INTRINSIC COORDINATES

Question 1 (**)
A curve C has Cartesian equation

$$
y=\arctan 2 x, x \in \mathbb{R}
$$

Find the magnitude of the radius of curvature at the point on C where $x=\frac{1}{2}$.

Question 2 (**)
A curve C has Cartesian equation

$$
y=\cosh x, x \in \mathbb{R}
$$

Find an intrinsic equation of C in the form $s=f(\psi)$, where s is measured from the point with coordinates $(0,1)$, and ψ is the angle the tangent to C makes with the positive x axis.

Question 3 (**)
A curve C has Cartesian equation

$$
y=\cosh x, x \in \mathbb{R}
$$

Find a simplified expression, in terms of x, for the radius of curvature at a general point on C.

Created by T. Madas

Question 5 (**)
A curve C has intrinsic equation

$$
s=a \cos \psi, \psi \in[0, \pi]
$$

where s denotes the arc length measured from some fixed point and ψ is the angle the tangent to C makes with the positive x axis.

Show that the tangent to C at the point where $s=0$ is parallel to the y axis and determine the radius of curvature at that point.

Created by T. Madas

Question 6 (**)
A curve C has intrinsic equation

$$
s=2 \sin \psi, \psi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

where s denotes the arc length measured from some fixed point and ψ is the angle the tangent to C makes with the positive x axis.

Show clearly that

$$
\rho=\sqrt{4-s^{2}}
$$

where ρ is the radius of curvature at a general point on C.

Question 7 (**)
A curve C has Cartesian equation

$$
y=\operatorname{arsinh} x, x \in \mathbb{R} .
$$

Find the magnitude of the radius of curvature at the point on C where $x=\sqrt{2}$.

Question 8 (**)
A curve C has Cartesian equation

$$
y=\arcsin x,-1 \leq x \leq 1 .
$$

Find an expression, in terms of x, for the radius of curvature on C, giving the answer as a single simplified fraction.

Question 10 (**+)
A curve C has parametric equation s

$$
x=\cosh t-t, y=\cosh t+t, t \in \mathbb{R}
$$

Find the exact value of the radius of curvature at the point on C where $t=\ln 2$.

$$
\rho=\frac{25}{16} \sqrt{2}
$$

Question 11 (**+)
A curve C has Cartesian equation
$y=a \cosh \left(\frac{x}{a}\right)$, where a is a constant.

Show that the radius of curvature on C, is given by $\frac{1}{a} y^{2}$

Created by T. Madas

Created by T. Madas

Question 12 (**+)
A curve C has Cartesian equation

$$
y=\frac{1}{2}(x-1)^{\frac{3}{2}}, x \in \mathbb{R}, x \geq 1 .
$$

Find an intrinsic equation of C in the form $s=f(\psi)$, where s is measured from the point with coordinates $(1,0)$, and ψ is the angle the tangent to C makes with the positive x axis.

Question 13 (**+)
The radius of curvature at a general point on a curve C is given by

$$
\mathrm{e}^{\sin \psi} \cos \psi,
$$

where ψ is the angle the tangent to C makes with the positive x axis..

It is further given that when $\psi=0, s=1$, where s is the arc length measured from some fixed point.

Find an intrinsic equation for C, in the form $s=f(\psi)$.

$$
s=\mathrm{e}^{\sin \psi}
$$

Created by T. Madas

Question 14 (***)
A curve C has Cartesian equation

$$
y=\sinh ^{2} x, x \in \mathbb{R} .
$$

Express the curvature at a general point on C in terms of $\cosh 4 x$.

$$
\kappa=\frac{4}{1+\cosh 4 x}
$$

Question 15 (***)
A curve C has intrinsic equation

$$
s=2 \psi
$$

where s is measured from some arbitrary point, and ψ is the angle the tangent to C makes with the positive x axis..
a) Describe C geometrically, with reference to $\frac{d s}{d \psi}$.

$$
(x-a)^{2}+(y-b)^{2}=4
$$

b) Use a calculus method to obtain a Cartesian equation for C, in terms of suitable constants.

Question 16 (***)
A curve C has parametric equation s

$$
x=t-\sin 2 t, y=\cos 2 t, 0 \leq t<\frac{\pi}{2}
$$

The point P lies on C where $\cos t=\frac{1}{4} \sqrt{10}$. Calculate the radius of curvature at P.

Question 17 (***+)
A curve C has intrinsic equation

$$
s=12 \sin ^{2} \psi
$$

where s is measured from a Cartesian origin, and ψ is the angle the tangent to C makes with the positive x axis.

Show that a Cartesian equation of C is

Created by T. Madas

Question 18 (***+)
A curve C has Cartesian equation

$$
y=\cosh ^{2} x, x \in \mathbb{R} .
$$

Show that the radius of curvature at the point on C where $y=4$ is $24 \frac{1}{2}$.

Created by T. Madas

The figure above shows the curve C with Cartesian equation

$$
y=x^{\frac{1}{2}}-\frac{1}{3} x^{\frac{3}{2}}, x \in \mathbb{R}, x \geq 0
$$

Show that the centre of curvature at the point $P\left(4,-\frac{2}{3}\right)$ on C, is $\left(-\frac{7}{2},-\frac{32}{3}\right)$.

Question 20 (***+)
A curve C has Cartesian equation

$$
y=\frac{1}{2}\left(2 x^{2}-\ln x\right), x \in \mathbb{R}, x>0 .
$$

The point P lies on C where $x=1$.
a) Determine the radius of curvature at P.

$$
\rho=\frac{25}{16}, \quad\left(\frac{1}{16}, \frac{7}{4}\right)
$$

b) Find the exact coordinates of the centre of curvature at P.

Question 21 (***+)
A curve C has Cartesian equation

$$
y=\frac{2}{3}(x-1)^{\frac{3}{2}}, x \in \mathbb{R}, x \geq 1 .
$$

The point P lies on C where $x=10$.
a) Determine the radius of curvature at P.
b) Find the exact coordinates of the centre of curvature at P.

$$
\rho=60 \sqrt{10},(-170,78)
$$

Question 22 (***+)
A curve C has Cartesian equation

$$
y=2 \sin x, x \in \mathbb{R}
$$

The point P lies on C where $x=\frac{\pi}{6}$.
a) Determine the radius of curvature at P.
b) Find the exact coordinates of the centre of curvature at P.

$$
\rho=-8,\left(\frac{\pi}{6}+4 \sqrt{3},-3\right)
$$

Question 23 (***+)
A cycloid C has parametric equations

$$
x=2 t+2 \sin t, y=2-2 \cos t, 0 \leq t<\frac{\pi}{2}
$$

a) Show clearly that

$$
\frac{d y}{d x}=\tan \left(\frac{1}{2} t\right)
$$

b) Find an intrinsic equation for C, in the form $s=f(\psi)$, where s is measured from a Cartesian origin, and ψ is the angle the tangent to C makes with the positive x axis.
c) Calculate the curvature at the point on C where $s=4$.

$$
s=8 \sin \psi, \quad \kappa=\frac{1}{12} \sqrt{3}
$$

Question 24 (***+)
A curve C has parametric equations

$$
x=t^{2}, y=\frac{1}{4} t^{3}, t \in \mathbb{R}
$$

The point P lies on C where $t=2$.
a) Determine the radius of curvature at P.
b) Find the exact coordinates of the centre of curvature at P.

$$
\rho=\frac{125}{6}, \quad\left(-\frac{17}{2}, \frac{56}{3}\right)
$$

Question 25 (***+)
A curve C has intrinsic equation

$$
s=\frac{1}{2} \psi^{2}
$$

where s is measured from the point with Cartesian coordinates $(1,0)$, and ψ is the angle the tangent to C makes with the positive x axis..

Use a calculus method to obtain two parametric equations for C, in terms of a suitable parameter.

Question 26 (***+)
The radius of curvature at a general point on a curve C is given by

$$
2 \sin \psi
$$

where ψ is the angle the tangent to C makes with the positive x axis..

It is further given that the arc length s is measured from the point with Cartesian coordinates $(0,1)$, where the value of ψ at that point is $\frac{\pi}{3}$.
a) Find an intrinsic equation for C, in the form $s=f(\psi)$.
b) Show clearly that

$$
x=\frac{1}{4} s(2-s)
$$

$$
s=1-2 \cos \psi
$$

Question 27 (***+)
The radius of curvature at a general point on a curve C is given by

$$
2 s+1
$$

where s is the arc length measured from the Cartesian origin.

It is further given when $s=0, \psi=0$, where ψ is the angle the tangent to C makes with the positive x axis..
a) Find an intrinsic equation for C, in the form $s=f(\psi)$.
b) Determine a set of parametric equations for C.

You may assume without proof

$$
\int \mathrm{e}^{2 u} \cos u d u=\frac{1}{5} \mathrm{e}^{2 u}(2 \cos u+\sin u)+\text { constant }
$$

$$
\int \mathrm{e}^{2 u} \sin u d u=\frac{1}{5} \mathrm{e}^{2 u}(2 \sin u-\cos u)+\text { constant }
$$

$$
s=\frac{1}{2}\left(\mathrm{e}^{2 \psi}-1\right), x=\frac{1}{5} \mathrm{e}^{2 t}(2 \cos t+\sin t)+\frac{2}{5}, \quad y=\frac{1}{5} \mathrm{e}^{2 t}(2 \sin t-\cos t)+\frac{2}{5}
$$

Question 28 (****)
A curve C has parametric equations

$$
x=t^{3}, y=4 t^{2}-t^{4}, t \in \mathbb{R}
$$

Find the exact coordinates of the centre of curvature at the point P on C where $t=1$.

$$
\left(\frac{34}{9}, \frac{11}{12}\right)
$$

$(x, y)=\left(x_{0}, y_{p}\right)+\rho \hat{n}$
$(x, y)=(1,3)+\left(-\frac{123}{36}\right)\left(-\frac{4}{515}\right)$

Question 29 (****)
A cycloid C has parametric equations

$$
x=\theta+\sin \theta, y=1-\cos \theta, 0 \leq \theta \leq 2 \pi
$$

Find the exact coordinates of the centre of curvature at the point on C where $\theta=\frac{2 \pi}{3}$.

$$
\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}, \frac{5}{2}\right)
$$

Question 30 (****)
The gradient at every point on a curve C is given by

$$
\frac{d y}{d x}=\frac{1}{2} s
$$

where s is the arc length along C measured from the point P whose Cartesian coordinates are $(0,2)$. It is further given that $\psi=0$ at P, where ψ is the angle the tangent to C makes with the positive x axis.

$$
\frac{d s}{d x}=\frac{1}{2} \sqrt{s^{2}+4}
$$

b) Express s as a function of x.
c) Deduce that

$$
y=2 \cosh \left(\frac{1}{2} x\right)
$$

Question 31 (****)
An ellipse has equation

$$
3 x^{2}+y^{2}=18
$$

The point $P(\sqrt{3}, 3)$ lies on C.
a) Determine the radius of curvature at P.
b) Find the exact coordinates of the centre of curvature at P.

Question 32 (****)
A curve C has intrinsic equation

$$
s=\ln \left(\tan \frac{\psi}{2}\right), 0<\psi<\pi
$$

where s is measured from a fixed point, and ψ is the angle the tangent to C makes with the positive x axis.

It is given that the tangent to C at a Cartesian origin has infinite gradient.

Show that a Cartesian equation of C is

$$
\mathrm{e}^{x}=\cos y
$$

Question 33 (****)
A curve C has Cartesian equation

$$
y=\ln \left(x+1+\sqrt{x^{2}+2 x}\right), x \in \mathbb{R}
$$

Determine the radius of curvature at the point on C where $x=2$.

Created by T. Madas

Question 34 (****)

A curve C has Cartesian equation

$$
\sin y=\mathrm{e}^{x}, x \leq 0
$$

Find an intrinsic equation for C, in the form $s=f(\psi)$, where s is measured from the point with Cartesian coordinates $\left(0, \frac{\pi}{2}\right)$, and ψ is the angle the tangent to C makes with the positive x axis.

Question 35 (****)
A curve C has intrinsic equation

$$
s=8\left(\sec ^{3} \psi-1\right), 0 \leq \psi<\frac{\pi}{2}
$$

where s is the arc length is measured from a Cartesian origin O, and ψ is the angle the tangent to C makes with the positive x axis. It is further given that $\psi=0$ at the origin O.

Show that a Cartesian equation of C is

$$
y^{2}=\frac{x^{3}}{27}
$$

\square

Bevina two scmeatie difgerantia cuation btro on the temar stan Rewow
$\Rightarrow \frac{d x}{d s}=\cos \psi$
$\Rightarrow d x=\cos \psi d s$
$\Longrightarrow d x=\cos \varphi \frac{d s}{d \psi} d \psi$
$\Rightarrow d x=\cos \psi\left(2 t \sec ^{3} \psi \operatorname{an} \psi\right) d \psi$
$\Rightarrow d x=24 \sec ^{2} \psi \tan \psi d \psi$
$\Rightarrow \int_{x=0}^{2} 1 d x=\int_{\psi=0}^{\psi} 2 \psi s \operatorname{cec}^{2} \psi \operatorname{dan} \psi d \psi$
$\Rightarrow[x]_{0}^{x}=\left[12 \sec ^{2} \psi\right]_{0}^{\psi}$
$\Rightarrow a=12 \sec ^{2} \psi-12$ or $x=12 \tan ^{2} \psi$
Simluney we HASE
$\Rightarrow \frac{d y}{d s}=\sin \psi$
$\Rightarrow d y=\sin \varphi d s$
$\Rightarrow d y=\sin \psi \frac{d \nu}{d \varphi} d \varphi$
$\Rightarrow d y=\sin \psi\left(2 \sec ^{2} \psi\right.$ bup $) d \psi$
$\Rightarrow d y=24 \sec ^{3} \psi \tan ^{2} \psi d \psi$

Question 36 (****)
A curve C has intrinsic equation

$$
s=4 \sin \psi, \quad 0 \leq \psi \leq \pi
$$

where s is the arc length is measured from the Cartesian origin O, and ψ is the angle the tangent to C makes with the positive x axis.

It is given that the tangent to C at O has zero gradient.

Show that the parametric equations of C are

$$
x=t+\sin t, \quad y=1-\cos t, \quad 0 \leq t \leq 2 \pi
$$

Question 37 (****)
A curve has Cartesian equation

$$
y=\ln (\sin x), 0<x<\pi
$$

Show that an intrinsic equation of the curve is

$$
s=\ln \left|\frac{2}{\tan \psi+\sec \psi}\right|
$$

where s is the arc length measured from the point where $\psi=\arctan \frac{3}{4}$, where ψ is the angle the tangent to the curve makes with the positive x axis.

Question 38 (****)
A curve C has parametric equations

$$
x=6 \tan ^{2} t, y=4 \tan ^{3} t, 0 \leq t<\frac{\pi}{2} .
$$

It is further given that when $t=0, s=4$, where s is the arc length measured from some fixed point.

Show clearly that

$$
s=4 \sec ^{3} \psi
$$

where ψ is the angle the tangent to C makes with the positive x axis.

Created by T. Madas

Question $39(* * * *+)$

An astroid is given parametrically by

$$
x=4 \cos ^{3} \theta, x=4 \sin ^{3} \theta, 0 \leq \theta<2 \pi
$$

a) Show that if the arc length s is measured from the point $(4,0)$, and ψ is the angle the tangent to the astroid makes with the positive x axis, then

$$
s=6 \sin ^{2} \psi
$$

b) Determine the coordinates of the centre of curvature at the point P on the astroid where $\theta=\frac{\pi}{6}$

Question 40 (****+)
A curve C has parametric equations

$$
x=2 \sinh t, y=\cosh ^{2} t, t \in \mathbb{R} .
$$

It is further given that the arc length s is measured from the point where $t=0$.
Show clearly that

$$
s=\ln (\tan \psi+\sec \psi)+\tan \psi \sec \psi
$$

where ψ is the angle the tangent to C makes with the positive x axis.

Question 41 (****+)
The position vector of a curve C is given by

$$
\mathbf{r}(t)=\left(\frac{2}{1+t^{2}}-1\right) \mathbf{i}+\left(\frac{2 t}{1+t^{2}}\right) \mathbf{j}
$$

where t is a scalar parameter with $t \in \mathbb{R}$.
Find an expression for the position vector of C, giving the answer in the form

$$
\mathbf{r}(s)=f(s) \mathbf{i}+g(s) \mathbf{j},
$$

where s is the arc length of a general point on C, measure from the point $(1,0)$.

Question 42 (****+)
A curve C has intrinsic equation

$$
s=\ln (\tan \psi+\sec \psi)+\tan \psi \sec \psi, 0 \leq \psi<\frac{\pi}{2}
$$

where s is the arc length is measured from the point with Cartesian coordinates $(0,1)$, and ψ is the angle the tangent to C makes with the positive x axis.

It is further given that the gradient at $(0,1)$ is zero.

Show that the Cartesian equation of C is

$$
y=\frac{1}{4} x^{2}+1
$$

\square , proof
\square

$\rightarrow[y]_{1}^{4}=\left[t x^{2} 4\right]_{0}^{4}$
$\Rightarrow y-1=\tan ^{2} \psi-0$
$\Rightarrow y=1+\tan ^{2} \psi$ BOT $x=2$ bamp From 7 He " $2 \quad 0.0$. E"
$\Rightarrow y=1+\left(\frac{x}{2}\right)^{2}$
\qquad
$y=\frac{1}{4} x^{2}+1$
4 8epuran

Question 43 (******)
The gradient at every point on a curve C is given by

$$
\frac{d y}{d x}=\frac{1}{2} s
$$

where s is the arc length along C measured from the point P whose Cartesian coordinates are $(0,2)$.

It is further given that $\psi=0$ at P, where ψ is the angle the tangent to C makes with the positive x axis.
a) Show clearly that

$$
x=2 \ln |\sec \psi+\tan \psi|, \quad y=2 \sec \psi
$$

b) Eliminate ψ to show further that

$$
y=2 \cosh \left(\frac{1}{2} x\right)
$$

\square
a) Ppesence Alu THE AOxcuatrites

	$\frac{d y}{d s}=\sin \varphi$	$x=0$
		$y=2$
	$\frac{d x}{d x}=\cos \psi$	S $=0$
	$\frac{d y}{d x}=\tan$	$\psi=0$

THe RTOLUS WOUATURE IS GNEW BY
$\Rightarrow \tan \psi=\frac{1}{2} \$$
$\Rightarrow \operatorname{set}^{2} \psi d \psi=\frac{1}{2} d s$
$\Rightarrow \rho=\frac{d \delta}{d \psi}=2 \sec ^{2} \psi$
Fopulna two rathosous O.DES

$\Rightarrow \frac{d x}{d q}=\cos \psi$	$\Rightarrow \frac{d y}{\partial 5}=\sin \varphi$
$\Rightarrow d x=\cos \varphi d \rho$	$\Rightarrow d y=\sin \psi d s$
$\Rightarrow d x=\cos \psi \frac{d s}{d \psi} d \psi$	$\Rightarrow d y=\operatorname{sk\varphi } \frac{d \delta}{d \pi} d \psi$
$\Rightarrow d x=\cos \varphi\left(2 s x^{2} \psi\right) d \psi$	$\Rightarrow \quad d y=\sin \psi\left(2 s t^{2} \psi\right) d \psi$
$\Rightarrow d x=2 \sec \psi d \psi$	$\Rightarrow d y=2$ tupusequ d
$\Rightarrow \int_{x=0}^{a} 1 d x=\int_{\psi=0}^{\psi} 2 \sec \psi d \psi$	$\Rightarrow \int_{y=0}^{y} 1 d y=\int_{\psi-0}^{\psi} 2 \tan \psi \sec \psi d \psi$

Created by T. Madas

Question 44 (******)
The radius of curvature ρ at any point on a curve with Cartesian equation $y=f(x)$ is given by

$$
\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}
$$

a) Given that the curve can be parameterized as $x=g(t), y=h(t)$, for some parameter t, show that

$$
\rho=\frac{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}}{\dot{x} \ddot{y}-\dot{y} \ddot{x}}
$$

where a dot above a variable denoted differentiation with respect to t.

A curve C is given parametrically by

$$
x=\cos t+t \sin t, y=\sin t-t \cos t, 0 \leq t<2 \pi .
$$

b) Find an expression for ρ on C, giving the answer in terms of t.
\square , $\rho=t$

Created by T. Madas

Question 45 ($* * * * * *)$
A curve C has Cartesian equation $y=f(x)$.

The same curve has intrinsic equation $s=g(\psi)$, where s is measured from an arbitrary point and ψ is the angle the tangent to C makes with the positive x axis.

The radius of curvature ρ at any point on C is defined as $\frac{d s}{d \psi}$.
a) Show clearly that $\rho=\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)}{\frac{d^{2} y}{d x^{2}}}$
b) Given that C can be suitably parameterized as $x=h_{1}(t), y=h_{2}(t)$, for some parameter t, show further that

$$
\rho=\frac{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}}{\ddot{x} \ddot{y}-\dot{y} \ddot{x}}
$$

where a dot above a variable denotes differentiation with respect to t.
\square , proof

- $\frac{d y}{d x}=\frac{d y / d t}{d y d t}=\frac{\dot{y}}{x}$
- $\frac{d y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d z}\right]=\frac{d}{d x}\left[\frac{\dot{y}}{x}\right]=\frac{d}{d d^{2}}\left[\frac{d y}{d t} \times\left(\frac{d x}{d t e}+1\right]\right.$

$=\frac{\ddot{y}}{\dot{x}^{2}}-\frac{\ddot{\ddot{y}}}{\dot{x}^{3}}$
Returnvo to the expresion of mer (a)

$f=\frac{d y}{d \varphi}=\frac{\dot{x}_{3}^{3}\left[1+\dot{x}^{2}\right]^{\frac{2}{2}}}{\dot{x} \dot{y}-\dot{x} \dot{y}}=\begin{gathered}\left(\dot{x}^{2}\right)^{\frac{2}{2}}\left[1+\dot{\dot{x}}^{2}\right. \\ \dot{x} \dot{y}]^{\frac{3}{2}} \\ \dot{x} \dot{x} \dot{y}\end{gathered}$
$\rho=\frac{\left(\dot{x}^{2}+y^{2}\right)^{3 / 2}}{\dot{x} \dot{y}-\dot{y} y}$

