INDEX
 SUMMATION NOTATION

Created by T. Madas

Question 1
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot(\varphi \mathbf{A}) \equiv \nabla \varphi \cdot \mathbf{A}+\varphi(\nabla \cdot \mathbf{A})
$$

where $\varphi=\varphi(x, y, z)$ is a smooth scalar function and $\mathbf{A}=\mathbf{A}(x, y, z)$ is a smooth vector function.

Question 2
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \wedge(\varphi \mathbf{A}) \equiv \nabla \varphi \wedge \mathbf{A}+\varphi(\nabla \wedge \mathbf{A})
$$

where $\varphi=\varphi(x, y, z)$ is a smooth scalar function and $\mathbf{A}=\mathbf{A}(x, y, z)$ is a smooth vector function.

Question 3
Use index summation notation to prove the validity of the following vector identity

$$
\nabla(\varphi \psi) \equiv \varphi \nabla \psi+\psi \nabla \varphi
$$

where $\varphi=\varphi(x, y, z)$ and $\psi=\psi(x, y, z)$ are smooth scalar functions.
\qquad
\square
$=\phi\left[\frac{2}{2}(\varphi)\right]+\psi\left[\frac{3}{x^{2}}(6)\right]$
$=[\Phi \varphi \psi+\psi \nabla \psi]_{\kappa}$

Question 4
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \wedge \nabla \varphi \equiv \mathbf{0}
$$

where $\varphi=\varphi(x, y, z)$ is a smooth scalar function.

Created by T. Madas

Question 5
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot\left[\nabla_{\wedge} \mathbf{F}\right] \equiv 0
$$

where $\mathbf{F}=\mathbf{F}(x, y, z)$ is a smooth vector function.
\square , proof

Question 6
Use index summation notation to prove the validity of the following vector identity.

Question 7
Use index summation notation to prove the validity of the following vector identity

Question 8
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot[\mathbf{A} \wedge \mathbf{B}] \equiv \mathbf{B} \cdot(\nabla \wedge \mathbf{A})-\mathbf{A} \cdot(\nabla \wedge \mathbf{B})
$$

where $\mathbf{A}=\mathbf{A}(x, y, z)$ and $\mathbf{B}=\mathbf{B}(x, y, z)$ are smooth vector functions.
proof
\square

Question 9
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot[\nabla f \wedge \nabla g] \equiv 0
$$

where $f=f(x, y, z)$ and $g=g(x, y, z)$ are smooth scalar functions.

Any additional results used must be clearly stated.

Question 10
Use index summation notation to prove that

$$
\mathbf{A}_{\wedge}(\mathbf{B} \wedge \mathbf{C}) \equiv(\mathbf{C} \cdot \mathbf{A}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}
$$

and hence deduce that

$$
\mathbf{A} \wedge(\mathbf{B} \wedge \mathbf{C}) \equiv(\mathbf{C} \wedge \mathbf{A}) \wedge \mathbf{B}+(\mathbf{A} \wedge \mathbf{B}) \wedge \mathbf{C}
$$

\square , proof

$\text { consober Tif ith curparair of } 1,(B, C)$
$\cdots-\varepsilon_{l d k} \varepsilon_{j k} A_{i} B_{i} c_{j}$ $=-\left\|\begin{array}{l}\delta_{2}, \\ \delta_{m i n} \\ \delta_{y} \\ \delta_{n j}\end{array}\right\| A_{i} B_{i} c_{j}$ $=\left[\delta_{n} \delta_{y}-\varepsilon_{6} \delta_{v}\right]_{0} B C_{j}$ $=\delta_{1} \delta_{j} A_{2} B_{1} C_{j}-\delta_{1} \delta_{\mu_{1}} A_{1}, C_{j}$

$A_{n}\left(\underline{B}_{n} S\right)+B_{n}\left(C_{n} A\right)+C_{n}\left(A_{n} B\right)$
$=(C \cdot A) \underline{B}-(\operatorname{Cr} B) \underline{S}+(A \cdot B) \underline{S}-(B, S) A+(C \cdot B) A-(C A T) B$ $=0$

Th/次 $A_{n}\left(B_{n} C\right)+B_{n}\left(C_{A} A\right)+C_{A}\left(A_{n} B\right)=0$
$A_{A}\left(B_{n} C\right)=-B_{A}\left(C_{n} B\right)-C_{1}\left(A_{1} B\right)$
\qquad A. Havere

Created by T. Madas

Question 11
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \wedge[\nabla \wedge \mathbf{u}] \equiv \nabla(\nabla \cdot \mathbf{u})-\nabla^{2} \mathbf{u}
$$

where $\mathbf{u}=\mathbf{u}(x, y, z)$ is a smooth vector function.

Question 12
Use index summation notation to prove the validity of the following vector identity

$$
\nabla_{\wedge}\left[\mathbf{A}_{\wedge} \mathbf{B}\right] \equiv \mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}
$$

where $\mathbf{A}=\mathbf{A}(x, y, z)$ and $\mathbf{B}=\mathbf{B}(x, y, z)$ are smooth vector functions.

Created by T. Madas

Question 13

Use index summation notation to prove the validity of the following vector identity

$$
\nabla[\mathbf{A} \cdot \mathbf{B}] \equiv(\mathbf{B} \cdot \nabla) \mathbf{A}+(\mathbf{A} \cdot \nabla) \mathbf{B}+\mathbf{B} \wedge(\nabla \wedge \mathbf{A})+\mathbf{A}_{\wedge}(\nabla \wedge \mathbf{B})
$$

where $\mathbf{A}=\mathbf{A}(x, y, z)$ and $\mathbf{B}=\mathbf{B}(x, y, z)$ are smooth vector functions.

Question 14
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot\left[\mathbf{c} \wedge\left(\mathbf{r}_{\wedge} \mathbf{c}\right)\right] \equiv 2 c^{2},
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and \mathbf{c} is a constant three dimensional vector and $c \equiv|\mathbf{c}|$.
\square , proof

STARTMG ROM $\left(A_{n} B\right)_{r}=\varepsilon_{i v} A_{i} B_{i}$ $\Rightarrow\left(I_{n} c\right)_{k}=\varepsilon_{i j k} r_{i} c_{j}=\varepsilon_{i j 2} x_{i} c_{j} \underbrace{}_{\left\{\operatorname{sinct} I_{\left.i=I_{i}=x_{i}\right\}}\right.}$ $\varepsilon_{\text {bin }} \varepsilon_{i c} c_{1} c_{5} \frac{\partial z}{\partial z}$ Now $\left.\frac{\partial x_{i}}{\partial x_{m}} \equiv \delta_{i m}\right\}$ asing thesubstintion prophery $=\xi_{m} \varepsilon_{i x} 4 c_{5}$$\qquad$ $\begin{aligned} & \varepsilon_{a b c} \varepsilon_{\text {ade }}=\delta_{b d} \delta_{c e}-\delta_{b e} \delta_{c d} \\ \Rightarrow & \varepsilon \quad \varepsilon_{a d}\end{aligned}$ $\Rightarrow \varepsilon_{i k i} \varepsilon_{i j k}=\left(-\varepsilon_{k i i}\right)\left(-\varepsilon_{k j i}\right)$$\Rightarrow \varepsilon_{l i} \varepsilon_{i 3 k}=\varepsilon_{k i} \varepsilon_{i j i}$ $\Rightarrow \varepsilon_{l i i} \varepsilon_{i j k}=\delta_{l j} \delta_{i i}-\delta_{l i} \delta_{i j}$

Now for 3 Dimenstans $\delta_{i t}=3$
$\rightarrow \varepsilon_{p_{k}} \varepsilon_{i j k}=3 \delta_{l j}-\delta_{l i} \delta_{i j}$
ReGunina to the MAN PIDCF
$\nabla \cdot\left[c_{\wedge}\left(f_{\wedge} \subseteq\right)\right]=\varepsilon_{l k i} \varepsilon_{i j l} c_{l} c_{j}$

$$
=\left(3 \delta_{l_{i}}-\delta_{l_{i}} \delta_{j}\right) c_{p} c_{j}
$$

$$
=3 \delta_{l_{j}} c_{p} c_{j}-\delta_{p_{i}} \delta_{i j} c_{p} c_{j}
$$

By THE δ sisstintoul froffery
$=3 \delta_{l j} C_{l} C_{j}-\delta_{l i} \delta_{i j} C_{l} C_{j}$
$=3 c_{j} c_{j}-\delta_{l j} c_{g} c_{j}$
$=3 c_{j} c_{j}-c_{j} c_{j}$
$=2 c_{j} c_{j}$
$=2 \underline{c} \cdot \underline{c}$
$=2|\leq|^{2}$
$=2 c^{2}$
$=2 c^{2}$

Question 15
Use index summation notation to prove the validity of the following vector identity

$$
\nabla \cdot\left[\mathbf{r} \wedge\left(\mathbf{r}_{\wedge} \mathbf{c}\right)\right] \equiv 2 \mathbf{r} \cdot \mathbf{c}
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and \mathbf{c} is a constant three dimensional vector,
\square , proof

$\nabla \cdot\left[f_{n}\left(r_{n} \leq 1\right]=c_{j}\left[x_{j} \frac{\partial x_{i}}{\partial x_{i}}+x_{i} \frac{\partial x_{i}}{\partial u_{j}}-x_{i} \frac{\partial x_{i}}{\partial x_{j}}-x_{i} \frac{\partial x_{i}}{\partial x_{j}}\right]\right.$ Nas $\frac{\partial x_{i}}{\partial x_{i}}=\delta_{i i} \& \frac{\partial x_{j}}{\partial y}=\delta_{i j}$ wricat $6 R$ thent Sumtiscowt vecoos $\delta_{i=}=3$
$\nabla \cdot\left[f_{n}\left(r_{n} s\right)\right]=c_{j}\left[x_{j} \times 3+x_{i} \delta_{j}-x_{i} \delta_{i j}-x_{i} \delta_{i j}\right]$ $=c_{j}\left[3 x_{j}-x_{j} \delta_{j j}\right] \quad, \quad \delta_{\text {sis }}$ foperay"
$=c_{j}\left[3 x_{j}-x_{j}\right]$

$$
=c_{j} \times 2 x_{j}
$$

$$
=2 c_{j} x_{j}
$$

$$
=2 c \cdot \Gamma / / \text { As repureno }
$$

Question 16
The vector field \mathbf{F} exists around the open surface S, with closed boundary C.
a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.

Let \mathbf{c} be a constant vector and $\varphi=\varphi(x, y, z)$ a smooth scalar function.
b) By considering $\nabla \wedge(\mathbf{c} \varphi)$, use index summation notation in Stokes' Theorem to prove the validity of the following result

$$
\int_{S} \hat{\mathbf{n}} \wedge \nabla \varphi d S=\oint_{C} \varphi d \mathbf{r}
$$

where $\hat{\mathbf{n}}$ is a unit normal vector field to S.

Question 17
The vector field \mathbf{F} exists around the open surface S, with closed boundary C.

Let \mathbf{c} be a constant vector and $\mathbf{A}=\mathbf{A}(x, y, z)$ a smooth vector function.

By considering $\mathbf{F}=\mathbf{c} \wedge \mathbf{A}$, use index summation notation in Stokes' Theorem to prove the validity of the following result

$$
\int_{S}(\mathbf{d} \mathbf{S} \wedge \nabla) \wedge \mathbf{A}=\oint_{C} d \mathbf{r} \wedge \mathbf{A}
$$

where $\mathbf{d S}=\hat{\mathbf{n}} d S, \hat{\mathbf{n}}$ is a unit normal vector field to S, forming a right hand set with the direction of C.

