JACOBIANS

CURVILINEAR COORDINATES

Question 1
a) Determine, by a Jacobian matrix, an expression for the area element in plane polar coordinates, (r, θ).
b) Verify the answer of part (a) by performing the same operation in reverse.

Question 2
Determine, by a Jacobian matrix, an expression for the volume element in spherical polar coordinates, (r, θ, φ).

Question 3
Two sets of variables are related by the equations

$$
x=r \cosh \theta \quad \text { and } \quad y=r \sinh \theta
$$

where $r \geq 0$.

Evaluate independently Jacobians

$$
I=\frac{\partial(x, y)}{\partial(r, \theta)} \quad \text { and } \quad J=\frac{\partial(r, \theta)}{\partial(x, y)}
$$

and hence show that $I=\frac{1}{J}$.

$$
I=\sqrt{x^{2}+y^{2}}=r, \quad J=\frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

\square

$$
\begin{aligned}
& \frac{\partial \theta}{\partial x}=-\frac{y}{x^{2}} \times \frac{1}{1-\frac{y^{2}}{x^{2}}}=-\frac{y}{x^{2}} \times \frac{x^{2}}{x^{2}-y^{2}}=-\frac{y}{x^{2}-y^{2}} \\
& \frac{\text { Thts wt now HHve }}{\frac{\partial(r, \theta)}{\partial(x, y)}}=\begin{array}{l}
\left\lvert\, \frac{\partial r}{\partial x} \frac{\partial r}{\partial y}\right. \\
\frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y}
\end{array}\left|=\left|\begin{array}{cc}
\frac{x}{\left(x^{2}-y^{2}\right)^{2}} & \frac{y}{\left(x^{2}-y^{2}\right)^{\frac{1}{2}}} \\
-\frac{y}{x^{2}-y^{2}} & \frac{x}{x^{2}-y^{2}}
\end{array}\right|\right. \\
& \\
& =\frac{z^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}} \quad \frac{y^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}=\frac{x^{2}-y^{2}}{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}} \\
& \\
& \\
& =\frac{1}{\left(x^{2}-y^{2}\right)^{\frac{1}{2}}}=\frac{1}{r} \\
& \therefore \frac{\partial(x, y)}{\partial(r, \theta)} \times \frac{\partial(r, \theta)}{\partial(x, y)}=1
\end{aligned}
$$

Created by T. Madas

Question 4
The finite region R is bounded by the straight lines with equations

$$
y=x-1, \quad y=x+1, \quad y=-x-1 \quad \text { and } \quad y=-x+1
$$

Find an exact value for

Question 5
The finite region R is bounded by the curves with equations

$$
y=2 x^{2}, \quad y=4 x^{2}, \quad x y=1 \quad \text { and } \quad x y=5
$$

Find an exact value for

Question 6
The finite region R in the first quadrant is defined by the inequalities

$$
4 \leq x^{2}+y^{2} \leq 9 \quad \text { and } \quad 1 \leq x^{2}-y^{2} \leq 4
$$

Evaluate the following integral

Question 7
The finite region R is bounded by the straight lines with equations

$$
x+y=1, \quad x+y=2, \quad y=x \quad \text { and } \quad y=0
$$

Use the transformation equations

$$
x=u v \quad \text { and } \quad y=u(1-v)
$$

to find an exact value for

Question 8
The finite region R satisfies the inequalities

$$
x \leq y^{2} \leq 2 x \text { and } \frac{1}{x} \leq y \leq \frac{2}{x} .
$$

Find the area of R, giving the answer as an exact simplified logarithm.

Question 9
An ellipse has Cartesian equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where a and b are positive constants.

Use the transformation equations

$$
x=r \cos \theta \quad \text { and } \quad y=f(r) \sin \theta, ?
$$

where f is a function to be found, to determine the area enclosed by the ellipse.

Question 10
The finite region R is bounded by the straight lines with equations

$$
y=x \quad \text { and } \quad y=4 x
$$

and the hyperbolae with equations

$$
y=\frac{1}{x} \quad \text { and } \quad y=\frac{2}{x}, x \neq 0
$$

Show clearly that

Question 11
The unbounded region R is defined by the curves with equations

$$
y=x^{2}, \quad y=2 x^{2} \quad \text { and } \quad y=\frac{1}{4 x^{2}}
$$

Use the transformation equations

Question 12
The finite region R, in the first quadrant, satisfies the inequalities

$$
x \leq y^{2} \leq 3 x \text { and } \frac{1}{x} \leq y \leq \frac{2}{x}
$$

Find the exact value of
\square

$$
\int_{R} y^{6} d x d y
$$

8 $\frac{28}{9}$ 9

OBTh n Ne vAcorimin "BAacuners" As ic is fasike
$\Rightarrow \frac{\partial(u v)}{\partial(a y)}=\left|\begin{array}{ll}\partial y_{\partial x} & \partial / / \partial x \\ \partial x / f_{y} & \partial / / \partial y\end{array}\right|=\left|\begin{array}{cc}-\frac{y^{2}}{x_{2}} & y \\ \frac{2 x}{x} & x\end{array} \|=\left|-\frac{y^{2}}{x}-\frac{z y^{2}}{x^{2}}\right|\right.$
$=\left|-\frac{3 y^{2}}{x}\right|=\frac{3 y^{2}}{x}=3 u$
\rightarrow dudv $=\frac{\partial(u, v)}{\partial(t y)} d x d y$
$\Rightarrow d u d v=3 u d u d y$
$\Rightarrow d u d y=\frac{d u d v}{3 u}$

$\left.\begin{array}{l}u-\frac{y^{2}}{2} \\ v=x y\end{array}\right\} \Rightarrow \begin{aligned} & u v=\frac{y^{2}}{2}(x y) \\ & u v=y^{3}\end{aligned}$
$u v=y^{3}$
$y^{6}=u^{2} v^{2}$

Created by T. Madas

Question 13
The finite region R, in the first quadrant, is bounded by the curves with equations

Question 14
The finite region R is defined by the inequalities

$$
2 \leq x^{2}+y^{2} \leq 4 \quad \text { and } \quad 1 \leq x^{2}-y^{2} \leq 2
$$

Given further that $x>0$ and $x>0$, evaluate the following integral

$$
\iint_{R} x^{3} y^{3} d x d y
$$

\square

$$
=\frac{1}{23} \int_{v 2}^{4}\left(2 z^{2}-9\right)-\left(x^{2}-\frac{1}{3}\right) d v=\frac{1}{2} \int_{2}^{4} p^{2}-\frac{7}{3} d v
$$ $\Rightarrow d u d v=\frac{\partial(u, v)}{\partial(x, y)} d x d y$

$$
=\frac{1}{3^{2}}\left[\frac{1}{5} y^{3}-\frac{7}{3}\right]_{2}^{4}-\frac{1}{3}\left[\left(\frac{a}{3}-\frac{28}{3}\right)\left(\frac{8}{3}-\frac{4}{3}\right)\right]
$$

$\Rightarrow d u d u=8 x y d i d y$

$$
=\frac{1}{32}\left[\frac{64-28-8+14}{3}\right]=\frac{1}{32} \times \frac{42}{3}=\frac{1}{32} \times 14
$$ H50 as ar (or cantle $a^{2} q y^{2}$) in trues of u av

$$
=\frac{7}{16}
$$

$\begin{array}{lll}u=x^{2} y^{2} \\ v=x^{2}+y^{2}\end{array} \quad \therefore u+v=2 x^{2} \quad a \quad v-u=2 y^{2}, ~ \begin{array}{ll}y^{2}=\frac{1}{2}(u+v) & y^{2}=\frac{1}{2}(v-4)\end{array}$
Tensbrominh He inter Now
$\iint_{k} x^{3} y^{3} d x d y=\ldots . \operatorname{GifN} \sqrt{2}=\operatorname{coces} s . \quad \int_{v=2}^{4} \int_{4=1}^{2} x^{3} y^{3} \frac{d u d v}{8 x y}$ $\frac{7}{16}$
\qquad

Question 15
The finite region R is bounded by the parabolas with equations

$$
y=\frac{1}{2} x^{2}, \quad y=2 x^{2}, \quad y^{2}=x \quad \text { and } \quad y^{2}=4 x
$$

Show clearly that

Created by T. Madas

Question 16
The finite region R is bounded by the straight lines with equations

$$
y=x+1, \quad y=x+2, \quad y=3-4 x \quad \text { and } \quad y=4-4 x
$$

a) Find the exact area of R.
b) Show clearly that

$$
\iint_{R} 4 y^{2}+12 x y+9 x^{2} \quad d x d y=\frac{151}{30}
$$

$$
\text { area }=\frac{1}{5}
$$

\square

Question 17
The finite region R is defined by the inequalities

$$
1 \leq x^{2}-y^{2} \leq 9 \quad \text { and } \quad 2 \leq x y \leq 4
$$

Given further that $x>0$ and $x>0$, evaluate the following integral
\square

Created by T. Madas

Question 18
The finite region R is bounded by the straight lines with equations

$$
y=x-1 \text { and } y=x-3,
$$

and the hyperbolae with equations

$$
x^{2}-y^{2}=1 \quad \text { and } \quad x^{2}-y^{2}=4
$$

Evaluate the integral

Created by T. Madas

Question 19
The finite region R is bounded by the curves with equations

$$
6 x y=\pi \quad \text { and } \quad 2 x y=\pi
$$

and the straight lines with equations

Question 20
The finite region R satisfies the inequalities

$$
1 \leq x+y \leq 2 \quad \text { and } \quad 0 \leq y \leq x .
$$

a) Use plane polar coordinates (r, θ) to find the value of

$$
\iint_{R} \frac{y(x+y)^{2}}{x^{3}} d x d y
$$

b) Verify the answer obtained in part (a) by transforming the integral to different coordinate system.

Question 21
The finite region R in the $x-y$ plane is defined as the region enclosed by the straight line segments joining the points with coordinates at $(1,0),(1,0),(1,0)$ and $(1,0)$, in that order.

Evaluate the following integral

Question 22
The finite region R in the $x-y$ plane, is defined as the interior of a parallelogram with vertices at $(4,0),(0,1),(-2,7)$ and $(2,6)$.

Evaluate the integral

Question 23
Given that R is the finite region in the $x-y$ plane, defined as

Question 24
Given that R is the region of the $x-y$ plane, defined as

$$
2 x^{2} \leq y \leq 4 x^{2} \quad \text { and } \quad 4 y x^{2} \geq 1
$$

Created by T. Madas

Question 25
By suitably changing coordinates, find the volume of the solid defined as

$$
0 \leq \sqrt{x}+\sqrt{y}+\sqrt{z} \leq \sqrt{3} .
$$

\square

$V=\frac{\Gamma(2) \Gamma(2)}{\Gamma(4)} \times \frac{\Gamma(4) P(2)}{\Gamma(6)} \times \frac{4}{3} \cdot a^{12}$
$V=\frac{\Gamma(2)}{\Gamma(6)} \times \frac{4}{3}\left(a^{2}\right)^{6}$
$V=\frac{1!}{5!} \times \frac{4}{3} \times(\sqrt{3})^{6}$
$V=\frac{1}{120} \times \frac{1}{30} \times 27$ $V=\frac{9}{30}$ $V=\frac{3}{10}$

Question 26
The finite region R is defined as the region enclosed by the ellipsoid with Cartesian equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{25}=1
$$

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ), find the value of

Question 27
The finite region R in the $x-y$ plane, is defined

$$
x^{2} \leq y \leq 2 x^{2} \quad \text { and } \quad x \leq y^{2} \leq 2 x .
$$

Evaluate the integral

Question 28
The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$
x+y=1
$$

Use the coordinate transformation equations
to find an exact value for

Created by T. Madas

Question 29

The figure above shows the graph of a "hill", modelled by the function $z=f(x, y)$, defined in the entire $x-y$ plane by

Use the transformation equations

$$
x=u+2 v \text { and } y=u-v
$$

to show that the volume of the "hill" is $\frac{2 \pi}{3}$.

You may assume without proof that $\int_{-\infty}^{\infty} \mathrm{e}^{-s^{2}} d s=\sqrt{\pi}$.

proof

Question 30
The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$
x+y=1
$$

Use the transformation equations

$$
u=x+y
$$

$$
v=x-y
$$

$$
2\left(e^{\frac{1}{4}}-1\right)
$$

Question 31
The finite region R is bounded by the coordinate axes and the straight line with Cartesian equation

$$
x+y=1
$$

Use a suitable coordinate transformation to find an exact value for

Question 32
The finite region R satisfies the inequalities

$$
1 \leq x+y \leq 2 \quad \text { and } \quad 0 \leq y \leq x .
$$

Show clearly that

Question 33
The finite region R is defined by the inequalities

$$
y \leq x, \quad y \leq 1-x \quad \text { and } \quad y \geq 0
$$

Use the transformation equations

$$
u=x+y \quad \text { and } \quad v=x-y
$$

to find an exact value for

Question 34
The finite region R is bounded by the straight lines with equations

$$
y=x, \quad x=1 \quad \text { and } \quad y=0
$$

Use the transformation equations

$$
u=x+y \quad \text { and } \quad v=\frac{y}{x}
$$

to find an exact value for

$$
\iint_{R}\left(\frac{x+y}{x^{2}}\right) \mathrm{e}^{x+y} d x d y
$$

\square
\square
$e^{2}-e-1$

Question 35
The finite region R in the $x-y$ plane is enclosed by the rectilinear triangle with vertices at $(0,0),(0,1)$ and $(2,0)$.

Use a suitable coordinate transformation to find an exact value for

Question 36

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-(x+y)^{2}} d x d y
$$

a) Use the coordinate transformation equations

$$
x=\frac{1}{2} u+\frac{1}{2} v \text { and } y=\frac{1}{2} u-\frac{1}{2} v
$$

to find the value of I
b) Evaluate I in plane polar coordinates, (r, θ), and hence verify the answer of part (a).

Question 37
The finite region R is bounded by the curve with Cartesian equation

$$
x^{4}+y^{4}=1, x \geq 0, y \geq 0
$$

Use the transformation equations

$$
x^{2}=r \cos \theta \quad \text { and } \quad x^{2}=r \cos \theta
$$

to find the value of

Question 38
The finite region V is enclosed by the surface with Cartesian equation

$$
x^{4}+y^{4}+z^{4}=64
$$

By first transforming the Cartesian coordinates into a new Cartesian coordinate system, use spherical polar coordinates, (r, θ, φ), to show that the volume of V is

