LAPLACE TRANSFORMS FURTHER

SUMMARY OF THE LAPLACE TRANFORM
The Laplace Transform of a function $f(t), t \geq 0$ is defined as

$$
\mathcal{L}[f(t)] \equiv \bar{f}(s) \equiv \int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t
$$

where $s \in \mathbb{C}$, with $\operatorname{Re}(s)$ sufficiently large for the integral to converge.

The Laplace Transform is a linear operation

$$
\mathcal{L}[a f(t)+b g(t)] \equiv a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)] .
$$

Laplace Transforms of Common Functions

- $\mathcal{L}\left(t^{n}\right)=\frac{n}{s^{n+1}}$

$$
\mathcal{L}(1)=\frac{1}{s}, \quad \mathcal{L}(a)=\frac{a}{s}, \quad \mathcal{L}(t)=\frac{1}{s^{2}}, \quad \mathcal{L}\left(t^{2}\right)=\frac{2}{s^{3}}, \quad \mathcal{L}\left(t^{3}\right)=\frac{3}{s^{4}}, \ldots
$$

- $\mathcal{L}\left(\mathrm{e}^{a t}\right)=\frac{1}{s-a}, \mathcal{L}\left(\mathrm{e}^{-a t}\right)=\frac{1}{s+a}$
- $\mathcal{L}(\cos a t)=\frac{s}{s^{2}+a^{2}}, \mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}}$
- $\mathcal{L}(\cosh a t)=\frac{s}{s^{2}-a^{2}}, \mathcal{L}(\sinh a t)=\frac{a}{s^{2}-a^{2}}$

Laplace Transforms of Derivatives

- $\mathcal{L}[x(t)]=\bar{x}(t)$
- $\mathcal{L}[\dot{x}(t)]=s \bar{x}(t)-x(0)$
- $\mathcal{L}[\ddot{x}(t)]=s^{2} \bar{x}(t)-s x(0)-\dot{x}(0)$
- $\mathcal{L}[\dddot{x}(t)]=s^{3} \bar{x}(t)-s^{2} x(0)-s \dot{x}(0)-\ddot{x}(0)$

Laplace Transforms Theorems

- $1^{\text {st }}$ Shift Theorem

$$
\mathcal{L}\left[\mathrm{e}^{-a t} f(t)\right]=\bar{f}(s+a) \quad \text { or } \quad \mathcal{L}\left[\mathrm{e}^{a t} F(t)\right]=\bar{f}(s-a)
$$

$$
t+a)]=\mathrm{e}^{a s} \bar{f}(s), t>-a
$$

$$
\mathcal{L}[\mathrm{H}(t-a) f(t-a)]=\mathrm{e}^{-a s} \bar{f}(s) \text { or } \mathcal{L}[\mathrm{H}(t+a) f(t+a)]=\mathrm{e}^{a s} \bar{f}(s)
$$

- Multiplication by t^{n}
- Division by t

$$
\mathcal{L}\left[\frac{f(t)}{t}\right]=\int_{s}^{\infty} \bar{f}(\sigma) d \sigma
$$

provided that $\lim _{t \rightarrow 0}\left(\frac{f(t)}{t}\right)$ exists and the integral converges.

- Initial/Final value theorem

$$
\lim _{t \rightarrow 0}[f(t)]=\lim _{s \rightarrow \infty}[s \bar{f}(s)] \quad \text { and } \quad \lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[s \bar{f}(s)]
$$

Created by T. Madas

The Impulse Function / The Dirac Function

1. $\boldsymbol{\delta}(t-c)=\left\{\begin{array}{ll}\infty & t=c \\ 0 & t \neq c\end{array}, \quad \delta(t)= \begin{cases}\infty & t=0 \\ 0 & t \neq 0\end{cases}\right.$
2. $\int_{a}^{b} \delta(t-c) d t=\left\{\begin{array}{lc}1 & a \leq c \leq b \\ 0 & \text { otherwise }\end{array}\right.$
3. $\int_{a}^{b} f(t) \delta(t-c) d t=\left\{\begin{array}{cl}f(a) & a \leq c \leq b \\ 0 & \text { otherwise }\end{array}\right.$
4. $\mathcal{L}[\delta(t-c)]=\mathrm{e}^{-c s}$
5. $\mathcal{L}[f(t) \delta(t-c)]=f(c) \mathrm{e}^{-c s}$
6. $\frac{d}{d t}[\mathrm{H}(t-c)]=\delta(t-c)$

VARIOUS
 LAPLACE

TRANSFORM

QUESTIONS

Question 1
The function $x=x(t)$ is suitably defined for $t \geq 0$.
a) Show from first principles that

$$
\mathcal{L}\left[\frac{d x}{d t}\right]=s \mathcal{L}[x(t)]-x(0)
$$

b) Hence show further that

$$
\mathcal{L}\left[\frac{d^{2} x}{d t^{2}}\right]=s^{2} \mathcal{L}[x(t)]-s x(0)-\frac{d x}{d t}(0) .
$$

Created by T. Madas

Question 2

$$
f(t) \equiv\left\{\begin{array} { l r }
{ 0 } & { 0 < t \leq 4 } \\
{ 3 } & { t > 4 }
\end{array} \quad \text { and } \quad g (t) \equiv \left\{\begin{array}{lr}
3 & 0<t \leq 4 \\
0 & t>4
\end{array} .\right.\right.
$$

a) Find the Laplace transform of $f(t)$ from first principles.
b) Hence determine the Laplace transform of $g(t)$.

$$
\mathcal{L}[f(t)]=\frac{3 \mathrm{e}^{-4 s}}{s}, \mathcal{L}[g(t)]=\frac{3}{s}\left(1-\mathrm{e}^{-4 s}\right)
$$

Question 3
By considering a suitable differential equation with appropriate initial conditions show clearly that

$$
\mathcal{L}\left(t \mathrm{e}^{-2 t}\right)=\frac{1}{(s-2)^{2}}, t \geq 0
$$

You may not use integration in this question.

Created by T. Madas

Created by T. Madas

Question 4
Use the differential equation

$$
\frac{d^{2} y}{d t^{2}}+a^{2} x=0, t \geq 0
$$

with appropriate initial conditions to show that

$$
\mathcal{L}(\cos a t)=\frac{s}{s^{2}+a^{2}} \quad \text { and } \quad \mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}}
$$

You may not use integration in this question.

Question 5
Find each of the following Laplace transforms.
a) $\mathcal{L}\left[\frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t}\right], a>0, b>0$
b) $\mathcal{L}\left[\left(1+t \mathrm{e}^{-t}\right)^{3}\right]$

$$
\mathcal{L}\left[\frac{\mathrm{e}^{-a t}-\mathrm{e}^{-b t}}{t}\right]=\ln \left[\frac{s+b}{s+a}\right], \mathcal{L}\left[\left(1+t \mathrm{e}^{-t}\right)^{3}\right]=\frac{1}{s}+\frac{3}{(s+1)^{2}}+\frac{6}{(s+2)^{3}}+\frac{6}{(s+3)^{4}}
$$

Question 6
Invert each of the following Laplace transforms.
i. $\bar{f}(s)=\frac{\mathrm{e}^{-s \pi}}{s^{2}\left(s^{2}+1\right)}$
ii. $\bar{g}(s)=\frac{1}{(s-1)^{4}}$

Question 7
Find each of the following Laplace transforms.
c) $\mathcal{L}\left[\frac{\sinh t}{t}\right]$

Coses)
d) $\mathcal{L}\left[\frac{\mathrm{e}^{-2 t}}{\sqrt{t}}\right]$
$\mathcal{L}\left[\frac{\sinh t}{t}\right]=\frac{1}{2} \ln \left[\frac{s+1}{s-1}\right]$,
$\mathcal{L}\left[\frac{\mathrm{e}^{-2 t}}{\sqrt{t}}\right]=\sqrt{\frac{\pi}{s+2}}$

Created by T. Madas

Question 8
Find the inverse following Laplace transforms of the following functions.
i. $\frac{2 s}{s^{2}+4 s+10}$.
ii. $\frac{\mathrm{e}^{-2 s}}{s^{2}+a^{2}}$.
iii. $\frac{1}{s^{2}\left(s^{2}+1\right)}$

Question 9
Find the following Laplace transform

$$
\begin{array}{ll}
\mathcal{L}\left[\frac{\sin ^{2} t}{t}\right] & \mathscr{L}\left[\frac{\sin ^{2} t}{t}\right]=\frac{1}{4} \ln \left[\frac{s^{2}+4}{s^{2}}\right]
\end{array}
$$

Created by T. Madas

Question 10
It is given that

$$
\mathcal{L}[f(t)]=\frac{1}{s} \exp \left(-\frac{1}{s}\right), t \geq 0
$$

Determine a simplified expression for

$$
\mathcal{L}\left[\mathrm{e}^{-t} f(3 t)\right]
$$

$$
\mathcal{L}\left[\mathrm{e}^{-t} f(3 t)\right]=\frac{1}{s+1} \exp \left(-\frac{3}{s+1}\right)
$$

Created by T. Madas

Question 11

Find a simplified expression for

$$
\mathcal{L}\left[\cosh ^{2} 4 t\right] .
$$

$$
\mathcal{L}\left[\cosh ^{2} 4 t\right]=\frac{s^{2}-32}{s\left(s^{2}-64\right)}
$$

Question 12
The function $y=y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}+y=1, \quad t \geq 0, \quad y(0)=0 .
$$

Use the initial-final value theorem to find $\lim _{t \rightarrow \infty}[y(t)]$.

Question 13
The function $y=f(t)$ satisfies

$$
\mathcal{L}[f(t)]=\frac{1}{\sqrt{s+2}}
$$

Determine a simplified expression for $f(t)$.

Created by T. Madas

Question 14

$$
\bar{h}(s)=\frac{1}{(s+1)(s+2)}
$$

Invert the above Laplace transform by ...
a) ... partial fractions
b) ... the convolution theorem

$$
h(t)=\mathrm{e}^{-t}-\mathrm{e}^{-2 t}
$$

$(s)=\frac{1}{(s+1)(s+2)}$
a) iy prezin, putetions (lover vp)
$\frac{1}{(s+1)(s+2)}=\frac{1}{s+1}+\frac{-1}{s+2}=\frac{1}{s+1}-\frac{1}{s+2}$ inugetinc.
$h(t)=e^{-t}-e^{-2 t}$
b) BY THE Ganvouthas HtGrim
$\frac{1}{(s+1)(s+2)}=\frac{1}{(s+1)} \cdot \frac{1}{(s+2)}=f(s) \bar{g}(s)$ waterect $f(x)=\frac{1}{s+1}$ $\overline{f_{*} g}=\vec{f} \bar{g}$ Invertios BCot SDAS $L^{-1}[\overline{F * g}]=L^{-1}[\bar{f} \bar{g}]$ $f * g=\alpha^{-1}\left[\frac{1}{(8+)} \cdot \frac{1}{(d-20)}\right]$
 $=\int_{0}^{t} e^{-t u t y} \cdot e^{x} d x=\int_{0}^{t} e^{t} e^{4} e^{4} e^{-2 x} d x$
\square

Question 15
The convolution $[f * g](t)$, of two functions $f(t)$ and $g(t)$ is defined as

$$
\mathcal{L}\{[f * g](t)\}=\mathcal{L}[f(t)] \mathcal{L}[g(t)]=\bar{f}(s) \bar{g}(s) .
$$

$\left.[f * g)(t)=\int_{0}^{t} f(t-u) g(u) d u\right]$
$\alpha[f * g]=\int_{0}^{\infty} e^{-s t}(f * g)(t) d t=\int_{0}^{\infty} e^{-s t} \int_{0}^{t} f(t-u) g(u) d u d t$

$=\int_{u=0}^{\infty} \int_{t=u}^{t=\infty} e^{-5 t} f(t-u) g(u) d t d u$
$=\int_{u=0}^{\infty} \int_{t=u}^{t=\infty} g(u)\left[e^{-s t}((t) u) d t\right] d u$ (2) Now usf a sursittian in the himncel insteant
$t=u \longmapsto V=0$
$t=\infty \longmapsto V=\infty$

$=\alpha[s] \alpha[f]$

Created by T. Madas

Question 16
Use the differential equation

$$
\frac{d^{2} x}{d t^{2}}=a^{2} x, t \geq 0
$$

with appropriate initial conditions to show that

$$
\mathcal{L}(\cosh a t)=\frac{s}{s^{2}-a^{2}} \quad \text { and } \quad \mathcal{L}(\sinh a t)=\frac{a}{s^{2}-a^{2}}
$$

You may not use integration in this question.

Question 17

The function $y=f(t), t \geq 0$, is twice differentiable.
a) Show from first principles that

$$
\mathcal{L}\left[\frac{d^{2} y}{d t^{2}}\right]=s^{2} \mathcal{L}[y(t)]-s y(0)-\frac{d y}{d t}(0)
$$

A second function $g(t)$ is defined for $t \geq 0$.
b) Show further that

$$
\mathcal{L}\left[\int_{0}^{t} f(t-u) g(u) d u\right]=\mathcal{L}[f(t)] \mathcal{L}[g(t)]
$$

Question 18

$$
\mathcal{L}[f(t)] \equiv \bar{f}(s), t \geq 0
$$

a) Show clearly that
b) Find in its simplest form

$$
\mathcal{L}\left[\mathrm{e}^{2 t} \cos 2 t \sin 2 t\right] .
$$

$$
\frac{2}{s^{2}-4 s+20}
$$

Created by T. Madas

Question 19

Use the definition of a Laplace transform to show that

$$
\mathcal{L}\left[\int_{0}^{t} f(u) d u\right]=\frac{1}{s} \mathcal{L}[f(u)], t \geq 0 .
$$

Question 20

Determine a simplified expression for

$$
\mathcal{L}\left[t \mathrm{e}^{2 t} \cos 3 t\right]=\frac{s^{2}-4 s-5}{\left(s^{2}-4 s+13\right)^{2}}
$$

Question 21
Find the following inverse Laplace transform

$$
\mathcal{L}^{-1}\left[\ln \left(1+\frac{1}{s^{2}}\right)\right]
$$

Question 22
Find the following inverse Laplace transform

$$
\mathcal{L}^{-1}\left[\frac{12}{s^{3}+8}\right]
$$

$$
\mathcal{L}^{-1}\left[\frac{12}{s^{3}+8}\right]=\mathrm{e}^{-2 t}+2 \mathrm{e}^{t}[\sqrt{3} \sin (\sqrt{3} t)-\cos (\sqrt{3} t)]=\mathrm{e}^{-2 t}+2 \mathrm{e}^{t} \sin \left(\sqrt{3} t-\frac{1}{6} \pi\right)
$$

Question 23
Find and verify the following inverse Laplace transform

$$
\mathcal{L}^{-1}\left[\frac{s^{2}}{\left(s^{2}+4\right)^{2}}\right]
$$

$$
\mathcal{L}^{-1}\left[\frac{s^{2}}{\left(s^{2}+4\right)^{2}}\right]=\frac{1}{2} t \cos 2 t+\frac{1}{4} \sin 2 t
$$

$\Rightarrow \alpha^{-1}\left[\frac{s^{2}}{(84 y)}\right]=\left[\frac{1}{2} \operatorname{tas} 2 t+\frac{1}{3} \sin 2 t\right]-[\tan (-2 x)]$
$\Rightarrow \alpha^{-1}\left[\frac{x^{2}}{\left(x^{2}+4\right)^{2}}\right]=\frac{1}{2} \tan 2 x+\tan t+\tan 2 t$
$\Rightarrow d^{-1}\left[\frac{x^{2}}{(x+4)^{2}}\right]=\frac{1}{2} \tan 2 t+\frac{t}{\sin x}$

- 1$]\left[\frac{1}{2} \tan 2 t+\frac{1}{4} \sin x\right]$
$=\frac{1}{2}\left[-\frac{d}{4}\left[1[\cos x t]+\frac{1}{4} \times \frac{2}{2+2}\right.\right.$

$=\frac{1}{2}\left[\frac{g^{2}-4}{\left(8^{2}+4\right)}\right]+\frac{1}{2}\left[\frac{8^{2}+4}{\left(\frac{x^{2}}{6}+4\right)^{2}}\right]$
$=\frac{1}{2}\left[\frac{k^{2} x x^{2}+x^{2}}{8-4)^{2}}+1\right]$
$=\frac{1}{2} \times \frac{2 x}{\left(\varepsilon^{2}+4\right)^{2}}$
$=\frac{k^{2}}{\left(8^{2}+4\right)^{2}}$
Whict verafits tiff nutesion.

Created by T. Madas

Question 24
Use the definition of a Laplace transform to show that if $x=f(t)$ then

Question 25

$$
\mathcal{L}[f(t)]=\bar{f}(s) \equiv \int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t, t \geq 0
$$

a) Show from the above definition that if a is a non zero constant, then

$$
\mathcal{L}[f(a t)]=\frac{1}{a} \bar{f}\left(\frac{s}{a}\right)
$$

b) Deduce that if k is a non zero constant, then

Created by T. Madas

Question 26

$$
\mathcal{L}[f(t)] \equiv \bar{f}(s), t \geq 0 .
$$

a) Show clearly that

$$
\mathcal{L}\left[k^{t} f(t)\right] \equiv \bar{f}(s-\ln k), k>0
$$

b) Find in its simplest form

$$
\mathcal{L}\left[t^{3} \mathrm{e}^{-t} 2^{t}\right]=\frac{6}{(s+1-\ln 2)^{4}}
$$

Question 27
Find the following inverse Laplace transform

$$
\mathcal{L}^{-1}\left[\frac{1}{s^{3}\left(s^{2}+1\right)}\right]
$$

$$
\mathcal{L}^{-1}\left[\frac{1}{s^{3}\left(s^{2}+1\right)}\right]=\frac{1}{2} t^{2}-1+\cos t
$$

Question 28
Find the following inverse Laplace transform

Question 29
It is given that

$$
\mathcal{L}[t f(t)]=\frac{1}{s^{3}+s}, t \geq 0
$$

Determine a simplified expression for
$\mathcal{L}\left[\mathrm{e}^{-t} f(2 t)\right]$.
$\square, \mathcal{L}\left[\mathrm{e}^{-t} f(2 t)\right]=\frac{1}{2} \ln \left(\frac{\sqrt{s^{2}+2 s+5}}{s+1}\right)$

Question 30
Use an appropriate method to show that

$$
\mathcal{L}^{-1}\left[\frac{1}{s \sqrt{s+a}}\right]=\frac{1}{\sqrt{a}} \operatorname{erf}(\sqrt{a t})
$$

where a is a positive constant.

Question 31
Use an appropriate method to show that

$$
\mathcal{L}\left[\int_{0}^{t} \frac{1-\mathrm{e}^{-u}}{u} d u\right]=\frac{1}{s} \ln \left(s+\frac{1}{s}\right)
$$

\square

- To BIAWATt THE CONSTAWT WE USE THE iWITAL/ final vawt thforecu $\operatorname{Lim}_{s \rightarrow \infty}[s \bar{f}(s)]=\operatorname{Lim}_{t \rightarrow \infty}[f(t)]$
Hioce $\lim _{s \rightarrow \infty}[s f(s)]=\lim _{\$ \rightarrow \infty}\left[\ln \left(\frac{s+1}{s}\right)+c\right]=\ln 1+c=c$ $\lim _{t \rightarrow \infty}[f(t)]=\lim _{t \rightarrow-}\left[\int_{0}^{t} \frac{1-e^{-u}}{4} d u\right]=0$
\square
- HEnce we finany obTAin)
$s \bar{f}(s)=\ln \left(\frac{z+1}{x}\right)$
$f(s)=\frac{1}{8} \ln \left(1+\frac{1}{s}\right)$
$L[f(t)]=\frac{1}{3} \ln \left(1+\frac{1}{s}\right)$
$L\left[\int_{0}^{t} \frac{1-e^{-4}}{4} d x\right]=\frac{1}{s} \ln \left(1+\frac{1}{\beta}\right) /$ An efenere

Question 32
Use an appropriate method to show that

$$
\mathcal{L}[\operatorname{erf}(\sqrt{t})]=\frac{1}{s \sqrt{s+1}}
$$

Created by T. Madas

Question 33

$$
g(t) \equiv \int_{0}^{t} f(x) d x, t \geq 0
$$

a) Show clearly that

$$
\mathcal{L}(g(t))=\frac{\bar{f}(s)}{s}
$$

where $\bar{f}(s)=\mathcal{L}(f(t))$.
b) Verify the validity of the result of part (a) by using $f(x)=\sin x$ and finding $\mathcal{L}(g(t))$ by its integral definition.
c) Use the result of part (a) to determine

$$
\mathcal{L}\left[\int_{0}^{t} \frac{\sin x}{x} d x\right]
$$

$$
\frac{1}{s} \arctan \left(\frac{1}{s}\right)
$$

Question 34
The function $y=y(t)$ is infinitely differentiable and defined for $t \geq 0$.

Show that

Created by T. Madas

Question 35
The Laplace transform of $f(t), t \geq 0$, is denoted by $\bar{f}(s)=\mathcal{L}(f(t))$.

Show that the inverse Laplace transform of $\frac{\bar{f}(s)}{s}$ satisfies

Question 36

$$
t \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+t y, t>0
$$

The function $y=J_{0}(t)$ is a solution of the above differential equation.

It is further given that $\lim _{t \rightarrow 0}\left[J_{0}(t)\right]=1$.

By taking the Laplace transform of the above differential equation, show that

$$
\mathcal{L}\left[J_{0}(t)\right]=\frac{1}{\sqrt{s^{2}+1}} .
$$

Question 37
By forming and taking the Laplace transform of a suitable second order differential equation, show that

$$
\mathcal{L}[\sin \sqrt{t}]=\frac{\sqrt{\pi} \mathrm{e}^{-\frac{1}{4 s}}}{2 s^{\frac{3}{2}}}
$$

Question 38
The Sine integral function $\operatorname{Si}(t)$ is defined as

$$
\begin{aligned}
& \operatorname{Si}(t) \equiv \int_{0}^{t} \frac{\sin u}{u} d u, t \geq 0 . \\
& \mathcal{L}[\operatorname{Si}(t)]=\frac{1}{s} \arctan \left(\frac{1}{s}\right)
\end{aligned}
$$

Question 39
Find the following inverse Laplace transform by 3 different methods.

$$
\mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right], a>0
$$

Question 40
The Cosine integral function $\mathrm{Ci}(t)$ is defined as

$$
\operatorname{Ci}(t) \equiv \int_{t}^{\infty} \frac{\cos u}{u} d u, t>0
$$

$$
\mathcal{L}[\mathrm{Ci}(t)]=\frac{\ln \left(s^{2}+1\right)}{2 s}
$$

\square

Question 41
The Exponential integral function $\operatorname{Ei}(t)$ is defined as

$$
\begin{gathered}
\operatorname{Ei}(t) \equiv \int_{t}^{\infty} \frac{\mathrm{e}^{-u}}{u} d u, t \geq 0 \\
\mathcal{L}[\operatorname{Ei}(t)]=\frac{\ln (s+1)}{s}
\end{gathered}
$$

Show that

- Gor convinitincte in Notation let $f(t)=E_{i}(t)$ $\Rightarrow f(t)=\int_{t}^{\infty} \frac{e^{-u}}{u} d u$
- Dufferantatt w.r.T $\Rightarrow f(t)=\frac{d}{d t} \int_{t}^{\infty} \frac{e^{-4}}{u} d u$. $\Rightarrow f^{\prime}(t)=-\frac{e^{-t}}{t}$ $\Rightarrow-t f^{\prime}(t)=e^{-t}$ - Thrang tife unechce ternsserm, usma. these dessuty
\square $\alpha\left[g^{\prime}(t)\right]=\$ L[g(t)]-g(0)$ $\rightarrow \mathcal{L}\left[-f^{\prime}(\omega)\right]=\perp\left[e^{-t}\right]$ $\Rightarrow+\frac{d}{d \delta}\left[\alpha\left[f^{\prime}(t)\right]\right]=\frac{1}{\$+1}$ $\Rightarrow \frac{d}{d s}[\$ \bar{f}(s)-f(0)]=\frac{1}{\$+1}$ $\Rightarrow \frac{d}{d s}[s \bar{f}(s)]-\frac{d}{d s}[f(x)]=\frac{1}{s+1}$ $\Rightarrow \delta \vec{f}(\vec{s})=\int \frac{1}{\xi+1} d s$
\square
- To find the constras we cie taf intina/final maferom $\lim _{s \rightarrow 0} \frac{f}{x} f(t)=\lim _{t \rightarrow \infty} f(t)$ $\operatorname{Lim}_{s \rightarrow \infty} \xi \tilde{f}(t)=\operatorname{Lim}_{t \rightarrow 0} f(t)$ $\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty} \int_{t}^{\infty} \frac{e^{-u}}{u} d u=0$ $\left.\operatorname{Lim}_{\delta \rightarrow 0} \delta \vec{f}(f)=\operatorname{Lim}_{\delta \rightarrow 0}[\ln |\dot{s}| \mid+c]=c\right\} \Rightarrow c=0$
- Gintiar wer obitan
$\Rightarrow \quad \vec{f}(s)=\ln (\$+1)$ $\Rightarrow \bar{f}(s)=\frac{\ln (x+1)}{s}$
$\Rightarrow \mid f(t)]]=\mathcal{L}[$ Ei(t) $]=\alpha\left[\int_{t}^{\infty} \frac{e^{-u}}{u} d u\right]=\frac{\ln (d+1)}{s}$

Question 42
By differentiating the integral definition of the Gamma function, $\Gamma(x)$, with respect to x, show that

$$
\mathcal{L}[\ln t]=-\frac{\gamma+\ln s}{s}
$$

You may assume that $\cdot \Gamma^{\prime}(1)=-\gamma$.

Question 43

$$
\mathcal{L}[f(t)]=\bar{f}(s) \equiv \int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t, t \geq 0
$$

a) Show from the above definition that if a is a non zero constant, then

$$
\mathcal{L}[f(a t)]=\frac{1}{a} \bar{f}\left(\frac{s}{a}\right)
$$

b) By taking the Laplace transform of Bessel's equation

$$
t^{2} \frac{d^{2} x}{d t^{2}}+t \frac{d x}{d x}+\left(t^{2}-n^{2}\right) x=0, n \in \mathbb{N}
$$

and assuming further that $J_{0}(0)=1$, show that

$$
\mathcal{L}\left[J_{0}(t)\right]=\frac{1}{\sqrt{s^{2}+1}}
$$

c) Deduce in simplified form the Laplace transform of $J_{0}(a t)$

$$
\mathcal{L}\left[J_{0}(a t)\right]=\frac{1}{\sqrt{s^{2}+a^{2}}}
$$

c) From met (a)
$d[f(a t)]=\frac{1}{a} f\left(\frac{8}{a}\right)$

- Fom Pret (b)

- cusamen nute mociar

$=\frac{1}{\sqrt{x+m}}$

Question 44

$$
\mathcal{L}[f(t)]=\bar{f}(s) \equiv \int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t, t \geq 0
$$

a) Show from the above definition that if k is a non zero constant, then

$$
\mathcal{L}^{-1}[\bar{f}(k s)]=\frac{1}{k} f\left(\frac{t}{k}\right)
$$

b) Show further that

$$
\mathcal{L}^{-1}\left[\frac{\bar{f}(s)}{s}\right]=\int_{0}^{t} f(u) d u
$$

c) Given that $\mathcal{L}^{-1}\left[\mathrm{e}^{-\sqrt{s}}\right]=\frac{\mathrm{e}^{-\frac{1}{4 t}}}{2 t^{\frac{3}{2}} \sqrt{\pi}}$, use parts (a) and (b) to prove that

$$
\mathcal{L}^{-1}\left[\frac{\mathrm{e}^{-\alpha \sqrt{s}}}{s}\right]=\operatorname{erfc}\left(\frac{\alpha}{2 \sqrt{t}}\right)
$$

where α is a positive constant.

Question 45
The Laplace transform $\bar{y}(s)$, of a function $y=y(t), t \geq 0$ is given by

$$
\bar{y}(s)=\mathrm{e}^{-\sqrt{s}}, s>0
$$

a) Show that $\bar{y}(s)$ satisfies the differential equation

$$
4 s \bar{y}^{\prime \prime}(s)+2 \bar{y}^{\prime}(s)-\bar{y}(s)=0 .
$$

b) Hence show further that

$$
4 t^{2} \frac{d y}{d t}+(6 t-1) y=0
$$

c) Use parts (a) and (b) to prove that

INVERSION BY COMPLEX

 VARIABLESQuestion 1
Use the method of residues to find

$$
\mathcal{L}^{-1}\left(\frac{1}{s-2}\right)
$$

$$
\mathcal{L}^{-1}\left(\frac{1}{s-2}\right)=\mathrm{e}^{2 t}
$$

Question 2
Use the method of residues to find

Question 3
Use the method of residues to find

$$
\mathcal{L}^{-1}\left[\frac{2}{\left(s^{2}+1\right)^{2}}\right]
$$

$$
\mathcal{L}^{-1}\left[\frac{2}{\left(s^{2}+1\right)^{2}}\right]=\sin t-t \cos t
$$

$\left[L^{-1}\left[\frac{2}{\left(s^{2}+1\right)}\right]\right\}$

- If $\vec{\phi}=R e^{i \theta}, 0 \leq \theta \leqslant 2 \pi$
$|\bar{f}(s)|=\left|\frac{2}{\left(R^{2}+\theta+1\right)^{2}}\right|=\frac{2}{\mid\left[E^{2} \theta+\left.1\right|^{2}\right.} \leqslant \frac{2}{\left(\left[R^{2} e^{20} \mid-1\right]^{2}\right.}=\frac{2}{\left(R^{2}-1\right)^{2}}=O\left(\frac{1}{R^{4}}\right)$
(ersidut $A T \delta=i$
$\lim _{s \rightarrow i}\left[\frac{d}{d s}\left[(6-1)^{2} \frac{2 e^{s t}}{(s-1)^{2}(s+i)^{2}}\right]\right]=2 \lim _{s \rightarrow i}\left[\frac{d}{d s}\left[\frac{e^{s t}}{(s+i)^{2}}\right]\right]$
$=2 \operatorname{Lim}_{s \rightarrow i}\left[\frac{(s t+i)^{2} \times t \cdot e^{s t}-2(s+i) e^{s t}}{(s+i)^{4}}\right]=2 \operatorname{Lim}_{\phi \rightarrow i}\left[\frac{t(s+i) e^{s t}-2 e^{s t}}{(s+i)^{s}}\right]$
$\left.=2\left[\frac{t(2 i) e^{i t}-2 e^{i t}}{(2 i)^{3}}\right]=\frac{4 t i e^{t}-1 e^{i t}}{-8 i}=-\frac{1}{2} t e^{i t}-\frac{1}{2} i e^{i t}\right)$
$\operatorname{Lim}_{s \rightarrow-i}\left[\frac{d}{d s}\left[(s+i)^{2} \frac{2 e^{s+}}{(s-i)^{2}(s+i)^{2}}\right]\right]=2 \lim _{s \rightarrow-i}\left[\frac{d}{d s}\left[\frac{e^{s t}}{(s-i)^{2}}\right]\right]$
$=2 \lim _{s \rightarrow-i}\left[\frac{(s-i)^{2} \times 2 e^{s t}-2(s-i) e^{s t}}{(s-i)^{4}}\right]=2 \lim _{s \rightarrow-i}\left[\frac{t(s-i) e^{s t} z^{s t}}{(s-i)^{3}}\right]$
$=\frac{-4 t i e^{-i t}-4 e^{-i t}}{8 i}=-\frac{1}{2} t e^{-i t}+\frac{1}{2} i e^{-i t}$
 $=-\frac{1}{2} t-\frac{1}{2} t e^{-i t}-\frac{1}{2} i\left(e^{i t}-e^{-i t}\right)$ $=-t \cosh i t-i \sinh (i t)$ $=-t \cos t+\sin t$

Question 4
Use complex integration to find the following inverse Laplace transform.

$$
\mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right], a>0
$$

$$
\mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]=\frac{t \sin a t}{2 a}
$$

$$
\begin{aligned}
& \text { - 7tslove At -ai } \\
& \lim _{f \rightarrow-a i}\left[\frac{d}{d x}\left(\frac{d}{f}+\left.a i\right|^{x} \frac{s e^{s t}}{(s+a i)^{3}(x-a i)^{2}}\right]=\lim _{t \rightarrow-a i}\left[\frac{d}{d s} \frac{\frac{b}{s e^{s t}}}{\left.\left(\frac{\delta}{\delta}-a\right)^{2}\right)^{2}}\right]\right. \\
& \lim _{s \rightarrow-a i}\left[\frac{\left.e^{s t}[(\$+a i)(1+s t)-2 \$]\right]}{(z-a i)^{3}}\right]=\frac{e^{-a t i}[-2 a i(1-a t \cdot)+2 a i]}{(-2 a i)^{3}} \\
& =\frac{e^{-a t i}\left(-2 a^{i}-2 a^{2} t+2 a a^{2}\right)}{8 a^{3} i}=e^{-a t i} \times \frac{-2 a^{2} t}{8 a^{3} i}=\frac{-\frac{1 e^{-a t i}}{4 a i}}{} \\
& \text { - Coulerina a masleviating-tile Reslouts } \\
& f(t)=\frac{t e^{a t i}}{4 a i}-\frac{t e^{-a t i}}{4 a i}=\frac{t}{4 a i}\left[e^{a t i}-e^{-a t i}\right] \\
& =\frac{t}{4 a i}[2 \sinh (a t i)]=\frac{t}{4 a i}[2 i \sin (a t)] \\
& =\frac{2 t i}{4 a i} \sin (a t) \\
& =\frac{t}{2 a} \sin (a t)
\end{aligned}
$$

Question 5
Use the method of residues to find

Question 6
Use complex variables to find

$$
\mathcal{L}^{-1}\left[\frac{s^{2}-4 s-5}{\left(s^{2}-4 s+13\right)^{2}}\right]
$$

$$
\mathcal{L}^{-1}\left[\frac{s^{2}-4 s-5}{\left(s^{2}-4 s+13\right)^{2}}\right]=t \mathrm{e}^{2 t} \cos 3 t
$$

\square (1) RefiDot of THe Dusht Polt AT $s=2-3 i$ $\lim _{s \rightarrow 2-3 i}\left[\frac{d}{d s}\left[(s-2+3 i)^{2} \frac{\left(s^{2}-4 s-5\right) e^{s t}}{(5-2+3 i)^{2}(\xi-2-3 i)^{2}}\right]\right]$
\qquad $\lim _{s-2-2-3 i}\left[\frac{(5-2-3 i) e^{2 t}\left[(2 s-4)+t\left(\xi^{2}-4 \xi-5\right)\right]-2 e^{s t}\left(\xi^{2}-4 \xi-5\right)}{(\$+2-3 i)^{3}}\right]$
\qquad
\qquad
\qquad
$\frac{-6 i e^{(2-3) t}(66 i-84)+36 e^{(2-3 i) t}}{216 i}=\frac{(-36+189) e^{(2-3 i) t}+36 e^{(2-2 i) t}}{216 i}$
$\frac{108+i e^{(2-3 i) t}}{216 i}=\frac{1}{2} t e^{2 t} e^{-3 t}$
Thus we that $f(t)$ now Aftre sont Toynitis $f(t)=\frac{1}{2} t e^{2 t} e^{3 t i}+\frac{1}{2}+e^{2 t} e^{-3 t i}$
$t e^{2 t}\left[\frac{1}{2} e^{3 t i}+\frac{1}{2} e^{-3 t i}\right]$
$=t e^{2 t} \operatorname{tach}(3 t i)$
$=t e^{t^{t} \text { cos } 3 t}$

Question 7

$$
\bar{f}(s)=\frac{\mathrm{e}^{-s \pi}}{\left(s^{2}+1\right)^{2}}
$$

Use complex variable methods to invert the above Laplace transform.

Use a detailed method, describing briefly each stage in the workings.

Give the final answer in terms of Heaviside functions.

$$
f(t)=\frac{1}{2} \mathrm{H}(t-\pi)[\sin (t-\pi)-(t-\pi) \cos (t-\pi)]
$$

Question 8

$$
\bar{f}(s)=\frac{(a s+1) \mathrm{e}^{-a s}}{s^{2}\left(s^{2}+1\right)}, a>0
$$

Use complex variable methods to invert the above Laplace transform.

$$
\mathcal{L}[\bar{f}(s)]=t \mathrm{H}(t-a)-\mathrm{H}(t-a) \sin (t-a)+a \mathrm{H}(t-a) \cos (t-a)
$$

Use a detailed method, describing briefly each stage in the workings.

Question 9

$$
\bar{f}(s)=\frac{s^{3}+s^{2}+1-\mathrm{e}^{-s \pi}}{s^{2}\left(s^{2}+1\right)}
$$

Use complex variable methods to invert the above Laplace transform.

Use a detailed method, describing briefly each stage in the workings.
$f(t)=\left\{\begin{array}{cr|}0 & t<0 \\ t+\cos t & 0 \leq t \leq \pi \\ \pi+\cos t-\sin t & t>\pi \\ \hline\end{array}\right.$
\square

 $f(s)=\frac{e^{s}\left(1+s^{2}+s^{3}\right)}{s^{2}(s+i)(s-1)}$ \qquad $f(\theta)=\frac{1}{2 \pi} \int_{\cos }^{10 i x}(f)$

- If $t<0$ wa clase foth to fate plat so no smountotes inside $f(t)=\frac{1}{\text { and }} \times 0.0$ m char wheter
- If $0<t<\pi$ कier inothere cioses to Tht LOFT a Seeond to thf dunt (no comrienton) $\begin{aligned} \therefore f(t) & =\frac{1}{\sin } \times 2 x \sum(\operatorname{cosen} \sin (x) \\ & =t e^{t}+\frac{1}{2} e^{-k}+t=\cos (t)+t=\cos t+t \end{aligned}$
 son shex $\Rightarrow f(t)=\pi+$ lust - - ment

Question 10
Given that a is a positive constant, use complex variable methods to find the following inverse Laplace transform.

$$
\mathcal{L}^{-1}\left[\frac{1}{s^{3}\left(s^{2}+a^{2}\right)^{2}}\right]
$$

Use a detailed method, describing briefly each stage in the workings.

$$
f(t)=\frac{t^{2}}{2 a^{4}}-\frac{2}{a^{6}}+\frac{2}{a^{6}} \cos a t+\frac{t}{2 a^{5}} \sin a t
$$

Question 11
Use complex variable methods to find the following inverse Laplace transform.

$$
\mathcal{L}^{-1}\left[\ln \left[\frac{1+s^{2}}{s(s+1)}\right]\right]
$$

Use a detailed method, describing briefly each stage in the workings.

$$
f(t)=\frac{1}{t}\left[1+\mathrm{e}^{-t}-2 \cos t\right]
$$

$$
\begin{aligned}
& f(t)=\mathcal{L}^{-1}\left[\ln \left[\frac{1+t^{2}}{x\left(r^{2}+1\right)}\right)\right] \\
& \text { O. Ey Complax vacerrese } \\
& f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{\text {st }} \ln \left(\frac{1+s^{2}}{(s+1)}\right) d s
\end{aligned}
$$

$\ln \left(\frac{1+t^{2}}{5(s+1)}\right)=\ln \left(s^{2}+1\right)-\ln s-\ln (t+1)$	$\frac{2 s}{s^{2}+1}-\frac{1}{5}-\frac{1}{s+1}$
$\frac{1}{t} e^{s t}$	$e^{s t}$

| $\frac{1}{t} e^{s t}$ | $e^{i t}$ |
| :--- | :--- | ${ }^{4} \ln \left(\frac{-R^{2}+\ldots}{R_{2}+\ldots}\right)$ $\rightarrow f(t)=\frac{1}{2 \pi i} \frac{1}{t}\left[e^{s t} \ln \left(\frac{1+x^{2}}{x(p+1)}\right)\right]_{c-i \infty}^{c+i \infty}-\frac{1}{2 \pi i} x \frac{1}{t} \int_{c-i \infty}^{c+i \infty} e^{\frac{s}{s}\left[\frac{2 x}{\xi+i}-\frac{1}{s}-\frac{1}{x+1}\right] d s}$ $\rightarrow f(t)=\frac{1}{2 \pi i} \times \notin\left[e^{s t} \ln \left(\frac{1+x^{2}}{f(s-1)}\right)\right]_{c-i \infty}^{c+i \infty}-\frac{1}{t} \alpha^{-1}\left[\frac{2 s^{3}}{s^{2}+1}-\frac{1}{s}-\frac{1}{x+1}\right]$ $\rightarrow f(t)=\frac{1}{2 \pi^{i}} \times \frac{1}{t}\left[e^{s t} \ln \left(\frac{1+1^{2}}{\left.\frac{s}{(s+0}\right)}\right)\right]_{c-i \infty}^{c+i \infty}-\frac{1}{t}\left[2 \cos t-1-e^{-t}\right]$

 Lस $s=c+$ il twi LAT $R \rightarrow \infty$
$e^{t(c+i R)} \ln \left[\frac{1+(c+i Q)^{2}}{(c+i R)^{2}+(c+i R)}\right]-e^{t(c-i R)} \ln \left[\frac{1+(c-i \rho)^{2}}{\left((-i R)^{2}+(c-i R)\right.}\right]$ $=e^{t}\left[e^{i R} \ln \left[\frac{1+c^{2}+2 R i-R^{2}}{C^{2}+2 C R_{i}-R^{2}+c+i R}\right]-e^{-i R} \ln \left[\frac{4 c^{2}-2 \cdot R_{i}-R^{2}}{c^{2}-2 \cdot R_{i}-R+c-i R}\right]\right.$ - Firsoy $\left|e^{ \pm i R}\right|=1$ far ratal
\qquad 1.f $\ln \left[\frac{O\left(L^{2}\right)}{O\left(R^{2}\right)}\right] \rightarrow \ln 1 \rightarrow 0$ (1) SO सS $R \rightarrow \infty$ THLS VANGHEL WND TKUS $f(t)=\frac{1}{t}\left[1+e^{-t}-2 \cos t\right]$

Question 12
The function $y=f(t), t \geq 0$ satisfies

$$
\mathcal{L}[f(t)]=\frac{s}{s^{4}+1}
$$

Use complex variable methods to show that

$$
f(t)=\sin \left(\frac{t}{\sqrt{2}}\right) \sinh \left(\frac{t}{\sqrt{2}}\right)
$$

Use a detailed method, describing briefly each stage in the workings.

Created by T. Madas

Question 13
The Bromwich integral for inverting a Laplace transform $\bar{f}(s)$ is given by

$$
f(t)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \mathrm{e}^{s t} \bar{f}(s) d s .
$$

a) Describe briefly the contour used in this integral and the general method used to invert the transform.
b) Given that a is a positive constant, show that

$$
\mathcal{L}^{-1}\left[\mathrm{e}^{-a \sqrt{s}}\right]=\frac{a}{2 t^{\frac{3}{2}} \sqrt{\pi}} \exp \left(-\frac{a^{2}}{4 t}\right)
$$

c) Hence find in a simplified form of a convolution integral the following inverse Laplace transform

