FOURIER TRANSFORM

Created by T. Madas
Fourier Transform Summary
Definitions

- $\mathcal{F}[f(x)]=\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} k x} d x$
- $\mathcal{F}^{-1}[\hat{f}(k)]=f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(k) \mathrm{e}^{\mathrm{i} k x} d k$

Useful Results

- $\mathcal{F}\left[f^{\prime}(x)\right]=\mathrm{i} k \hat{f}(k)$
- $\mathcal{F}[x f(x)]=\mathrm{i} \frac{d}{d k}[\hat{f}(k)]$

Shift Results

- $\mathcal{F}[f(x+c)]=\mathrm{e}^{\mathrm{i} k c} \hat{f}(k)$
- $\mathcal{F}^{-1}[\hat{f}(k+c)]=\mathrm{e}^{-\mathrm{i} c x} f(x)$

Convolution Theorem

$$
\mathcal{F}\{[f * g](x)\}=\sqrt{2 \pi} \mathcal{F}[f(x)] \mathcal{F}[g(x)]
$$

where $[f * g](x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y$

Parseval's Theorem

$$
\int_{-\infty}^{\infty} h(y) g(y) d y=\int_{-\infty}^{\infty} \overline{\hat{h}}(k) \hat{g}(k) d k \quad \text { or } \quad \int_{-\infty}^{\infty}|h(y)|^{2} d y=\int_{-\infty}^{\infty}|\hat{h}(k)|^{2} d k
$$

FINDING FOURIER

TRANSFORMS

and

INVERSES

Created by T. Madas

Question 1

$$
f(x)=\mathrm{e}^{-a x}, x>0,
$$

where a is a positive constant.

Find the Fourier transform of $f(x)$.

Question 2

$$
f(x)= \begin{cases}1 & |x|<\frac{1}{2} a \\ 0 & |x|>\frac{1}{2} a\end{cases}
$$

where a is a positive constant.

Find the Fourier transform of $f(x)$.

$$
\hat{f}(k)=\frac{2}{k \sqrt{2 \pi}} \sin \left(\frac{1}{2} k a\right)=\frac{a}{\sqrt{2 \pi}} \operatorname{sinc}\left(\frac{1}{2} k a\right)
$$

Created by T. Madas

Question 3

$$
f(x)=\left\{\begin{array}{cc}
1 & 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the Fourier transform of $f(x)$.

$$
\hat{f}(k)=\sqrt{\frac{2}{\pi}} \mathrm{e}^{-\mathrm{i} k} \operatorname{sinc} k
$$

Question 4
\square

where ω is a positive constant.

Find the Fourier transform of $f(x)$.

$$
f(x)= \begin{cases}\frac{1}{\omega} & |x| \leq \omega \\ 0 & |x|>\omega\end{cases}
$$

$$
\hat{f}(k)=\sqrt{\frac{2}{\pi}} \operatorname{sinc} \omega
$$

Created by T. Madas

Question 5
The function $f(x)$ is defined in terms of the positive constant a, by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cl}
1-\frac{|x|}{a} & |x| \leq a \\
0 & |x|>a
\end{array}\right. \\
& f(x)
\end{aligned}
$$

$$
\mathcal{F}[f(x)]=\hat{f}(k)=\sqrt{\frac{2}{\pi}} \frac{1}{a k^{2}}[1-\cos (a k)]=\frac{a}{\sqrt{2 \pi}} \operatorname{sinc}^{2}\left(\frac{1}{2} k a\right)
$$

Find the Fourier transform of $f(x)$.

Created by T. Madas

Question 6

$$
f(x)= \begin{cases}m x & |x| \leq \frac{1}{m} \\ 0 & |x|>\frac{1}{m}\end{cases}
$$

where m is a positive constant.

Find the Fourier transform of $f(x)$.

Created by T. Madas

Question 7

$$
f(x)=x \mathrm{e}^{-2 x}, x>0 .
$$

Find, by direct integration, the Fourier transform of $f(x)$.

Question 8
The triangle function $\Lambda_{n}(x)$ is defined as

$$
\Lambda_{n}(x)=\left\{\begin{array}{lc}
\frac{1}{n^{2}}(n+x) & -n<x<0 \\
\frac{1}{n^{2}}(n-x) & 0<x<n \\
0 & \text { otherwise }
\end{array}\right.
$$

where n is a positive constant.
a) Sketch the graph of $\Lambda_{n}(x)$.
b) Show that the Fourier transform of $\Lambda_{n}(x)$ is

$$
\frac{1}{\sqrt{2 \pi}} \operatorname{sinc}^{2}\left(\frac{1}{2} k n\right)
$$

Question 9
The function f is defined by
where a is a positive constant.

Find the Fourier transform of $f(x)$.

$$
\mathcal{F}\left[\mathrm{e}^{-a|x|}\right]=\hat{f}(k)=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+k^{2}}
$$

Question 10
The function f is defined by

$$
f(x)=\frac{1}{x}, x \neq 0
$$

a) Determine the Fourier transform of $f(x)$, assuming without proof any standard results about $\int_{0}^{\infty} \frac{\sin a x}{x} d x$.
b) By introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$, invert the answer of part (a) to obtain f.

$$
\mathcal{F}\left[\frac{1}{x}\right]=\hat{f}(k)=-\mathrm{i} \sqrt{\frac{\pi}{2}} \operatorname{sign}(k)
$$

 $\mathcal{F}^{-1}[-\sqrt{2} i \operatorname{sg}(\mathbb{k} \cdot]$ $=-\operatorname{Fin}_{2} \operatorname{Lim}_{\operatorname{Lim}}\left[\mathcal{F}^{-1}\left[e^{-44 \mathrm{spm}} \mathrm{gm}\right]\right]$

$=-\sqrt{\frac{T}{2}} i \times \frac{1}{\sqrt{2 \pi}} \lim _{\varepsilon \rightarrow 0}\left[\int_{-\infty}^{\infty} e^{-e|k|} \operatorname{sigk} k(\cos k a+i \sin k x) d k\right]$
$=-\frac{1}{2} i \operatorname{Lim}_{\varepsilon \rightarrow 0}\left[\int_{-\infty}^{\infty} e^{-d k \mid} \operatorname{sgn} k(i \operatorname{sink}) d k\right]$
$=-\frac{1}{2} i \times 2 i \times \lim _{\epsilon \rightarrow 0}\left[\int_{0}^{\infty} e^{-k k} \times 1 \times \sin k e d k\right]$ $=\lim _{\varepsilon \rightarrow 0}\left[\int_{0}^{\infty} e^{-\varepsilon k} \sin k x d k\right]$
WSNG Conflex nombers to hnatantit $=\lim _{t \rightarrow 0}\left[\operatorname{In}_{n} \int_{0}^{-x t} e^{-t x} d k\right]=\lim _{t \rightarrow \infty}\left[I_{n} \int_{0}^{d} e^{(x t i)} d x\right.$
$=\lim _{t \rightarrow 0}\left[\operatorname{In}\left[\frac{1}{-4 x e^{2}} e^{\tan (i) k}\right]_{0}^{0}\right]$

$\left.=\lim _{k \rightarrow 0}\left[\operatorname{In}\left[0-\frac{x-x}{k-2 \pi} x i x(1+0)\right]\right]\right)$
$=\lim _{x \rightarrow 0}\left[\operatorname{Im}\left[\frac{\cos }{c+2}\right]\right]$
$=\lim _{l \rightarrow 0}\left[\frac{x}{E x}\right]$
$=\frac{1}{x} /$, matrat

Question 11
The impulse function $\delta(x)$ is defined by

$$
\delta(x)= \begin{cases}\infty & x=0 \\ 0 & x \neq 0\end{cases}
$$

a) Determine
i. $\quad \ldots \mathcal{F}[\delta(x)]$.
ii. ... $\mathcal{F}[\delta(x-a)]$, where a is a positive constant.
iii. $\ldots \mathcal{F}^{-1}[\delta(k)]$.
b) Use the above results to deduce $\mathcal{F}[1]$ and $\mathcal{F}^{-1}[1]$.
$\mathcal{F}[\delta(x)]=\frac{-1}{\sqrt{2 \pi}}, \mathcal{F}[\delta(x-a)]=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{ika}}, \mathcal{F}^{-1}[\delta(k)]=\frac{1}{\sqrt{2 \pi}}$,
$\mathcal{F}[1]=\sqrt{2 \pi} \delta(k), \mathcal{F}^{-1}[1]=\sqrt{2 \pi} \delta(x)$

Question 12
The signum function $\operatorname{sign}(x)$ is defined by

$$
\operatorname{sign}(x)=\left\{\begin{array}{rr}
1 & x>0 \\
-1 & x<0
\end{array}\right.
$$

1

By introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$, determine the Fourier transform of $\operatorname{sign}(x)$.

Question 13
The Unit function $\mathrm{U}(x)$ is defined by

$$
\mathrm{U}(x)=1
$$

By introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$, determine the Fourier transform of $\mathrm{U}(x)$.

You may assume that $\delta(t)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left[\frac{\varepsilon}{\varepsilon^{2}+t^{2}}\right]$.

$$
\mathcal{F}[\mathrm{U}(x)]=\sqrt{2 \pi} \delta(k)
$$

Question 14
The Unit function $\mathrm{U}(x)$ is defined by

$$
\mathrm{U}(x)=1
$$

By introducing the converging factor $\mathrm{e}^{-\varepsilon|k|}$ and letting $\varepsilon \rightarrow 0$, find $\mathcal{F}^{-1}[\mathrm{U}(k)]$.
You may assume that $\delta(t)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left[\frac{\varepsilon}{\varepsilon^{2}+t^{2}}\right]$.

$$
\mathcal{F}^{-1}[\mathrm{U}(k)]=\sqrt{2 \pi} \delta(x)
$$

Question 15
The function $\mathrm{g}(x)$ has Fourier transform given by

$$
\hat{g}(k)=-i \operatorname{sign}(k) .
$$

By introducing the converging factor $\mathrm{e}^{-\varepsilon|k|}$ and letting $\varepsilon \rightarrow 0$, find $\mathcal{F}^{-1}[\hat{g}(k)]$.

$$
\square, \mathcal{F}^{-1}[\hat{g}(k)]=\sqrt{\frac{2}{\pi}} \frac{1}{x}
$$

$\Rightarrow g(1)=\sqrt{\frac{2}{\pi}} \lim _{\varepsilon \rightarrow 0}\left[\frac{x}{e^{2}+x^{2}}\right]$
$\Rightarrow g(x)=\sqrt{\frac{2}{\pi}} \times \frac{x}{x^{2}}$
$\Rightarrow g(i)=\sqrt{\frac{2}{\pi}} \frac{1}{x}$

Question 16
The Heaviside function $\mathrm{H}(x)$ is defined by

$$
H(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

By introducing the converging factor $\mathrm{e}^{-\varepsilon x}$ and letting $\varepsilon \rightarrow 0$, determine the Fourier transform of $\mathrm{H}(x)$.

You may assume that $\delta(t)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left[\frac{\varepsilon}{\varepsilon^{2}+t^{2}}\right]$.

$$
\mathcal{F}[\mathrm{H}(x)]=\frac{1}{\sqrt{2 \pi}}\left[\pi \delta(k)-\frac{\mathrm{i}}{k}\right]
$$

Question 17
The impulse function $\delta(x)$ is defined by

$$
\delta(x)= \begin{cases}\infty & x=0 \\ 0 & x \neq 0\end{cases}
$$

a) Determine the inverse Fourier transform of the impulse function $\mathcal{F}^{-1}[\delta(k)]$, and use it to deduce the Fourier transform of $f(x)=1$.
b) Find directly the Fourier transform of $f(x)=1$, by introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$.

Question 18
The function f is defined by

$$
f(x)=\operatorname{sign}(x)=\left\{\begin{array}{rl}
1 & x>0 \\
-1 & x<0
\end{array}\right.
$$

a) By introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$, find the Fourier transform of f.
b) By introducing the converging factor $\mathrm{e}^{-\varepsilon|x|}$ and letting $\varepsilon \rightarrow 0$, find the Fourier transform of $g(x)=1$.

You may assume that $\delta(t)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left[\frac{\varepsilon}{\varepsilon^{2}+t^{2}}\right]$.
c) Hence determine the Fourier transform of the Heaviside function $\mathrm{H}(x)$,

$$
H(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

$$
\mathcal{F}[\operatorname{sign}(x)]=-\frac{\mathrm{i}}{k} \sqrt{\frac{1}{\pi}}, \mathcal{F}[1]=\sqrt{2 \pi} \delta(k), \mathcal{F}[\mathrm{H}(x)]=\frac{1}{\sqrt{2 \pi}}\left[\pi \delta(k)-\frac{\mathrm{i}}{k}\right]
$$

Question 19
The Fourier transforms of the functions $f(x)$ and $g(x)$ are

$$
\hat{f}(k)=\delta(k) \quad \text { and } \quad \hat{g}(k)=\frac{1}{\mathrm{i} k}
$$

where $\delta(x)$ denotes the impulse function.

Find simplified expressions for $f(x)$ and $g(x)$, and use them to show that

$$
\mathcal{F}[\mathrm{H}(x)]=\frac{1}{\sqrt{2 \pi}}\left[\pi \delta(k)+\frac{1}{\mathrm{i} k}\right]
$$

where $\mathrm{H}(x)$ denotes the Heaviside function.

$$
f(x)=\frac{1}{\sqrt{2 \pi}}, g(x)=\frac{1}{2} \pi \operatorname{sgn}(x)
$$

\square

Question 20
The function f is defined by

$$
f(x)=\frac{\sin a x}{x}, a>0 .
$$

Find the Fourier transform of $f(x)$, stating clearly any results used.
$\mathcal{F}\left[\frac{\sin a x}{x}\right]=\left\{\begin{aligned} \sqrt{\frac{\pi}{2}} & |k|<a \\ \sqrt{\frac{\pi}{8}} & |k|=a \\ 0 & |k|>a\end{aligned}\right.$

 $f(x)=\frac{1}{\sqrt{10}} \int_{-0}^{\infty}+\operatorname{tax} e^{i t h} d x=\frac{2}{\sqrt{n} \pi} \int_{0}^{\infty} \frac{\operatorname{sun} x}{x} \cos t x d x$ $=\sqrt{\frac{\pi}{\pi}} \int_{0}^{\infty} \frac{\operatorname{srnencos}}{x} d x$ Nhas $\sin [a x+k x]=\sin \cos \sin k x+\cos a x \sin k x$ $\sin [a x-k x]=\sin a x \cos d x-\cos a x \sin k x$ $\sin [(a+k) x]+\sin [(a-k) x]=2 \sin a x \cos t x$ $\int_{0}^{\sin 0} \int_{0}^{\infty} \frac{\sin \operatorname{six}}{2} d_{2}=\cdots \cos$ $=\int_{0}^{\infty} \frac{\sin x}{\frac{d}{x}} \frac{d x}{\omega}=\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$ ANO IN ANAlOGY F $\omega<0$ $\int_{0}^{\infty} \frac{a_{n} \text { nace }}{2} d x=-\frac{\pi}{2}$ $(\sin \cos \sin (-x)=-\sin x)$ of $\operatorname{ci}, \sec (\operatorname{cop}$ THE $\operatorname{Sos})$	

Question 21
Given that l is a non zero constant, show that

$$
\mathcal{F}\left[\frac{\exp \left(-\frac{x^{2}}{l^{2}}\right)}{l \sqrt{\pi}}\right]=\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{k^{2} l^{2}}{4}\right)
$$

$\exists\left[\frac{e^{-\frac{x^{2}}{x^{2}}}}{l \sqrt{\pi}}\right]=\frac{1}{l \sqrt{\pi}} \mp\left[e^{-\frac{x^{2}}{\ell^{2}}}\right]=\frac{1}{l \sqrt{\pi}} \times \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{\frac{2}{2}_{2}^{2}}} e^{-i k x} d x$ $=\frac{1}{\pi \sqrt{2}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{12}} e^{-i k x} d x=\frac{2}{\pi / \sqrt{2}} \int_{0}^{\infty} e^{-\frac{x^{2}}{k^{2}}} \cos x d x$
 Let $I=\int_{0}^{0} e^{-\frac{z^{2}}{x^{2}}} \cos k x d x$

$\Rightarrow \frac{\partial I}{\partial k}=\frac{\partial}{\partial k} \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} \cos \cos d x=\int_{0}^{\infty} e^{-\frac{x^{2}}{x^{2}}} \frac{\partial}{\partial k}(\cos k x) d x$ $\Rightarrow \frac{\partial I}{\partial k}=\int_{0}^{\infty}-x e^{-\frac{\partial^{2}}{p_{2}}} \sin k x d x$ | $\operatorname{sinkx} x$ | kcoske |
| :---: | :---: |
| $\frac{k^{2}}{2} e^{-\frac{z^{2}}{2_{2}}}$ | $-2 e^{-\frac{x_{1}}{1}}$ |

$=\left[\frac{h^{2}}{2} e^{-\frac{x^{2}}{2}} \sin k\right]_{0}^{\infty}-\frac{1}{2} b l^{2} \int_{0}^{\infty} e^{-\frac{x^{2}}{\theta^{2}} \cos k x} d x$ $\frac{\partial T}{\partial x}=-\frac{1}{2} t l^{2} I$ $\frac{L}{2} I=-\frac{1}{2} k l^{2} 2 t$ artat $R \in$ somed by senertion $\Rightarrow \ln I=-\frac{1}{4} k^{2} l^{2}+C$

Created by T. Madas

Question 22
The Gaussian function $f(x)$ is defined by

$$
f(x)=A \mathrm{e}^{-\alpha x^{2}},
$$

where A and α are positive constants.

Find the Fourier transform of $f(x)$.

Question 23
The function f is defined by

$$
f(x)=\frac{1}{x^{2}+a^{2}}
$$

where a is a positive constant.

Use contour integration to find the Fourier transform of $f(x)$.

$$
\mathcal{F}\left[\frac{1}{x^{2}+a^{2}}\right]=\hat{f}(k)=\sqrt{\frac{\pi}{2}} \frac{\mathrm{e}^{-a|k|}}{a}
$$

\square

Question 24
The function f is defined by

$$
f(x)=x \mathrm{e}^{-x^{2}}, x \in \mathbb{R}
$$

Find the Fourier transform of $f(x)$, stating clearly any results used.

$$
\mathcal{F}\left[x \mathrm{e}^{-x^{2}}\right]=\frac{1}{4} k \sqrt{2} \mathrm{e}^{-\frac{1}{4} k^{2}}
$$

\square $\Rightarrow \frac{\partial I}{\partial t}=-\frac{k}{2} \int_{0}^{\infty} e^{-x^{2}} \cos k x d x$
$\rightarrow \frac{\partial I}{\partial t}--\frac{k}{2} T$

- SAPARAC VARNASLIS \& INTGRATH THE O.D.E
$\Rightarrow \frac{1}{I} \partial I=-\frac{k}{2} \partial k$
$\Rightarrow \ln I=-\frac{1}{4} k^{2}+C$
$\Rightarrow I=A e^{-\frac{1}{4} k^{2}} \quad$ (A u neritatey)
$\Rightarrow \int_{0}^{\infty} e^{-x^{2}} \cos k x d x=A e^{\frac{1}{4} t^{2}}$
(3) To Gind the constritt A, itt $k=0$
$\int_{0}^{\infty} e^{-x^{2}} d x=A$
$A=\frac{1}{2} \sqrt{\pi}$ (striamed RHSLC)
$\Rightarrow \mp\left[e^{-x^{2}}\right]=\frac{2}{\sqrt{x i}} \int_{0}^{\infty} e^{-x^{2}} \operatorname{cax} k x$
$=\frac{2}{\sqrt{2 \pi}}\left(\frac{1}{2} \sqrt{\pi}\right) e^{-\frac{1}{4} k^{2}}$
$=\frac{1}{1} e^{-5 k^{2}}$
- Hoce $\exists\left[x e^{-x^{2}}\right]=i \frac{d}{d k}\left[\frac{1}{\sqrt{2}} e^{-6 t^{2}}\right]$
$=\frac{1}{\sqrt{2}}\left(\frac{1}{2} k e^{+k^{2}}\right)$

Created by T. Madas

Question 25
The function f is defined by

$$
f(x)=\frac{x}{x^{2}+a^{2}}
$$

where a is a positive constant.

Use contour integration to find the Fourier transform of $f(x)$.

$$
\mathcal{F}\left[\frac{x}{x^{2}+a^{2}}\right]=\hat{f}(k)=-\mathrm{i} \sqrt{\frac{\pi}{2}} \frac{\mathrm{e}^{-a|k|} \operatorname{sign} k}{a}
$$

$f(x)=\frac{x}{x+a^{2}}$ $\xrightarrow[f(x)]{\text { st }} x$ $\hat{f}(x)=\frac{1}{\sqrt{x} \int_{-}^{\infty}} \int_{-\infty}^{\infty}(x) e^{-i b} d x$ $\frac{\text { Rezilive ar }}{1} \quad z=u i$ Btzint $A T z=-a i$ $\begin{aligned} \lim _{z \rightarrow-a i}[(z+4 i) f(z z)] & =\lim _{z \rightarrow-a i}\left[(3+a+i) \frac{z e^{i k z}}{(z-a)(z+z+i)}\right]=\frac{-a i e^{i k(a i)}}{-a i-a i} \\ & =\frac{-a i i^{a k}}{-2 a i}=\frac{1}{2} e^{a k} \end{aligned}$

Question 26
Find the inverse Fourier transform of

$$
\hat{g}(k)=\mathrm{e}^{-k^{2} \sigma^{2} t}
$$

where σ and t are positive constants.
\square
$\hat{g}(k)=e^{-k_{0}^{2} 0^{2} t}$
$\longrightarrow g(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{g}(k) e^{i k} d k=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{\infty} e^{-k^{2}-2 t} e^{i k} d k$ $\Rightarrow g(x)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-180 t} \cos k x d k$ - Let $I=\int^{\infty} e^{-2 \sigma^{2} t} \cos k x d t$ $\Longrightarrow \frac{\partial I}{\partial x}=\int_{0}^{\infty} e^{-t^{2} \sigma^{2} t}[-k \sin k x] d k$ $\Rightarrow \frac{\partial I}{\partial x}=\int_{0}^{\infty}-k e^{-i \sigma^{2} t} \operatorname{sink} x d t$ - By Prets (w.it k)
$\underbrace{\frac{\sin b x}{2 \sigma^{2} t} e^{-\sigma^{2} t}}-2 \operatorname{coskx}\}$

$$
\mathcal{F}^{-1}\left[\mathrm{e}^{-k^{2} \sigma^{2} t}\right]=\frac{1}{\sqrt{2 t} \sigma} \exp \left(-\frac{x^{2}}{4 t \sigma^{2}}\right)
$$

Question 27
The Fourier transform $\hat{f}(k)$, of function $f(x)$ is

$$
\hat{f}(k)=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+k^{2}}
$$

where a is a positive constant.

Use contour integration to find an expression for $f(x)$.

Question 28
The function f is defined by

$$
f(x)=\frac{1}{\left(x^{2}+a^{2}\right)^{2}}
$$

where a is a positive constant.

Use contour integration to find the Fourier transform of $f(x)$.

DAAUNG ovith eftat case seffratitey is $R \rightarrow \infty$

$\frac{1 F k 0}{\infty}$	
$\frac{\pi}{2 a^{2}}$ (atw)	
$\int_{0}^{\infty} \frac{2 \cos \alpha x}{\left(x+k^{2}\right)} d x=\frac{\pi^{-a k}(a k+1)}{2^{\alpha}}$	
Coustinc- Te resucs be tuk	
$\hat{f}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\cos (x)}{\left.(x+2)^{2}\right)^{2}} d x=$	
$\hat{f}(x)=\sqrt{\frac{T}{8}} \frac{(1+a\|k\| 1) e^{-a(k)}}{a^{2}}$	

VARIOUS PROBLEMS

on

FOURIER

TRANSFORMS

Question 1
Find the Fourier transform of an arbitrary function $f(x)$ if
i. $f(x)$ is even.
ii. $f(x)$ is odd.

Give the answers as a simplified integral form.

$$
\hat{f}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos k x d x, \hat{f}(k)=-\mathrm{i} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin k x d x
$$

Question 2

Use the definition of the Fourier transform, of an absolutely integrable function $f(x)$, to show that

$$
\mathcal{F}\left[f^{\prime}(x)\right]=\mathrm{i} k \mathcal{F}[f(x)]
$$

Question 3
The Fourier transform of an absolutely integrable function $f(x)$, is denoted by $\hat{f}(k)$. Show that

Question 5
Given that c is a constant show that

$$
\mathcal{F}^{-1}[\hat{f}(k+c)]=\mathrm{e}^{\mathrm{i} c x} f(x)
$$

where $\hat{f}(k) \equiv \mathcal{F}[f(x)]$

Created by T. Madas

Question 6
Given that c is a constant prove the validity of the two shift theorems
a) $\mathcal{F}[f(x+c)]=\mathrm{e}^{\mathrm{i} k c} \mathcal{F}[f(x)]$.
b) $\mathcal{F}^{-1}[\hat{f}(k+c)]=\mathrm{e}^{\mathrm{i} c x} f(x)$.

Note that $\hat{f}(k) \equiv \mathcal{F}[f(x)]$.

Question 7
The convolution $[f * g](x)$, of two functions $f(x)$ and $g(x)$ is defined as

$$
[f * g](x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Show that

$$
\mathcal{F}\{[f * g](x)\}=\sqrt{2 \pi} \mathcal{F}[f(x)] \mathcal{F}[g(x)]=\sqrt{2 \pi} \hat{f}(k) \hat{g}(k)
$$

Question 8
It is given that c is a constant and $\hat{f}(k) \equiv \mathcal{F}[f(x)]$.
a) Prove the validity of the inversion shift theorem

$$
\mathcal{F}^{-1}[\hat{f}(k+c)]=\mathrm{e}^{\mathrm{i} c x} f(x)
$$

b) Hence determine an expression for

$$
\mathcal{F}^{-1}\left[\mathrm{e}^{-(k-a)^{2}}\right]
$$

where a is a positive constant.

$$
\mathcal{F}^{-1}\left[\mathrm{e}^{-(k-a)^{2}}\right]=\frac{1}{\sqrt{2}} \mathrm{e}^{-\frac{1}{4} x^{2}}[\cos a x+\mathrm{i} \sin a x]
$$

Question 9
The convolution theorem for two functions $f(x)$ and $g(x)$ asserts that

$$
\mathcal{F}\{[f * g](x)\}=\sqrt{2 \pi} \mathcal{F}[f(x)] \mathcal{F}[g(x)]
$$

where

$$
[f * g](x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

a) Starting from the convolution theorem prove Parseval's Theorem

$$
\int_{-\infty}^{\infty}|h(y)|^{2} d y=\int_{-\infty}^{\infty}|\hat{h}(k)|^{2} d k
$$

b) Use Parseval's Theorem to evaluate

$$
\int_{0}^{\infty} \frac{1}{x^{2}+a^{2}} d x
$$

Question 10
The convolution $[f * g](x)$, of two functions $f(x)$ and $g(x)$ is defined as

$$
[f * g](x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

a) Show that

$$
\mathcal{F}\{[f * g](x)\}=\sqrt{2 \pi} \mathcal{F}[f(x)] \mathcal{F}[g(x)]=\sqrt{2 \pi} \hat{f}(k) \hat{g}(k) .
$$

b) Hence prove Parseval's Theorem

$$
\int_{-\infty}^{\infty} h(y) g(y) d y=\int_{-\infty}^{\infty} \overline{\hat{h}}(k) \hat{g}(k) d k
$$

c) Use Parseval's Theorem to evaluate

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x
$$

You may assume that if $f(x)=\mathrm{e}^{-a|x|}$, then $\hat{f}(k)=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+k^{2}}$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\int_{-\infty}^{\infty} h(y) g(y) d y=\int_{-\infty}^{\infty} \hat{h}(-k) \hat{g}(x) d k$ (0) Now if $h \leq$ enat $h(-k)=\bar{h}(t)$ (consubate) $\int_{-\infty}^{\infty} h(y) g(g) d y=\int_{-\infty}^{\infty} \pi(k) \hat{g}(k) d k$
\qquad

APPLICATIONS

FOURIER
 TRANSFORMS

Question 1
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation for $\hat{\varphi}(k, y)$, where $\hat{\varphi}(k, y)$ is the Fourier transform of $\varphi(x, y)$ with respect to x.

Question 2
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$
- $\varphi(x, 0)= \begin{cases}\frac{1}{2} & |x|<1 \\ 0 & |x|>1\end{cases}$

Use Fourier transforms to show that

$$
\varphi(x, y)=\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{k} \mathrm{e}^{-k y} \sin k \cos k x d k
$$

and hence deduce the value of $\varphi(\pm 1,0)$.
\square
, $\varphi(\pm 1,0)=\frac{1}{4}$

START BY TATING THE FOURGG TRANGFOEM OF THE P.D.E IN x

Question 3
The Airy function $\mathrm{Ai}(x)$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}-x y=0
$$

Use Fourier transforms to show that

$$
\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{1}{3} t^{3}+x t\right) d t
$$

for suitable boundary conditions.
You may assume that $\mathcal{F}[x f(x)]=\mathrm{i} \frac{d}{d k}\{\mathcal{F}[f(x)]\}$.

Question 4
The function $\psi=\psi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\psi(x, 0)=\delta(x)$
- $\psi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\psi(x, y)=\frac{1}{\pi}\left(\frac{y}{x^{2}+y^{2}}\right)
$$

\square , proof

Saminc latacts givation	
$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0$	
- $\psi\left(x_{1}\right)=\delta\left(x_{2}\right)$ - $\psi(x, y) \rightarrow 0 A \sqrt{x^{2}+y^{2}} \rightarrow \infty$	

$\Rightarrow F\left[\frac{\partial^{2} \psi}{\partial x^{2}}\right]+F\left[\frac{\partial^{2} \psi}{\partial y^{2}}\right]=F[0]$ $\Rightarrow(i k)^{2} \hat{\psi}(k y)+\frac{\partial^{2}}{\partial y^{2}}[\hat{\psi}(k, y)]=0$ $\Rightarrow \frac{\partial^{2} \hat{\psi}}{\partial y^{2}}-k^{2} \hat{\psi}=0 \quad, \hat{\psi}=\hat{\psi}(k, y)$

 whus TiAT $B(x)=0$
$\Rightarrow \hat{\psi}(k, y)=A(t) e^{-(k) y}$ N(xTT WE TALE THE Fuverte TeAnsfoem of Tit Conorton $\psi(x, 0)$ - $\delta(x)$ $\begin{aligned} \psi\left(\lambda_{0}\right)=\delta(x) \Rightarrow \hat{\psi}\left(k_{0}\right)=\mp(\delta(x)) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \delta(()) e^{-i k x} d \psi \\ & =\frac{1}{\sqrt{2 \pi}} \times e^{-i k x o}=\frac{1}{\sqrt{\pi}}\end{aligned}$

Question 5
The function $u=u(x, t)$ satisfies the partial differential equation

$$
\frac{\partial u}{\partial t}+\frac{1}{3} \frac{\partial^{3} u}{\partial x^{3}}=0
$$

It is further given that

- $u(x, 0)=\delta(x)$
- $u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
u(x, t)=\frac{1}{t^{\frac{1}{3}}} \mathrm{Ai}\left(\frac{x}{t^{\frac{1}{3}}}\right)
$$

where the $\operatorname{Ai}(x)$ is the Airy function, defined as

Question 6
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $x \geq 0$ and $y \geq 0$.

It is further given that

- $\varphi(x, 0)=\frac{1}{1+x^{2}}$
- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$
- $\frac{\partial}{\partial x}[\varphi(x, 0)]=0$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that
\square

Question 7
The function $\Phi=\Phi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\Phi(x, 0)=\delta(x)$
- $\Phi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to find the solution of the above partial differential equation and hence show that

$$
\delta(x)=\lim _{\alpha \rightarrow 0}\left[\frac{1}{\pi \alpha}\left(1+\frac{y^{2}}{\alpha^{2}}\right)^{-1}\right]
$$

Question 8
The function $y=y(x)$ satisfies the differential equation

$$
\frac{d y}{d x}+\lambda y=f(x)
$$

where $f(x)$ is a given function and λ is a real constant.

Use Fourier transforms to show that

$$
y(x)=\int_{0}^{\infty} \mathrm{e}^{\lambda t} f(x-t) d t
$$

\square
$g(x)=\frac{1}{\sqrt{2 \pi^{2}}} \int_{-\infty}^{\infty} \frac{1}{\lambda+i k} e^{i k x} d k=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{i k x}}{\partial+i k} d k$

Nort x is A "Constin?"

- Hfruce (F $x>0$
$\int_{\Gamma} f(z) d z=2 \pi i\left(-i e^{-2 x}\right)=2 \pi e^{-2 x}$
$\int_{-R}^{R} \frac{e^{i k x}}{\partial+i k} d k+\int_{\gamma_{1}} \frac{e^{i x z}}{\lambda+i z} d z=2 \pi e^{-\lambda x}$
- $\int_{-\infty}^{\infty} \frac{e^{i k x}}{\lambda+i k} d k=2 \pi e^{-\lambda x}$ for $x>0$ - If $x<0$
$\int_{\Gamma_{2}} f(z) d z=0$ by chuaty's itforem (no sitanainatiles in Γ_{2})

Question 9
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the semi-infinite region of the $x-y$ plane for which $y \geq 0$.

It is further given that

- $\varphi(x, 0)=f(x)$
- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\varphi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(x-u)}{u^{2}+y^{2}} d u
$$

Question 10
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0
$$

in the semi-infinite region of the $x-y$ plane for which $y \geq 0$.

It is further given that for a given function $f=f(x)$

- $\frac{\partial}{\partial y}[\varphi(x, 0)]=\frac{\partial}{\partial x}[f(x)]$
- $\varphi(x, y) \rightarrow 0$ as $\sqrt{x^{2}+y^{2}} \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

Created by T. Madas

Question 11
The function $\varphi=\varphi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0, \quad-\infty<x<\infty, y \geq 0 .
$$

It is further given that

$$
\varphi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty
$$

- $\varphi(x, 0)=\mathrm{H}(x)$, the Heaviside function.

Use Fourier transforms to show that

$$
\varphi(x, y)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{y}\right)
$$

You may assume that

$$
\mathcal{F}[\mathrm{H}(x)]=\frac{1}{\sqrt{2 \pi}}\left[\pi \delta(k)+\frac{1}{\mathrm{i} k}\right]
$$

Created by T. Madas

Question 12

The function $u=u(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad-\infty<x<\infty, \quad 0<y<1
$$

It is further given that

- $u(x, 0)=0$
- $u(x, 1)=f(x)$
where $f(-x)=f(x)$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$
a) Use Fourier transforms to show that

$$
u(x, y)=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \frac{\hat{f}(k) \cos k x \sinh k y}{\sinh k} d k, \hat{f}(k)=\mathcal{F}[f(x)] .
$$

b) Given that $f(x)=\delta(x)$ show further that

$$
u(x, y)=\frac{\sin \pi y}{2[\cosh \pi x+\cos \pi y]}
$$

You may assume without proof

$$
\int_{0}^{\infty} \frac{\cos A u \sinh B u}{\sinh C u} d u=\frac{\pi}{2 C}\left[\frac{\sin (B \pi / C)}{\cosh (A \pi / C)+\cos (B \pi / C)}\right], 0 \leq B<C
$$

Question 13
The function $\psi=\psi(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $y \geq 0$.

It is further given that

$$
\begin{aligned}
& \text { - } \psi(x, 0)=f(x) \\
& \text { - } \psi(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty
\end{aligned}
$$

c) Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\psi(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(u)}{(x-u)^{2}+y^{2}} d u
$$

d) Evaluate the above integral for ...
i. $\quad . \quad f(x)=1$.
ii. $\ldots f(x)=\operatorname{sgn} x$
iii. ... $f(x)=\mathrm{H}(x)$
commenting further whether these answers are consistent.

$$
\psi(x, y)=1, \psi(x, y)=\frac{2}{\pi} \arctan \left(\frac{x}{y}\right), \psi(x, y)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{y}\right)
$$

Created by T. Madas

Question 14

The function $\theta=\theta(x, t)$ satisfies the heat equation in one spatial dimension,

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\sigma^{2}} \frac{\partial \theta}{\partial t},-\infty<x<\infty, t \geq 0
$$

where σ is a positive constant.

Given further that $\theta(x, 0)=f(x)$, use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
\theta(x, t)=\frac{1}{2 \sigma \sqrt{\pi t}} \int_{-\infty}^{\infty} f(x-u) \exp \left(\frac{u^{2}}{4 t \sigma^{2}}\right) d u
$$

Question 15
The function $u=u(x, y)$ satisfies Laplace's equation in Cartesian coordinates,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in the part of the $x-y$ plane for which $x \geq 0$ and $y \geq 0$.

It is further given that

- $u(0, y)=0$

$$
\begin{aligned}
& \text { - } u(x, y) \rightarrow 0 \text { as } \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
& \text { - } u(x, 0)=f(x), f(0)=0, f(x) \rightarrow 0 \text { as } x \rightarrow \infty
\end{aligned}
$$

Use Fourier transforms to show that

$$
u(x, y)=\frac{y}{\pi} \int_{0}^{\infty} f(w)\left[\frac{1}{y^{2}+(x-w)^{2}}-\frac{1}{y^{2}+(x+w)^{2}}\right] d w
$$

Created by T. Madas

(9) $u(x, y)=\frac{1}{\pi} \int_{0}^{\infty} f(w)\left[\frac{y}{y^{2}+\left((-w)^{2}\right.}-\frac{y}{y^{2}+(x+w)^{2}}\right] d w$
$u(x, y)=\frac{y}{\pi} \int_{0}^{\infty} f(w)\left[\frac{1}{y^{2}+(x-w)^{2}}-\frac{1}{y^{2}+(x+m)^{2}}\right]$

Created by T. Madas

Question 16

The function $T=T(x, t)$ satisfies the heat equation in one spatial dimension,

$$
\frac{\partial^{2} \theta}{\partial x^{2}}=\frac{1}{\sigma} \frac{\partial \theta}{\partial t}, \quad x \geq 0, t \geq 0
$$

where σ is a positive constant.

It is further given that

- $\quad T(x, 0)=f(x)$
- $T(0, t)=0$
- $T(x, t) \rightarrow 0$ as $x \rightarrow \infty$

Use Fourier transforms to convert the above partial differential equation into an ordinary differential equation and hence show that

$$
T(x, t)=\frac{1}{\sqrt{4 \pi \sigma t}} \int_{-\infty}^{\infty} f(u) \exp \left[\frac{(x-u)^{2}}{4 t \sigma}\right] d u
$$

You may assume that $\mathcal{F}\left[\mathrm{e}^{a x^{2}}\right]=\frac{1}{\sqrt{2 a}} \mathrm{e}^{\frac{k^{2}}{4 a}}$.

Question 17
The function $f=f(x)$ satisfies the integral equation

$$
\int_{-\infty}^{\infty} \frac{f(t)}{(x-t)^{2}+1} d t=\frac{1}{x^{2}+4}
$$

where $f(x) \rightarrow 0$ as $x \rightarrow \infty$

Use Fourier transforms to find the solution of the above integral equation.

You may assume that $\mathcal{F}\left[\frac{1}{x^{2}+a^{2}}\right]=\frac{1}{a} \sqrt{\frac{\pi}{2}} \mathrm{e}^{-a|k|}$.

$$
f(x)=\frac{1}{2 \pi\left(1+x^{2}\right)}
$$

Question 18
The function $f=f(x)$ satisfies the integral equation

$$
\int_{-\infty}^{\infty} f(x-u) f(u) d u=\frac{1}{1+x^{2}}
$$

where $f(x) \rightarrow 0$ as $x \rightarrow \infty$

Use Fourier transforms to find the solution of the above integral equation.

You may assume that

$$
\int_{0}^{\infty} \frac{\cos k x}{x^{2}+1} d x=\frac{1}{2} \pi \mathrm{e}^{|k|}
$$

Created by T. Madas

Question 19

The function $f=f(x)$ satisfies the integral equation

$$
\mathrm{e}^{-\frac{1}{2} x^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{e}^{-|x-u|} f(u) d u
$$

where $f(x) \rightarrow 0$ as $x \rightarrow \infty$

Use Fourier transforms to find the solution of the above integral equation.

You may assume that

- $\mathcal{F}\left[\mathrm{e}^{a x^{2}}\right]=\frac{1}{\sqrt{2 a}} \mathrm{e}^{\frac{k^{2}}{4 a}}$.
- $\mathcal{F}\left[\mathrm{e}^{a|x|}\right]=\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+k^{2}}$.
$f(x)=\left(2-x^{2}\right) \mathrm{e}^{-\frac{1}{2} x^{2}}$

