IMPULSE FUNCTION

The Impulse Function / The Dirac Function

1.
$$\delta(t-c) = \begin{cases} \infty & t=c \\ 0 & t\neq c \end{cases}, \quad \delta(t) = \begin{cases} \infty & t=0 \\ 0 & t\neq 0 \end{cases}$$

2.
$$\delta(t) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \left[\frac{\varepsilon}{\varepsilon^2 + t^2} \right]$$

3.
$$\int_{a}^{b} \delta(t-c) dt = \begin{cases} 1 & a \le c \le b \\ 0 & \text{otherwise} \end{cases}$$

4.
$$\int_{a}^{b} f(t)\delta(t-c) dt = \begin{cases} f(c) & a \le c \le b \\ 0 & \text{otherwise} \end{cases}$$

5.
$$\mathcal{L}[\delta(t-c)] = e^{-cs}$$

6.
$$\mathcal{L}[f(t)\delta(t-c)] = f(c)e^{-cs}$$

$$\mathbf{7.} \quad \mathcal{F}\big[\delta(x)\big] = \frac{1}{\sqrt{2\pi}}$$

$$\mathbf{8.} \quad \mathcal{F}^{-1}\big[\delta(k)\big] = \frac{1}{\sqrt{2\pi}}$$

9.
$$\frac{d}{dt} \left[\mathrm{H}(t-c) \right] = \delta(t-c)$$

Question 1

Evaluate the following integral

$$\int_{0}^{5} (t^2+1)\delta(t-1) dt.$$

$\int_{s}^{s} (t_{s+1}^{s}) \delta(t_{s-1}) = $	$\begin{array}{c} \cdots & \text{INFUSE OCCUPE AT t_1}\\ \bullet & \text{US NG}\\ & \int_{q}^{b} f(t) \delta(t_{-c}) dt_{+} \left\{ \begin{array}{c} f(t) & a < c \ c \ b \\ o & \text{orreduce}. \end{array} \right. \end{array} \right.$
	l ² +1 = 2

2

 $\frac{1}{2}$

Question 2

Evaluate the following integral

$$\int_0^{\pi} \sin\left(\frac{1}{3}t\right) \delta\left(t - \frac{\pi}{2}\right) dt$$

2	\int_{\circ}^{π}	Sin(‡)	S(t-₹)	ų ,	Whise Cours 4T to TE	
		-f(t)			$\int_{\alpha}^{b} f(t) \delta(t-\epsilon) dt = \begin{cases} f(\epsilon) \\ 0 \end{cases}$	a≤c≤b OTHREWSF
				-	Sm 17.6	
				Ξ	$\leq \ln \frac{W}{6}$	
					12	

Question 3

Find the Laplace transform of $\delta(t-c)$, where c is a positive constant, and hence state the Laplace transform of $\delta(t)$.

$\mathcal{L}\big[\delta(t-c)\big] = \mathrm{e}^{-cs}$,	$\mathcal{L}[\delta(t)] = 1$

	$\int_{0}^{\infty} e^{-st} \mathcal{S}(t-c) dt$
	$\left\{ \begin{array}{c} \int_{p}^{q} f(t) g(t-c) = \left\{ \begin{array}{c} c \\ f(t) \end{array} \right. \begin{array}{c} c \\ f(t) \end{array} \right\} $
$f(u) \in \int [g(t)] =$	$e^{-\delta x}$

Question 4

Given that F(t) is a piecewise continuous function defined for $t \ge 0$, find the Laplace transform of $F(t) \delta(t-c)$, where c is a positive constant.

$\mathcal{L}[F(t) \delta]$	(t-c)] = .	$F(c)e^{-cs}$
(f(t) S(t-c)] =	$\int_{0}^{\infty} e^{-st} F(t) \delta(t-c) d$	ŧ
=	$\int_{0}^{\infty} G(t) \delta(t-c) dt$	where $G(t) = \overline{\mathbf{e}}^{St} F(t)$
1	G(c) F(c) = 5%	
	//	

Question 5

Find the Laplace transform of $\cos 3t \, \delta\left(t - \frac{\pi}{3}\right)$.

$$\mathcal{L}\left[\cos 3t \,\,\delta\left(t-\frac{\pi}{3}\right)\right] = \mathrm{e}^{-\frac{1}{3}\pi s}$$

٥	$\int \left[\cos 3t \delta(t - \frac{\pi}{3}) \right] = \int_{0}^{\infty} e^{st} \cos 3t$	8(t-1/3) dt
	$= e^{\frac{\pi}{3}} \cos(\pi)$	
	= - e ^T	

Question 6

Find the Laplace transform of $t^3 \delta(t-3)$.

 $\left|\mathcal{L}\left[t^{3} \,\delta(t-3)\right] = 27 \,\mathrm{e}^{-3s}$

 $= e^{\frac{2\delta'}{\kappa}} \int_{0}^{\infty} e^{\frac{\delta'}{\kappa}} t^{\lambda} \delta(t-3) dt$

Question 7

Use Laplace transforms to solve the differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = \delta(t-2),$$

given further that x = 0, $\frac{dx}{dt} = 1$ at t = 0.

 $x = e^{-t} \left[\sin 2t - e^4 \sin (2t - 4) H(t - 2) \right]$

ä+2i+ 5x = δ(t-2) ನ್ನ≈0 ವ್ಜೇ I ALLING WARDAGE TRANSFIRMS $\begin{bmatrix} \dot{s}^2 \tilde{x} - \dot{s} a_0 - \dot{a}_0 \end{bmatrix} + 2\begin{bmatrix} \dot{s} \tilde{x} - x_0 \end{bmatrix} + 5 \tilde{x} = \int \begin{bmatrix} \delta(t-2) \end{bmatrix}$ $\hat{\beta}^2 \hat{x} - 1 + 2\hat{\beta} \hat{x} + S \hat{x} = e^{-2\hat{\beta}}$ $+2\beta + 5) = 1 - e^{-2\beta}$ SIM 2(t-2) H(t-2) $a = e^{t}sm_{2t} - e^{-t}e^{4}sm_{2t-4} H(t-z)$

Question 8

Use Laplace transforms to solve the differential equation

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = 2\delta(t-6),$$

given further that x = 0, $\frac{dx}{dt} = 2$ at t = 0.

 $\begin{array}{c} \widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}(\mathbf{t}, 4) & \text{Signar to two} \\ \widehat{\mathbf{x}} = 0 \\ \widehat{\mathbf{x}} = 2 \\ \widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}(\mathbf{t}, 4) \\ \widehat{\mathbf{x}} = 2 \\ \widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}(\mathbf{t}, 4) \\ \widehat{\mathbf{x}} = 2 \\ \widehat{\mathbf{x}} + 2 \\ \widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} - \widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 6\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} = 2 \\ \widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3 \\ \widehat{\mathbf{x}} = 2 - 2 = 6\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}^{4} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3 \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}^{4} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}^{4} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 3\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} = 2\widehat{\mathbf{x}}^{4} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 4\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} + 1 \\ \widehat{\mathbf{x}} + 1 \\ \widehat{\mathbf{x}} = 2\widehat{\mathbf{x}} + 2\widehat{\mathbf{x}} \\ \widehat{\mathbf{x}} + 1 \\ \widehat{\mathbf$

Question 9

The function f is defined as

$$f(x) = \frac{1}{\pi} \left[\frac{\varepsilon}{\varepsilon^2 + x^2} \right],$$

where ε is a positive parameter.

a) Show that $\lim_{\varepsilon \to 0} [f(x)] = \delta(x)$.

The function g is defined as

$$g(x) = \frac{\lambda}{\sqrt{\pi}} e^{-\lambda^2 x^2}$$

where λ is a positive parameter.

b) Show that $\lim_{\lambda \to \infty} [g(x)] = \delta(x)$.

proof

 $-\left(\zeta_{2} \right) = \frac{1}{\pi} \left(\frac{\varepsilon}{\varepsilon^{2} + \chi^{2}} \right)$ $\sum_{0}^{\infty} \frac{\Im}{\sqrt{\pi^{2}}} e^{-\lambda^{2} \lambda^{2}} d_{\lambda} = \frac{\Im}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(\lambda x)^{2}} d_{\lambda}$ $\lim_{\xi \to 0} \left[\frac{1}{\pi} \frac{\xi}{\xi^2 + t^2} \right] = \lim_{\xi \to 0} \left[\frac{1}{\pi} \times \frac{1}{\xi} \right] = \infty$ du = a $\begin{bmatrix} VF & \chi_{t} \neq 0 \\ \downarrow_{MM} & \left[\frac{1}{T} \frac{\xi}{\xi^{2} + \chi^{2}} \right] = \begin{bmatrix} J_{MM} & \left[\frac{\xi}{\xi - y_{0}} \right] \\ \xi - y_{0} & \left[\frac{1}{T} \frac{\xi}{\xi^{2} + \chi^{2}} \right] = 0 \end{bmatrix}$
$$\begin{split} & \int_{\infty}^{\infty} \left[\frac{1}{\sqrt{2}} \sum_{\omega}^{-1} \left[\frac{1}{\sqrt{2}} \sum_{\omega}^{-1} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \sum_{\omega}^{-1} \frac{1}{\sqrt{2}} \sum_{\omega}^{-1} \frac{1}{\sqrt{2}} \right]_{\infty} \\ & = \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2}} \sum_{\omega}^{-1} \frac{1}{\sqrt{2}} \sum_{\omega$$
 $\frac{\lambda}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} \frac{du}{\lambda}$ = 1 AT a=0 , WITH ARAA 1 $\delta(x) = \lim_{E \to \infty} \left(\frac{1}{11} \frac{E}{E^2 + x^2} \right)$ $\delta(x) = \lim_{\lambda \to \infty} \left[\frac{A}{\sqrt{n!}} e^{-\lambda x^2} \right]$ $\frac{\mathbf{A}(\lambda)}{\mathbf{O}} = \frac{\mathbf{O}}{\mathbf{O}^{\mathbf{T}}} e^{-\lambda^2 \lambda^2}$ 0 IF 3=0 $\lim_{\lambda \to \infty} \left[\frac{\lambda}{\sqrt{\pi}} \right] = \infty$ LIM (ATT

Question 10

The impulse function $\delta(x)$ is defined by

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$$

- a) Determine
 - i. ... $\mathcal{F}[\delta(x)]$.

ii. ... $\mathcal{F}[\delta(x-a)]$, where *a* is a positive constant.

iii. ...
$$\mathcal{F}^{-1}[\delta(k)].$$

b) Use the above results to deduce $\mathcal{F}[1]$ and $\mathcal{F}^{-1}[1]$.

$$\begin{bmatrix} \mathcal{F}[\delta(x)] = \frac{1}{\sqrt{2\pi}} \end{bmatrix}, \quad \boxed{\mathcal{F}[\delta(x-a)] = \frac{1}{\sqrt{2\pi}} e^{-ika}}, \quad \boxed{\mathcal{F}^{-1}[\delta(k)] = \frac{1}{\sqrt{2\pi}}} \begin{bmatrix} \mathcal{F}[1] = \sqrt{2\pi} \delta(k) \end{bmatrix}, \quad \boxed{\mathcal{F}^{-1}[1] = \sqrt{2\pi} \delta(x)} \end{bmatrix}$$

$\mathbf{a}(\mathbf{x}) = \frac{1}{12\pi} \int_{-\infty}^{\infty} \overline{\mathbf{b}}_{\mathbf{x}} = \frac{1}{12\pi} \int_{-\infty}^{\infty} \overline{\mathbf{b}}_{\mathbf{x}} = \frac{1}{12\pi} \int_{-\infty}^{\infty} \overline{\mathbf{b}}_{\mathbf{x}} = \frac{1}{12\pi}$	= suBrnitilia) Piblikary
$ \mathbf{j} = \frac{1}{12} e_{i\mathbf{k}\mathbf{a}}^{-i\mathbf{k}\mathbf{a}} $	and a substitution and a substitution of the s
$\mathbf{\overline{m}} = \left[\delta(k) \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(k) e^{i\mathbf{k}t} d\mathbf{k}$	≈ Substitutinad PCaPNezy
$= \frac{1}{\sqrt{2\pi^2}} e^{i \times O2} = \frac{1}{\sqrt{2\pi^2}}$	//
$\begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \\ & \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \begin{array}{c} \bullet \end{array} & \end{array} & \begin{array}{c} \bullet \\ & \end{array} & \begin{array}{c} \bullet \end{array} & \end{array} & \end{array} & \begin{array}{c} \bullet \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{c} \bullet \end{array} & \end{array}$	$\begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} $

Question 11

The impulse function $\delta(x)$ is defined by

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$$

- a) Determine the inverse Fourier transform of the impulse function $\mathcal{F}^{-1}[\delta(k)]$, and use it to deduce the Fourier transform of f(x) = 1.
- **b**) Find directly the Fourier transform of f(x) = 1, by introducing the converging factor $e^{-\varepsilon |x|}$ and letting $\varepsilon \to 0$.

 $R \in \left\lfloor \frac{-\varepsilon - ik}{\varepsilon^2 + \varepsilon^2} e^{-\varepsilon x} \right\rfloor$ (webx + i Ξ-[δ(k)] = <u>1</u>-1/2π,] S(k) eikx dk $\sqrt{\frac{2}{T}} \lim_{k \to \infty} \left[R \in \left[\frac{-\epsilon - ik}{\epsilon^{k} + k^{2}} \left(0 - 1 \right) \right] \right]$ $\frac{1}{\sqrt{2\pi^2}} e^{iO_{\infty}} = \frac{1}{\sqrt{2\pi^2}}$ $\sqrt{\frac{z}{\pi}} \lim_{k \to \infty} \left[\begin{array}{c} k \in \frac{z + ik}{z^2 + k^2} \end{array} \right] \right]$ $\underline{\exists}_{-1}[\underline{g}(U)] = \frac{\sqrt{2M_{-1}}}{1}$ $\sqrt{2\pi^2} \mp \left[\delta(k) \right] = 1$ $\sqrt{\frac{2}{T}} = \frac{1}{E \rightarrow 0} \left[\frac{E}{E^2 + k^2} \right]$ [v= ∃[em]]= ∃['] $= \sqrt{\frac{2}{\pi}} \times \Pi \times \frac{1}{\pi} \left[\lim_{\epsilon \to 0} \left(\frac{\epsilon}{\epsilon^2 + k^2} \right) \right]$ 1217 S(k) Ix eelal]] = 主[1] Note $\left\{ S(x) = \frac{1}{\pi} \bigcup_{e \to \infty} \left[\frac{\varepsilon}{x^2 + \varepsilon^2} \right] \right\}$ e elal ella da 2 e caska da

 $\mathcal{F}[1] = \sqrt{2\pi} \,\delta(k)$