqrt{a}}\operatorname{erf}\left(\sqrt{at}\right),$$

COM

proof

 $\begin{array}{l} d_{4} = \frac{d_{0}}{\frac{1}{2}\alpha^{\frac{1}{2}}\alpha^{\frac{1}{2}}} \\ d_{4} = d_{4} \left(\frac{2\alpha^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}} \right) = \frac{2}{\alpha^{\frac{1}{2}}} \frac{y}{\alpha^{\frac{1}{2}}} dV = \frac{2v}{\alpha} dV \end{array}$

I.C.B.

Madasn.

u=o v=o u=t v=att= Jat $\int_{-\infty}^{\sqrt{at}} \left(\frac{a^{\frac{1}{2}}}{\sqrt{v}}\right) e^{-v^2} \left(\frac{2v}{a} dv\right)$

 $\frac{2}{\sqrt{n}}\int_{0}^{\sqrt{n}} e^{-v^2} dv$

S,

where a is a positive constant.

In the unrace transform	Lacitutitzace V3 🚳
CANNUT FIN SPUT IT INTO PHOTIAE REACTIONS.	UT V= au
BY THE CONJOURNON THEREMY LEFT 1 [3]	$A = \sigma_{\vec{p}} \sigma_{\vec{p}} \longrightarrow$
	$\frac{dv}{du} = \frac{1}{2}q^{\frac{1}{2}}u^{-\frac{1}{2}}$
$\frac{1}{\sqrt{\chi^2+d}}$ $\frac{1}{\sqrt{\chi}}$	$du = \frac{dv}{\frac{1}{2}u^{\frac{1}{2}}u^{\frac{1}{2}}}$
• THUS $\overline{f}(S) = \frac{1}{s(s+a)} + s+a$ or $\frac{1}{s+a}$	$du = dv \left(\frac{2u^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}}\right) =$
$\downarrow \left[\begin{array}{c} t^{-\frac{1}{2}} \end{array} \right] = \frac{(-\frac{1}{2})!}{2^{-\frac{1}{2}+1}} = \frac{(\overline{r}(\frac{1}{2})}{2^{\frac{1}{2}}} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}}}$	$\frac{\ u\ _{IS}}{\ u=t\ _{V=a^{\frac{1}{2}}t}}$
$\therefore d \left[\frac{1}{4\pi} e^{\frac{1}{2}} \right] = \frac{1}{8^{\frac{1}{2}}}$	(Vat) 120
$\therefore \int \left[\frac{1}{\sqrt{\pi t}} e^{at} \right] = \frac{1}{(S+a)^{\frac{1}{2}}}$	$= \dots \frac{1}{\sqrt{\pi}} \int_{0}^{\sqrt{\alpha t}} \left(\frac{d^{\frac{1}{2}}}{\sqrt{t}}\right) e^{-\sqrt{2}} \left(\frac{2M}{\alpha}\right)$
$\therefore f(\mathbf{f}) = \frac{1}{\sqrt{a \mathbf{f}}} \mathbf{e}^{\mathbf{a} \mathbf{f}}$	$= \frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{\alpha}} \int_0^{\sqrt{\alpha} t} e^{-v^2} dv$
g(t) = 1	$=$ $\frac{1}{\sqrt{\alpha'}} \left[\frac{2}{\sqrt{\pi'}} \int_{0}^{\sqrt{\alpha t'}} e^{-\sqrt{2}} dv \right]$
Interview of the contraction of the section of	
$\int_{-1}^{-1} \left[\frac{1}{\beta(\underline{z}+a)} \right] = \int_{0}^{0} f(u) \vartheta(\underline{z}-u) du$	$= \frac{1}{V_{\alpha''}} erf(\sqrt{\alpha t'})$
$= \int_{0}^{t} \left(\frac{1}{\sqrt{\pi u^{1}}} e^{-\frac{1}{u^{1}}} \times \left(1 \right) \right) du$	
$= \frac{1}{\sqrt{\pi_1^2}} \int_0^{\frac{1}{2}} \frac{1}{2\sqrt{2\pi_2^2}} e^{-2\lambda_1} d\lambda_2$	

Created by T. Madas

COM

R.

Question 31

Use an appropriate method to show that Dr. Uh.

Question 32

I.F.G.B.

Ismaths.com

Smarns.com

I.Y.G.B.

20%

Use an appropriate method to show that

 $\mathcal{L}\left[\operatorname{erf}\left(\sqrt{t}\right)\right] = \frac{1}{s\sqrt{s+1}}$

proof

C.b.

nadasmaths.

aths.com

aths col

4.60

G

1

11202SI1120

COM

I.F.C.B. Madasm

12

COM

Ismaths.com

Question 33

K.C.

$$g(t) \equiv \int_0^t f(x) \, dx \, , \, t \ge 0 \, .$$

a) Show clearly that

$$\mathcal{L}(g(t)) = \frac{\overline{f}(s)}{s},$$

where $\overline{f}(s) = \mathcal{L}(f(t))$.

- **b**) Verify the validity of the result of part (**a**) by using $f(x) = \sin x$ and finding $\mathcal{L}(g(t))$ by its integral definition.
- c) Use the result of part (a) to determine

 $\mathbf{E}\left[\int_0^t \frac{\sin x}{x} \, dx\right]$

 $\frac{1}{s}\arctan\left(\frac{1}{s}\right)$

 $g(t) = \int_{0}^{t} f(s) ds$ $g(0) = \int_0^0 f(0) dx = 0$ $\frac{d}{dt}(\theta(t)) = \frac{d}{dt} \left[\int_{0}^{t} f(x) dx \right]$ 1(s'a) - 1(\$ 9 - 261 = g = \$ * [[the da] - For the express L[] meda] = $\frac{1}{5} \left[\frac{1}{5^{2}+1} \right] = \frac{1}{5(5^{2}+1)}$ 1 [].t Sest[-cost+1] dt $\frac{1}{s} = \frac{s'}{s^{t+1}} = \frac{s^{t+1} - s^{t}}{s(s^{t+1})}$ = = c) $\left[\int_{0}^{t} \frac{\sin x}{x} dx \right]$ (SNG PARt (a)) $\int \left[\int_{a}^{b} \frac{s_{BR}}{x} dx\right] = \frac{1}{2^{b}} \times actor = \frac{1}{a}$

Question 34

The function y = y(t) is infinitely differentiable and defined for $t \ge 0$.

Show that

F.G.B.

. F.G.B.

 $\lim_{s\to\infty} \left[s\,\overline{y}(s) \right] = \lim_{t\to 0} \left[y(t) \right],$

where $\overline{y}(s) = \mathcal{L}[y(t)]$

E.B.

proof

3

Question 35

I.F.G.B.

1.1.6.1

The Laplace transform of f(t), $t \ge 0$, is denoted by $\overline{f}(s) = \mathcal{L}(f(t))$.

Show that the inverse Laplace transform of $\frac{\overline{f}(s)}{s}$ satisfies I.F.G.B.

 $\mathcal{L}^{-1}\left(\frac{\overline{f}(s)}{s}\right) = \int_0^t f(u) \, du \, .$ madasmarh. madasmaths.com

112	nad.		prod	of
nath "	Inaths	nari	$\int_{-\infty}^{-1} \left[\frac{f(\omega)}{\pi} \right]_{-\infty} = \int_{0}^{0} f(\omega) du$ Let $g(t) = \int_{0}^{0} f(\omega) du$ Differentiate $\omega \approx t + t$ $\rightarrow g'(0) = \frac{1}{4t} \int_{0}^{0} f(\omega) du$	
Snaths Com	Inaths.com	~~~.co	$\begin{array}{llllllllllllllllllllllllllllllllllll$	End
1.1.	Vo.	1.2	$ \Rightarrow \widehat{f}_{1}^{(\underline{f}_{1},\underline{f}_{2})} = \widehat{f}_{0}^{(\underline{f}_{1},\underline{f}_{2})} $ $ \Rightarrow \widehat{f}_{1}^{(\underline{f}_{2},\underline{f}_{2})} = \widehat{f}_{0}^{(\underline{f}_{1},\underline{f}_{2},\underline{f}_{2})} $	
GB	4.B.	.G.B		
	Smaths.com	Smaths.co	adasmaths	Q
The Co.	alls .	Alls.C.	Matho	>
, "II 	I. C.			Q
5. P.	S.O.	5. D.	10	

nadasmaths com

I.V.C.B. Madasn

Madasma

.

F.G.B.

1.60

Question 36

R,

.K.C.

 $t\frac{d^2y}{dt^2} + \frac{dy}{dt} + ty, \ t > 0.$

The function $y = J_0(t)$ is a solution of the above differential equation.

It is further given that $\lim_{t\to 0} [J_0(t)] = 1$.

By taking the Laplace transform of the above differential equation, show that

 $\mathcal{L}\left[J_0(t)\right] = \frac{1}{\sqrt{s^2 + 1}}.$

 $\pm \frac{dy}{dt^2} + \frac{dy}{dt} + \frac{dy}{dt} = 0$ lum (\$F(s)) s->00 $\lim_{t\to\infty} f(t) = \lim_{s\to\infty} (s\overline{f}(s))$ $| = J_{o}(t) = J_{o}(t) \quad \text{such that} \quad J_{o}(o) = |$ $-\frac{1}{dg}\left[s^{2}\bar{g}-sg_{0}-\dot{g}_{0}\right]+\left[s\bar{g}-g_{0}\right]-\frac{1}{dg}(\bar{g})=0$ $\lim_{k \to \infty} \left[\pm \overline{y} \right] = \lim_{k \to \infty} \left[y(t) \right] = \lim_{k \to \infty} \left[J_{\sigma}(t) \right] = 1$ $\frac{d}{ds}\left[\vec{s}^{2}\vec{y}-\vec{s}-\vec{y}_{*}\right]+\vec{s}\vec{y}-1-\frac{d\vec{y}}{ds}=0$ $\lim_{s \to \infty} \left[\frac{4s}{Ns^{1+t}} \right] \approx 1$ $-\left[\frac{2\beta\overline{0}}{d\xi} + \frac{\beta^2}{d\xi}\frac{d\overline{0}}{d\xi} - 1 + 0\right] + \beta\overline{0} - 1 - \frac{d\overline{0}}{d\xi} = 0$ $\overline{\mathcal{Y}} = \frac{1}{\sqrt{g^2 + 1}}$ $-\frac{1}{2}\overline{O} = (\frac{1}{2}+1)\frac{1}{2}$ $\therefore \left[\left[J_{0}(t) \right] = \frac{1}{\sqrt{\beta^{2} + 1^{2}}} \right]$ = - 20 $d\bar{q} = -\frac{g}{g^2+1}dg$ $h_{\overline{iq}} = -\frac{1}{2}h_{i}(z^{2}+i) + C$ $= \ln \left(\frac{A}{\sqrt{\beta^2 + i}}\right)$ $= -\frac{A}{\sqrt{k^2+1}}$

proof

2

Question 37

1. X.

24

I.C.B.

I.C.B.

By forming and taking the Laplace transform of a suitable second order differential equation, show that

 $\sqrt{\pi} e^{i}$

$$\begin{split} & \{\xi\} = \mathcal{G} = \operatorname{shu}(\xi) = \operatorname{shu}(\xi) \\ & \{\xi\} = \mathcal{G} = \pm \xi^{-\frac{1}{2}} \operatorname{con}(\xi) = - \pm \xi^{-\frac{1}{2}} \operatorname{con}(\xi^{\frac{1}{2}}) \times \xi^{-\frac{1}{2}} \\ & \{\xi\} = \mathcal{G} = - \pm \xi^{\frac{1}{2}} \operatorname{con}(\xi) = - \pm \xi^{-\frac{1}{2}} \operatorname{con}(\xi^{\frac{1}{2}}) \times \xi^{-\frac{1}{2}} \\ & \xrightarrow{\text{Thy constants}} \end{split}$$
= - \$ t \$ cosi E - \$ t'sm(t) $\begin{array}{rcl} 4t\ddot{y}=-t^{\frac{1}{2}}\cos(t)-\sin(t)\\ y=&+\sin(t)\\ 2\dot{y}=&t^{\frac{1}{2}}\cos(t) \end{array}$ 4tij + 2ij + g = 01840 -t=0 y=0 g=00 TALLING UNRACE TRA $\Rightarrow -4\frac{d}{ds}\left[s^{2}\widehat{y}-sy_{o}-\widehat{y}_{o}\right]+2\left[s^{2}\widehat{y}-y_{o}\right]+\widehat{y}=0$

 $\rightarrow -4 \left[2\frac{1}{2}\frac{1}{2}\frac{1}{4}\frac{3}{4}\frac{1}{4}\frac{1}{4} \right] + 2\frac{1}{2}\frac{1}{4} + \frac{1}{2} = 0$

 $\rightarrow -8\dot{\beta}\ddot{y} - 4\dot{\beta}^2 \frac{d\ddot{y}}{dg} + 2\dot{\beta}\ddot{y} + \dot{g} = 0$ $\Rightarrow (1 - 6 \pm) \overline{y} = 4 \pm^2 \frac{d\overline{y}}{d\overline{s}}$

 $= \frac{1-65}{4s^2}ds = \frac{1}{y}dy$

 $-\frac{1}{48} - \frac{3}{2}\ln\beta + C = \ln \frac{3}{9}$

 $\mathcal{L}\Big[\sin\sqrt{t}\,\Big]$

is = the the star NOW LIM f(t) = LIM (\$ F(z] METHOD FAILS! [4 x0=0] TEY SMALL (t-20) $\begin{aligned} & \text{should be constructed by } \\ & \text{should by } \\ & \text{should$ $-9 - 4 \frac{d}{dx} \left[\frac{x^2}{9} - 0 - \frac{1}{9} \right] + 2\frac{x}{9} + \frac{1}{9} = 0 \quad \left\{ \frac{d}{dx} \left(\frac{1}{9} \right) \right\} = 0$ 45 \$->00 J~A . A= VT : $\left[SWAT \right] = \frac{\sqrt{\pi} e^{\frac{1}{2}}}{28\%}$

proof

F.C.B.

. G.S.

1+

Question 38

The Sine integral function Si(t) is defined as

Question 39

Find the following inverse Laplace transform by 3 different methods.

Question 40

The Cosine integral function Ci(t) is defined as

Question 41

The Exponential integral function Ei(t) is defined as

Question 42

I.G.B.

I.G.B.

By differentiating the integral definition of the Gamma function, $\Gamma(x)$, with respect to x, show that

You may assume that $\Gamma'(1) = -\gamma$.

proof

 $= \int_{0}^{\infty} t^{2} e^{t t} e^{t t} e^{t} e^{t}$

I.C.B.

na

Question 43

$$\mathcal{L}[f(t)] = \overline{f}(s) \equiv \int_0^\infty f(t) e^{-st} dt, t \ge 0.$$

a) Show from the above definition that if a is a non zero constant, then

$$\mathcal{L}[f(at)] = \frac{1}{a}\overline{f}\left(\frac{s}{a}\right).$$

b) By taking the Laplace transform of Bessel's equation

$$^{2}\frac{d^{2}x}{dt^{2}} + t\frac{dx}{dx} + (t^{2} - n^{2})x = 0, \ n \in \mathbb{N}$$

and assuming further that $J_0(0) = 1$, show that

$$\mathcal{L}\big[J_0(t)\big] = \frac{1}{\sqrt{s^2 + 1}}.$$

1.

c) Deduce in simplified form the Laplace transform of $J_0(at)$

SP -	0, 0	$\mathcal{L}\big[J_0(at)\big] = \frac{1}{\sqrt{s^2}}$	$\frac{1}{1+a^2}$
<u>, 'n</u>	12.	<u></u>	12.
a) $\int [f(at)] = \int_{0}^{\infty} -f(at) e^{3t} dt$ (w. : NOW by A SUBCONTRANT = at $t = \frac{1}{2}$ $dt = \frac{1}{4}dT$	$\begin{array}{c} \Longrightarrow -2\hat{\mu}\widehat{\Xi} - g^{2}\frac{\partial g}{\partial g} + f + g\hat{\Xi} - g - \frac{\partial g}{\partial g} = 0 \\ \Rightarrow -\hat{\mu}\widehat{\Xi} = (1+\hat{\mu}^{2})\frac{\partial g}{\partial g} \\ \Rightarrow \frac{d\hat{\pi}}{\partial g} = -\frac{g}{(1+\hat{\mu}^{2})}\overline{\Xi} \\ \Rightarrow \frac{d\hat{\pi}}{\partial g} = -g - \frac{g}{(1+\hat{\mu}^{2})}\overline{\Xi} \\ \bullet \text{ four the DE BY serverative contribute} \end{array}$	$\begin{array}{c} \bullet \\ \bullet $	1280
$\begin{aligned} & \underset{\alpha}{\text{turn, crosses}} \\ & \underset{\alpha}{\text{turn, crossesses}} \\ & \underset{\alpha}{\text{turn, crossesses}} \\ & \underset{\alpha}{\text{turn, crossessesses}} \\ & \underset{\alpha}{\text{turn, crossessesses}} \\ & \underset{\alpha}{turn, crossessessessessessessessessessessessesse$	$ \Rightarrow \frac{1}{52} d\bar{x} = -\frac{s^2}{s^2 + 1} d\bar{s} $ $ \Rightarrow \ln 52 = -\frac{1}{2} \ln (s^2 + 1) + C $ $ \Rightarrow \ln 52 = \ln -\frac{\Lambda}{(\sqrt{s^2 + 1})} $	• Coulombre THHE second $\int_{a}^{b} \left[\frac{1}{\sqrt{\left(\frac{dx}{dx}\right)^{2}}} \right] = \frac{1}{a} \left[\frac{1}{\sqrt{\left(\frac{dx}{dx}\right)^{2}}} \right] = \frac{1}{a} \left(\frac{1}{\sqrt{\frac{dx}{dx}}} \right)$ $= \frac{1}{a} \left(\frac{1}{\sqrt{\frac{dx}{dx}}} \right) = \left[\frac{1}{a} \times \frac{1}{\sqrt{\frac{dx}{dx}}} \right]$	
b) The besides several $\begin{bmatrix} +\frac{2}{2}\frac{d^2_x}{d\xi} + t\frac{d}{d\xi} + (t^2 - it^2)_{\xi} = 0 \\ = 0 & t^2 \frac{d^2_x}{d\xi} + t\frac{d}{d\xi} + t\frac{d}{d\xi} = 0 \end{bmatrix}$	$ \begin{array}{c} \overleftrightarrow{\mathcal{Z}} & \simeq & \underbrace{\Delta}_{\sqrt{p} \vec{k} + 1^2} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\$	$a \left(\frac{y + y}{a}\right)^{-1} = \frac{1}{\sqrt{y^2 + a^2}}$	· • •
$ \Rightarrow \pm \frac{\partial}{\partial x} + \frac{\partial}{\partial x} + tx = 0 $ $ \bullet The THE ONLAGE TOMOGRU OF THE ONLE with the theorem of theorem of the theorem of the theorem of theorem of th$	$= D \qquad $] =1	20
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{array}{c} [\underline{A} = 1] \\ (e) = J_{a}(e) \\ (f) = J_{a}(e) \\ (f)$		
G B		5/2 V	<u>-</u>
100 .	Created by T. M	adas	Mad

Question 44

$$\mathcal{L}[f(t)] = \overline{f}(s) \equiv \int_0^\infty f(t) e^{-st} dt, t \ge 0.$$

Ths.com

in.

11+

120

proof

a) Show from the above definition that if k is a non zero constant, then

$$\mathcal{L}^{-1}\left[\overline{f}\left(k\,s\right)\right] = \frac{1}{k}f\left(\frac{t}{k}\right).$$

b) Show further that

$$\mathcal{L}^{-1}\left[\frac{\overline{f}(s)}{s}\right] = \int_0^t f(u) \ du$$

c) Given that $\mathcal{L}^{-1}\left[e^{-\sqrt{s}}\right] = \frac{e^{-\frac{1}{4t}}}{2t^{\frac{3}{2}}\sqrt{\pi}}$, use parts (a) and (b) to prove that

$$\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-\alpha\sqrt{s}}}{s}\right] = \mathrm{erfc}\left(\frac{\alpha}{2\sqrt{t}}\right),$$

Cp

where α is a positive constant.

Question 45

The Laplace transform $\overline{y}(s)$, of a function y = y(t), $t \ge 0$ is given by

$$\overline{y}(s) = e^{-\sqrt{s}}, s > 0$$

a) Show that $\overline{y}(s)$ satisfies the differential equation

$$4s \,\overline{y}''(s) + 2 \,\overline{y}'(s) - \overline{y}(s) = 0 \,.$$

b) Hence show further that

$$4t^2\frac{dy}{dt} + (6t-1)y = 0$$

c) Use parts (a) and (b) to prove that

$$y(t) = \mathcal{L}^{-1}\left(e^{-\sqrt{s}}\right) = \frac{e^{-\frac{1}{4t}}}{2t^{\frac{3}{2}}\sqrt{\pi}}.$$

proof

$$\begin{array}{c} (1) \\ (2) \\ (3)$$

INVERSION VV VEX INVE. BY COMPLEX VARIABLES T. K.C.B. Madasmalls.com I.Y.C.B. Madase A. C.B. Malasmans.com I.Y.C.B. Managen

Question 1

1.1

2

Use the method of residues to find

·C.

1

- (ONSIDE $\overline{1}(\vec{b}) = \frac{1}{\vec{b}-2}$ which the A super tour at $\vec{b} = 0$ (\vec{b} exact = 2 react") • $|F = 2e^{i\phi}$ of $\theta < \pi$
- $\left|\frac{1}{h}(\theta)\right| = \left|\frac{1}{hd^{\theta}-2}\right| = \frac{1}{\left|\frac{1}{hd^{\theta}-2}\right|} \leq \frac{1}{\left|\frac{1}{hd^{\theta}}-\frac{1}{2}\right|} = \frac{1}{h^{-2}} = O(\frac{1}{h^{2}}) \rightarrow O(\frac{1}{h^{$
- $= \int_{-\infty}^{1} \left(\frac{1}{\beta^{2} \cdot 2} \right)^{-1} = \sum_{k=1}^{\infty} \left(\frac{\beta k + 2\beta \beta k + 2\beta k + 2\beta$

Question 2

F.G.B.

I.C.B.

Use the method of residues to find

$$\mathcal{L}^{-1}\left[\frac{9}{(s+1)(s-2)^2}\right]$$

$$\mathcal{L}^{-1}\left[\frac{9}{(s+1)(s-2)^2}\right] = e^t + (3t-1)e^{2t}$$

$\left\{ \int_{-1}^{-1} \left[\frac{q}{(\vec{s}+i)(\vec{s}-2)^2} \right] \right\}$

- $f(x) = \frac{q}{(x_{f1})(x_{27})}$, HAG + SULPH POLE AT $y_{=1} \neq A$ DUBLE POLE AT $x_{=2}$ • IF $x_{=}^{2} = Pe^{\frac{1}{10}}$, $Q_{4} \otimes e_{27}$
- $\left| \frac{1}{f_{1}^{2}}(\widehat{g}) \right| = \left| \frac{1}{(2e_{1}^{2}e_{1}^{2})(2e_{2}^{2}e_{2}^{2})^{2}} \right| \leq \left| \frac{q}{\left[\left[2e_{1}^{2}e_{1}^{2} 1 \right] \left[1 \right] \left[2e_{2}^{2}e_{1}^{2} 2 \right] \right]^{2}} = \frac{q}{(2e-1)(2e-2)^{2}}$
- REPORT AT SET: $\lim_{\substack{g \to y} \\ g \to y} \left[\left[\left[g \to y \right] & \left[\left[g \to y \right] & \left[g \to y \right] \\ g \to y \\ g \to y \\ \end{bmatrix} & \left[\left[g \to y \right] & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} \right] = \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ g \to y \\ \end{bmatrix} \right] = \left[g \to y \\ g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ g \to y \\ \end{bmatrix} & \left[g \to y \\ g \to y \\ g \to y \\ \end{bmatrix} \right] = \left[g \to y \\ g \to y$
- $$\begin{split} & \mathbb{E}_{\alpha,\alpha,\alpha} \stackrel{\text{det}}{\to} \tau_{\beta,\alpha,2} = \sum_{\substack{j,k=2\\ j\neq k,k}} \left[-\frac{1}{4^{j}} \left[\frac{1}{2^{j} \sqrt{2}} \frac{\tau_{\alpha,k}}{(2^{j} + \sqrt{2})^{j}} \frac{\tau_{\alpha,k}}{(2^{j} + \sqrt{2})^{j}} \frac{1}{2^{j}} \sum_{\substack{k=2\\ j\neq k,k}} \frac{1}{2^{j}} \frac{\tau_{\alpha,k}}{(2^{j} + \sqrt{2})^{j}} \frac{\tau_{\alpha,k}}}{(2^{j} + \sqrt{2})^{j}} \frac{\tau_{\alpha,k$$

Question 3

6

Use the method of residues to find

Question 4

Use complex integration to find the following inverse Laplace transform.

Question 5

Use the method of residues to find

Question 6

Smaths.com

I.F.G.B.

dasmaths.com

2

Use complex variables to find

I.V.C.P.

$$\mathcal{L}^{-1}\left[\frac{s^2 - 4s - 5}{\left(s^2 - 4s + 13\right)^2}\right]$$

$$\mathcal{L}^{-1}\left[\frac{s^2 - 4s - 5}{\left(s^2 - 4s + 13\right)^2}\right] = t e^{2t} \cos 3t$$

naths.com

naths.col

Y.G.S.

1.6

2

- \$2-4\$-5 (\$2-4\$+13)2]
- -4\$+13 = (\$-2)++
- 15+c Th HOF HOW TH 2+31
- $\left[\lim_{\substack{d \neq 0 \\ s \to (s-2)}} \left[\frac{d}{ds} \left[(s_{-2-31})^2 \frac{(s^2 4s s)}{(s_{-2-31})^2 (s_{-2-31})^2} \right] \right] \right]$ $\frac{(j_{1}^{2}-2j_{3})^{2}\left((j_{2}^{2}-4)^{2}\right)^{2}}{(j_{1}^{2}-2+3)^{2}} + \frac{1}{2}\frac{e^{i}\left((j_{1}^{2}-4)^{2}\right)^{2}}{(j_{1}^{2}-2+3)^{2}} - \frac{e^{i}\left((j_{1}^{2}-4)^{2}\right)^{2}}{(j_{1}^{2}-2+3)^{2}}$ Luy 5-2(2+3)
- $\left[\frac{(\underline{k}-2+3\underline{i})e^{\underline{k}^{2}}\left[2\underline{k}-4+\underline{t}(\underline{k}^{2}-4\underline{k}-5)\right]-2e^{\underline{k}^{2}}(\underline{k}^{2}-4\underline{k}-5)}{(\underline{k}-2+3\underline{i})^{2}}-2e^{\underline{k}^{2}}(\underline{k}^{2}-4\underline{k}-5)\right]-2e^{\underline{k}^{2}}(\underline{k}^{2}-4\underline{k}-5)$
- $\begin{cases} (2+5i)^{2} = (2-5i)^{2} = (2-5i)^{2} = (2-5i)^{2} = (2+5i)^{2} = ($
- $\frac{6ie^{(2+3i)t}(4+6i-4+t(-8))-2e^{(2+3i)t}(-8)}{-2e^{(2+3i)t}}$
- $\frac{-2i\zeta_{1}}{6ie^{(2+3i)t}} = \frac{e^{(2+3i)t}}{2iz} = \frac{e^{(2+3i)t}}{2iz}$
- $\frac{\log t_i \left(2+3i\right)t}{2} = \frac{1}{2} t_e^{-2t} e^{-3t_i}$

COM

I.Y.C.B.

13ths.com

I.V.C.B. Madasn

- = te^{2t} coch (sti)
- t et wast

COM

Created by T. Madas

Smaths.

 $\frac{\mathrm{e}^{-\mathrm{s}}}{\mathrm{s}^2+1\Big)^2}.$

2

Question 7

Use complex variable methods to invert the above Laplace transform.

 $\overline{f}(s) = -\frac{1}{2}$

Use a detailed method, describing briefly each stage in the workings.

Give the final answer in terms of Heaviside functions.

Question 8

$$\overline{f}(s) = \frac{(as+1)e^{-as}}{s^2(s^2+1)}, \ a > 0$$

Use complex variable methods to invert the above Laplace transform.

 $\mathcal{L}\left[\overline{f}(s)\right] = t \operatorname{H}(t-a) - \operatorname{H}(t-a)\sin(t-a) + a \operatorname{H}(t-a)\cos(t-a)$

Use a detailed method, describing briefly each stage in the workings.

Com

1

Y.G.B.

RESIDUE AT I Lim Sent $\frac{e^{mu-a_1}(1+a_2)}{(s-1)(s+1)s^2} = \frac{e^{1(4)}}{s}$ $\frac{e^{s(t-a(1+as))}}{s^{2}(1+s^{2})}$ $\frac{(1+\beta^2)\left[e^{\beta(t-\alpha)}\times C^{t-\alpha}\right)(1+\alpha\beta]+\alpha e^{\beta(t-\alpha)}}{(1+\beta^2)^{\frac{1}{2}}}$ $\frac{1\left[1\times(4-a)\times1+a\right]-1\times1\times0}{1\left[1\times(4-a)\times1+a\right]-1\times1\times0} =$

aş)(2\$)

HELAND HAR A DOUBLE POLE AT O , AND SIMPLE POLE

THE ALC HANN JOSSIN'T COTTREBOTH ALL 2000, SO THIS TILLT THE CONDERMOND OF Y (STRANGH UNIT ROM -CO TO OO) WHICH GUE Z(A) MUST FRANC
ΩTTÍ × ∑ R€SIBUES
$\int_{t} \frac{1}{2\pi i} \left\{ \frac{1}{2\pi i} \times \frac{1}{2\pi i} \times \left[\frac{1}{2} + \frac{\left(\frac{1+\alpha_1}{2i}\right)^{-1} \left(\frac{1}{2} + \alpha_1\right)}{2i} - \frac{\left(\frac{1+\alpha_1}{2i}\right)^{-1} \left(\frac{1}{2} + \alpha_1\right)}{2i} \right] \right\}$
$f(t) = t + \frac{1}{2i} e^{-i(t-a)} - \frac{a}{2} e^{-i(t-a)} - \frac{1}{2i} e^{i(t-a)} - \frac{a}{2} e^{i(t-a)}$
$f(t) = t - \frac{1}{2t} \left[e^{i(t-a)} - e^{i(t-a)} \right] - \frac{a}{2t} \left[e^{i(t-a)} - \frac{i(t-a)}{2t} \right]$
$f(t) = t - Sm(t-a) - a \cos(t-a)$
$ \begin{aligned} & \left\{ \begin{array}{c} t - \mathfrak{D}\eta(t_{-q}) - a \left(a_{t}\left(t - a \right) \right) \\ 0 \\ \end{array} \right\} \\ & t < q \end{aligned} $
f(t) = t H(t-a) - H(t-a) Sim(t-a) - a H(t-a) wa(t-a)

I.C.P.

M2(12)

Question 9

E.

I.G.B.

 $\overline{f}(s) = \frac{s^3 + s^2 + 1 - e^{-s\pi}}{s^2(s^2 + 1)}$

Use complex variable methods to invert the above Laplace transform.

Use a detailed method, describing briefly each stage in the workings.

0 t < 0f(t) = $t + \cos t$ $0 \le t \le \pi$ $\pi + \cos t - \sin t$ $t > \pi$ DHES AT GACH POLE BID GACH INTERNIND $\frac{\frac{d^{3}}{p^{2}+\frac{d^{2}}{p^{2}+1}-e}}{\frac{d^{2}}{p^{2}(\frac{d^{2}}{p^{2}+1})}}$ =(\$)= $\frac{e^{g_{t}}(1+g_{t}^{2}+g^{u})}{g^{2}(g+1)(g-1)}$ $\begin{array}{c} \bullet \mbox{ AT } \not s = o & \lim_{N \to \infty} \quad \frac{d}{ds} \left[\mathcal{S} \frac{\mathcal{C}^{s,t}(1 + \beta^2 + \beta^3)}{\mathcal{R}^{s}(1 + \beta^3)} \right] \quad = \quad \lim_{N \to \infty} \quad \frac{d}{ds} \left[\frac{\mathcal{L}^{s,t}(1 + \beta^2 + \beta^3)}{1 + \beta^2} \right] \\ \end{array}$ BY GONDOLE INTHALATION $= \lim_{S \to \infty} \left[\frac{(1+S^2) \left[t e^{St} (1+S^2+S^3) + e^{St} (2S+3S^2) - (1+S^2)^2 \right]}{(1+S^2)^2} \right]$ 「「「「「「「」」」をは $\lim_{s \to 1} \left[(s+1) \frac{e^{2i}(1+s^2+s^4)}{s^2(s-1)(s+1)} \right] = \frac{e^{it}(1-1-i)}{-1(2i)} = \frac{-ie^{it}}{-2i}$ $f(t) = \frac{1}{2\pi i}$ est fis de • At $\xi = -1$ $\lim_{x \to -1} \left[\lim_{x \to -1} \left(\frac{e^{2k}(1+x^2+x^3)}{x^2(x-1)(x+1)} \right) \right] = \frac{e^{-k}(1-1+1)}{e^{-k}(x-1)(x+1)} = \frac{e^{-k}(1-1+1)}{2k}$ $f(\xi) = \frac{e^{\xi t} e^{-\xi \eta}}{\xi^2 (\xi^2 + i)} = \frac{e^{\xi t} (\xi^2 + i)}{\xi^2 (\xi^2 + i)}$ • AT $\neq=0$ $\lim_{k\to\infty} \frac{d}{dk} \left[\frac{k^2}{k^2} \frac{e^{\frac{k}{2} - \frac{\pi k}{2}}}{\frac{k^2}{k^2} (k^2 + 1)} \right] = \lim_{k\to\infty} \frac{d}{dk} \left[\frac{e^{\frac{k}{2} - \frac{\pi k}{2}}}{\frac{k^2}{k^2} + 1} \right]$ $\underbrace{ \bigcup_{\substack{M \in \mathcal{M} \\ M \to \mathcal{H}}} \left[\underbrace{ (\underline{t} - \eta) \underbrace{e^{(t,\eta) \underline{k}'}}_{e} (\underline{s}^{t,1}) - \underbrace{e^{(t,\eta) \underline{k}'}}_{(\underline{s}^{t,1})^2} \underbrace{(z,\underline{s}^{t,1})}_{(\underline{s}^{t,1})^2} \right] = \underbrace{t - \eta}_{t}$ $\begin{array}{ccc} \bullet & \mathsf{A}^{\mathsf{T}} & \overset{\mathsf{d}}{\searrow} = \left(\begin{array}{c} \mathsf{J}_{\mathsf{M}} \\ \mathsf{S} \rightarrow \mathsf{I} \end{array} \right) \left(\underbrace{\mathsf{J}}_{\mathsf{M}} = \mathsf{I} \right) \left(\underbrace{\mathsf{M}}_{\mathsf{M}} = \mathsf{I} \right) \left(\underbrace{\mathsf$ • At ς_{n-1}^{l} $\left[\lim_{\substack{\lambda \to -1 \\ \lambda \to -1}} \left(\int_{\lambda}^{l} (\lambda^{l}) \int_{\lambda}^{l} \frac{e^{(l-\eta)} \lambda^{l}}{\lambda^{l} (\lambda^{l-1}) \int_{\lambda}^{l} (\lambda^{l-1})} \right] = \frac{e^{-i(l-\eta)}}{-(\alpha^{l})} = \frac{1}{2i} \frac{e^{-i(l-\eta)}}{e^{-i(l-\eta)}}$ NOW THE MULLERICH FORMULA $f(t) = \frac{1}{2\pi i} \int_{-i\omega}^{c_{time}} \overline{f}(\xi) e^{st}$ f(t) = 1 × 0 ° W CANONY THEOREM $-\int (t) = \frac{1}{2\pi t} \times 2\pi i \sum (\text{personed where})$ $t + t = \cosh(it) + t$ AGA = DTI L 5 20100ES fet = 5 returned or - 5 Etsioner of Sho in $\left(\begin{array}{c} \cos t + t \end{array} \right) \ - \left[\left(t - \eta \right) - \frac{1}{2 i} e^{i \left(t - \eta \right)} + \frac{1}{2 i} e^{i \left(t - \eta \right)} \right]$ $\Rightarrow f(t) = (ost + \pi + \frac{1}{2i} \left[e^{i(t-\pi)} - e^{-i(t-\pi)} \right]$ $\Longrightarrow - f(t) = \cos t + \pi + \frac{1}{7} \sin h \left[i(t-\pi) \right] = \pi + \cos t + \sin \left[t-\pi \right]$ f t+wst Created by T. Madas

Question 10

Given that a is a positive constant, use complex variable methods to find the following inverse Laplace transform.

Use a detailed method, describing briefly each stage in the workings.

 $\frac{-}{a^6}\cos at + -$ 2 $f(t) = \frac{\iota}{2\underline{a}^4}$ $\frac{1}{a^5}$ sin at $= \bigcup_{\substack{\mathcal{G} \neq \alpha_{1} \\ \mathcal{G} \neq \alpha_{2}}} \left[\underbrace{e^{jk} \left[j(\mathcal{G} + \alpha_{1}) + - 3 \times (\mathcal{G} + \alpha_{1}) - 2g \right]}_{(S + \alpha_{1})^{2} \mathcal{G}^{\frac{1}{2}}} \right]$ • 1 t<0 ft=0 - L S & (S2+ a2/2 the fitte and To eati [tai (2ai) - 3 × (2ai) - 2ai] $\frac{e^{abi}\left[-2a^{2}t-6ai\right]}{-8a^{2}(\times a^{4})} = \frac{e^{abi}\left[-2a^{2}t-8ai\right]}{-8a^{2}(\times a^{4})}$ $f(t) = \frac{1}{2\pi i} \int_{cim}^{cim} \overline{f}(s) e^{st} ds = \frac{1}{2\pi i} \int_{cim}^{cim} \frac{e^{st}}{s^{s}(s^{s}_{1+s})^{s}} ds$ $= e^{at_i} \left[\frac{t}{4a^{\epsilon_i}} + \frac{1}{a^{\epsilon_i}} \right] = e^{at_i} \left[\frac{1}{a^{\epsilon_i}} - \frac{t}{4a^{\epsilon_i}} \right]$ $-\left(\frac{1}{2}\right) = \left(\frac{a^{2}t^{2} - 4}{2a^{4}}\right) + \left[e^{\frac{at^{2}}{2}}\left(\frac{1}{a^{4}} - \frac{t}{4a^{4}}t\right)\right] + \left[e^{\frac{a^{2}t^{2}}{a^{4}}}\left(\frac{1}{a^{4}} + \frac{t}{4a^{4}}t\right)\right]$ $g(s) = \frac{e^{st}}{s^{s}(s^{s}, a^{2})^{2}} \text{ Has a there for }$ $\left(t \right) = \frac{+2}{2at} - \frac{2}{at} + \frac{1}{4t} \left(e^{at} + e^{ati} \right) - \frac{+}{4at} \left(e^{at} - e^{ati} \right)$ $\frac{d}{dx}\left[\frac{d}{dx}\left[\frac{d}{dx}\right]^{2}\frac{e^{\frac{d}{dx}}}{x^{12}(\frac{d}{dx}+\alpha_{1})^{2}(\frac{d}{dx}-\alpha_{1})^{2}}\right] = \lim_{\substack{dm \\ x^{1-2} - \alpha_{n}}} \frac{d}{dx}\left[\frac{e^{\frac{d}{dx}}}{x^{12}(\frac{d}{dx}-\alpha_{1})^{2}}\right]$ $\underbrace{\underbrace{47 \ 0}}_{\text{$\underline{\beta}$-$\underline{\beta}$ $f(t) = \frac{t^2}{2q^4} - \frac{2}{q^6} + \frac{2}{q^6} \cosh(ati) - \frac{t}{4q^4}i \times 2swh(ati)$ $\left[\frac{\frac{\beta^{2}(\beta-\alpha_{i})^{2}+e^{\beta t}-e^{\alpha t}\left[\beta\beta^{2}(\beta-\alpha_{i})^{2}+2\beta^{2}(\beta-\alpha_{i})\right]}{\beta^{16}(\beta-\alpha_{i})^{4}}\right]$ $f(t) = \frac{t^{2}}{2a^{4}} - \frac{2}{a^{4}} + \frac{2}{a^{4}} \cos at - \frac{t}{2a^{4}} i \text{ (ismat)}$ $= \frac{1}{2} \lim_{K \to \infty} \frac{d}{dK} \left[\frac{\left(\frac{k^2 + \alpha^2}{4} \right)^2 + e^{\frac{k}{2}k} - e^{\frac{k}{2}k^2} \times 2\left(\frac{k^2 + \alpha^2}{4} \times 2\frac{k}{2} \right)}{\left(\frac{k^2 + \alpha^2}{4} \right)^4} \right]$ $\frac{e^{\text{st}\left[t_{\beta}(\beta-\alpha i) - 3(\beta-\alpha i) - 2\beta \right]}{\beta^{4}(\beta-\alpha i)^{2}} \right]$ $-\left(\frac{1}{2}\right) = -\frac{+2}{2a^4} - \frac{2}{a^6} + \frac{2}{a^6} \log_2 t + \frac{t}{2a^6} \log_2 t$ = $\frac{1}{2} \lim_{g' \to 0} \frac{d}{dg} \left[\frac{f e^{gt} (g^2 + q^2) - 4g e^{gt}}{G^2 + q^2)^3} \right]$ $= \frac{1}{2} \lim_{\beta \to \infty} \frac{d}{d\beta} \left[\frac{e^{\beta t} \left[t_{\beta}^{t_{1}} + t_{\alpha}^{t_{-}} u_{\beta}^{t_{-}} \right]}{\left(\frac{\beta^{t_{1}}}{2} + t_{\alpha}^{t_{-}} u_{\beta}^{t_{-}} \right]} \right]$ $\frac{e^{\alpha t_1^i} \left[-2\alpha_1^{q_1} + B\alpha_1^{-1} \right]}{\alpha_1^{q_1} \left(-8 \right) \alpha_2^{q_1} \left(-1 \right)} = \frac{e^{\alpha t_1^{q_1}} \left(-2\alpha_1^{q_2} + 8\alpha_1 \right)}{\vartheta \alpha_1^{q_1}}$ $= \frac{1}{2} \lim_{k \to \infty} \frac{(\underline{\beta}^k + a^2)^k \underline{f} e^{\underline{\xi}^k} (\underline{z}^k + \underline{t} a^2 - \underline{u} \underline{\xi}) + \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} - \underline{u} \underline{]} - \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} + \underline{t} \underline{a}^2 - \underline{u} \underline{\xi}] + \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} - \underline{u} \underline{]} - \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} + \underline{t} \underline{a}^2 - \underline{u} \underline{\xi}] + \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} - \underline{u} \underline{]} - \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} + \underline{t} \underline{a}^2 - \underline{u} \underline{u} \underline{]} + \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} - \underline{u} \underline{]} - \underline{e}^{\underline{\xi}^k} \underline{[} \underline{z} \underline{x} + \underline{u} \underline{]} - \underline{e}^{\underline{\xi}^k} \underline{z} \underline{z} + \underline{e}^{\underline{\xi}^k} \underline{z}$ $= \frac{1}{2} \times \frac{a^{6} \times f \times a^{2} - f}{a^{12}} = \frac{a^{2} + a^{2}}{2a^{6}}$ $e^{ati}\left[-\frac{t}{4a^{3}f}+\frac{1}{a^{4}}\right] = e^{-ati}\left[\frac{1}{a^{4}}+\frac{4}{4a^{5}}i\right]$ $\underbrace{ \underset{\substack{\textbf{AT} \text{ ai}}}{\textbf{AT} \text{ ai}}: \underbrace{ \underset{\substack{\textbf{M}} \text{ M}}{\textbf{d} p} \underbrace{ \overset{\textbf{d}}_{(\textbf{S}-\textbf{ai})^{T}} \underbrace{ \overset{\textbf{e}^{St}}{\textbf{p}^{2}(\textbf{s}^{-}\textbf{ai})^{T} (\textbf{x}^{+}\textbf{ai})^{P} }_{\textbf{p}^{2}(\textbf{s}^{-}\textbf{ai})^{T} (\textbf{x}^{+}\textbf{ai})^{P} } = \underbrace{ \underset{\substack{\textbf{M}} \text{ M}}{\textbf{d} p} \underbrace{ \overset{\textbf{d}}_{(\textbf{S}^{+}\textbf{ai})^{2}} \underbrace{ \overset{\textbf{e}^{St}}{\textbf{p}^{2}(\textbf{s}^{+}\textbf{ai})^{2} }_{\textbf{p}^{2}} }_{\textbf{p}^{2} \text{ and } \textbf{p}^{2} \textbf{s}^{-} \textbf{s}^{-}$ $= \lim_{\underline{x} \to a_1} \left[\frac{\underline{x} (\underline{x} + a_1)^2 + \underline{e}^{\underline{x} \underline{t}}}{\underline{x}^{\underline{t}} (\underline{x} + a_1)^2} \frac{\underline{x} (\underline{x} + a_1)^2 + \underline{e}^{\underline{x} \underline{t}}}{\underline{x}^{\underline{t}} (\underline{x} + a_1)^2} \right]$ I.C.B. F.C.P. Created by T. Madas

Question 11

Use complex variable methods to find the following inverse Laplace transform.

 $\mathcal{L}^{-1}\left[\ln\left[\frac{1+s^2}{s(s+1)}\right]\right].$ Use a detailed method, describing briefly each stage in the workings. $f(t) = \frac{1}{t} \left[1 + \mathrm{e}^{-t} - 2\cos t \right]$ $f(t) = \int_{-1}^{-1} \left[\ln \left(\frac{1+d^2}{p(d+1)} \right) \right]$ FIRSTY etil = I FOR REAL R $e^{\text{st}} \ln \left(\frac{1+s^2}{s(s+i)} \right) ds$ (+) = 1 ZT $\ln\left[\frac{O(\mathbb{P}^2)}{O(\mathbb{R}^2)}\right] \longrightarrow \ln 1 \longrightarrow 0$ WHAT NO DEPLOYED WE MAY LEED BY PARTS $\mathbb{P}_{\mathbb{N}}\left(\frac{-\mathbb{P}^{2}+\cdots}{-\mathbb{P}^{2}+\cdots}\right)$ $\ln\left(\frac{1+\underline{\zeta}^{2}}{\underline{\zeta}(\underline{\zeta},\underline{z},\underline{i})}\right) = \ln\left(\underline{\zeta}^{2}+1\right) = \ln\underline{\zeta} = \ln\left(\underline{\zeta}+1\right)$ $f(t) = \frac{1}{2} \left[1 + e^{t} - 2uat \right]$ $\Longrightarrow \widehat{f}(t) = \frac{1}{2\pi\tau} \frac{1}{t} \left[e^{\frac{2t}{3}t} |_{W} \left(\frac{\tau + x^{2}}{\mathcal{A}(\xi + 1)} \right) \right]_{c-1\infty}^{c+1\infty} - \frac{1}{2\pi\tau} x \frac{1}{t} \int_{c-1\infty}^{c+\infty} \frac{e^{t}}{\mathcal{A}(\xi + 1)} \frac{1}{\lambda} d\xi$ I.V.C.B. III. $\longrightarrow - \left((t) = \frac{1}{2\pi} \sim \frac{1}{t_{c}} \left(e^{St} \right) s \left(\frac{1+\delta^{2}}{\sqrt{s}(\delta^{(t)})} \right)_{c-i\infty}^{c+i\infty} - \frac{1}{t_{c}} \left[2\cos t - 1 - e^{-t} \right]$ TION OF THE SQUARE BRADLET LET S= C = 12 AND LET R $e^{t\left(Ct+i\vartheta\right)}\ln\left[\frac{1+(c+i\vartheta)^{2}}{(c+i\vartheta)^{2}+(c+i\vartheta)}\right] \quad - e^{t\left(C-i\vartheta\right)}\ln\left[\frac{1+(c-i\vartheta)^{2}}{(c-i\vartheta)^{2}+(c-i\vartheta)}\right]$ * &(\$24) = \$12,5 $= e^{t} \left[e^{iR} \ln \left[\frac{(t+c^2+2cR)-R^2}{C^4+2cR)-R^2+C+1R} \right] - e^{-iR} \ln \left[\frac{(t+c^2+2cR)-R^2}{C^4+2cR)-R+C+1R} \right] \right]$ I.Y.G.B. I.F.G.B.

2%

K.

m20

Question 12

The function $y = f(t), t \ge 0$ satisfies

 $\mathcal{L}\left[f\left(t\right)\right] = \frac{s}{s^4 + 1}.$

Use complex variable methods to show that

 $f(t) = \sin\left(\frac{t}{\sqrt{2}}\right) \sinh\left(\frac{t}{\sqrt{2}}\right).$

Use a detailed method, describing briefly each stage in the workings.

proof

1

K.

I.G.B.

Question 13

The Bromwich integral for inverting a Laplace transform $\overline{f}(s)$ is given by

$$f(t) = \frac{1}{2\pi i} \int e^{st} \overline{f}(s) \, ds$$

- a) Describe briefly the contour used in this integral and the general method used to invert the transform.
- **b**) Given that *a* is a positive constant, show that

$$\mathcal{L}^{-1}\left[e^{-a\sqrt{s}}\right] = \frac{a}{2t^2\sqrt{\pi}} \exp\left(-\frac{a^2}{4t}\right)$$

c) Hence find in a simplified form of a convolution integral the following inverse Laplace transform

 $\left[\frac{\mathrm{e}^{-a\sqrt{s}}}{\sqrt{s}}\right].$

$$\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-a\sqrt{s}}}{\sqrt{s}}\right] = \frac{a}{2\pi} \int_0^\infty \left[\frac{1}{u^{\frac{3}{2}}\sqrt{t=u}}\right] \exp\left(-\frac{a^2}{4u}\right) du$$

[solution overleaf]

