INTEGRAL

EQUATIONS

Created by T. Madas

Question 1
The non zero function $f(x)$ satisfies the integral equation

$$
\sqrt{\int f(x) d x}=\int \sqrt{f(x)} d x, \quad f(0)=\frac{1}{4}
$$

Use the substitution $f(x)=\left(\frac{d y}{d x}\right)^{2}$, to find a simplified expression for $f(x)$.
\square ,$f(x)=\frac{1}{4} \mathrm{e}^{4 x}$

Question 2
The non zero functions $u(x)$ and $v(x)$ satisfy the integral equations

$$
\int u(x) d x=x^{2} u(x) \quad \text { and } \quad \int u(x) v(x) d x=\left[\int u(x) d x\right]\left[\int v(x) d x\right]
$$

Determine, in terms of an arbitrary constant, a simplified expression for $u(x)$ and a similar expression for $[v(x)]^{2}$.
$u(x)=\frac{A \mathrm{e}^{-\frac{1}{x}}}{x^{2}}$
$[v(x)]^{2}=\frac{B}{(1-x)^{2}\left(1-x^{2}\right)}$

SIARTING WTTH $\int u d x=u x^{2}$ (1) Diffecemiate cart a $\begin{aligned} & \Rightarrow \frac{d}{d x} \int u d x=\frac{d}{x}\left(u x^{2}\right) \\ & \Rightarrow u=\frac{d u}{d x^{2}}+u(2 x) \\ & \Rightarrow x^{2} \frac{d u}{d x}=u-2 u x \\ & \Rightarrow x^{2} \frac{d u}{d x}=u(1-2 x) \\ & \Rightarrow \frac{1}{u} d u=\frac{1-2 x}{x^{2}} d x \\ & \Rightarrow \int \frac{1}{u} d u=\int \frac{1}{x^{2}}-\frac{2}{2} d x \\ & \Rightarrow \ln \|u\|=-\frac{1}{x}-2 \ln \|x\|+C \\ & \Rightarrow u=e^{c-\frac{1}{x}+\ln x^{2}} \\ & \Rightarrow u=e^{c} \times e^{-\frac{1}{x}} \times e^{\ln \frac{1}{x^{2}}} \\ & \Rightarrow u=\frac{A}{x^{2}} e^{-\frac{1}{x}} \end{aligned}$	

Question 3
The function f satisfies the following relationship.

