FOURIER

SERIES

Co

Created by T. Madas

The Fourier Theorem

If $f(x)$ is a piecewise continuous function on (α, β), then

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where $a_{n}=\frac{1}{L} \int_{\alpha}^{\beta} f(x) \cos \left(\frac{n \pi x}{L}\right) d x$

$$
b_{n}=\frac{1}{L} \int_{\alpha}^{\beta} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

$$
L=\frac{\beta-\alpha}{2}=\text { half period }
$$

Parseval's Identity

$$
\frac{1}{L} \int_{\alpha}^{\beta}[f(x)]^{2} d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left[a_{n}^{2}+b_{n}^{2}\right]
$$

FOURIER SERIES

EXPANSIONS

Question 1

$$
\begin{aligned}
& f(x)=x, x \in \mathbb{R},-\pi \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

Determine the Fourier series expansion of $f(x)$.

$$
\square, f(x)=2 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1} \sin n x}{n}\right]
$$

$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right] \quad l=H / 4 f=\operatorname{cosen}=\frac{a+b}{2}$
$\Rightarrow b_{n}=\frac{2}{T}\left[0-\frac{\text { Trosn } n}{n}\right]$
$\Rightarrow b_{4}=-\frac{2 \cos n \pi}{n}$
withere $a_{0}=\frac{1}{L} \int_{a}^{b} f(x) d x$
\qquad

- USing Thte mboye Resucas, with $a=-\pi_{1}, b=\pi, f(x)=x$ we ostan
- $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x d x=0 \quad$ (ODD intitrend in $+\sin m$ etaich Dowitin)

- $b_{h}=\frac{1}{\pi} \int_{-\pi}^{\pi} 2 \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} 2 \sin x x d x$

Ploctes my integellon by Prets

mand

- Ginaw we hane The Furker sorits
$f(a)=\sum_{n=1}^{\infty}\left[-\frac{2}{n}(-1)^{n} \sin n x\right]$
$f(x)=2 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{\eta} \sin n x\right]$
$x=2\left[\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\ldots.\right]$

Question 2
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
2 x=\sum_{n=1}^{\infty}\left[\frac{4(-1)^{n+1}}{n} \sin (n x)\right]
$$

Question 3

$$
f(t)=\left\{\begin{array}{cc}
2 t+2 & -1 \leq t \leq 0 \\
0 & 0 \leq t \leq 1
\end{array}\right.
$$

$$
f(t)=f(t+2)
$$

Determine the Fourier series expansion of $f(t)$.
$f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left[\frac{2 \cos [(2 n-1) \pi t]}{\pi(2 n-1)^{2}}-\frac{\sin (n \pi t)}{n}\right]$

Question 4

$$
f(t)=\left\{\begin{array}{cc}
1+\frac{1}{4} t & -4 \leq t \leq 0 \\
1-\frac{1}{4} t & 0 \leq t \leq 4
\end{array}\right.
$$

$$
f(t)=f(t+8)
$$

Determine the Fourier series expansion of $f(t)$.

$$
f(t)=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{\cos \left[\frac{1}{4}(2 n-1) \pi t\right]}{(2 n-1)^{2}}\right]
$$

Question 5
The "Top Hat" function is defined as

$$
f(x)=\left\{\begin{array}{lr}
1 & |x| \leq \frac{\pi}{2} \\
0 & \frac{\pi}{2}<|x| \leq \pi
\end{array}\right.
$$

for $x \in \mathbb{R}, f(x)=f(x+2 \pi)$.

Determine the Fourier series expansion of $f(x)$.

$$
f(x)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1} \cos [(2 n-1) x]}{2 n-1}\right]
$$

\square

Question 6

$$
f(x)=\left\{\begin{array}{cc}
1 & -1 \leq x \leq 0 \\
x & 0 \leq x \leq 1
\end{array}\right.
$$

$$
f(x+2)=f(x)
$$

Determine the Fourier series expansion of $f(x)$.

$$
f(x)=\frac{3}{4}-\frac{2}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{\cos [(2 n-1) \pi x]}{(2 n-1)^{2}}\right]-\frac{1}{\pi} \sum_{n=1}^{\infty}\left[\frac{\sin (n \pi x)}{n}\right]
$$

Question 7
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=x^{2},-1 \leq x \leq 1 .
$$

c) Hence determine the exact value of

$$
1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}+\ldots
$$

${ }^{\circ} \square$
$x^{2}=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos (n \pi x)\right], 1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}+\ldots=\frac{\pi^{2}}{12}$

$\left.=\frac{1}{4}[\underline{x}]^{2}\right]^{2}=3-0=\frac{5}{4}$	
 $=\int_{0}^{2 z^{2}+\cos ^{2}(t a) d x}$	
-	
\cdots	

$=\frac{4}{n^{\pi^{2}}}[x \cos (\pi x)]_{0}^{1}-\frac{1}{n^{2} \pi} \int_{0}^{1} \cos (m+x) d x$
$=\frac{4}{n^{2} \pi^{2}}[x \cos (n \pi x)]_{0}^{1}-\frac{1}{n^{2} \pi^{2}}[\sin (\ln \pi x)]_{0}^{1}$
$=\frac{4}{n^{2} \pi^{2}}[\cos (n t)-0]=\frac{4 \cos (n)}{n^{2} \pi^{2}}=\frac{4 C-1)^{n}}{n^{2} \pi^{2}}$
$\therefore f(x)=\frac{3 / 3}{2}+\sum_{n=1}^{\infty}\left[\frac{4(-1)^{4}}{n^{2} \pi^{2}} \cos (n \pi x)\right]$ $x^{2}=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos (n x x)\right]$
c) LETTNO $\alpha=0$ in THe ABOOG EPARCLON
$\Rightarrow 0^{2}=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos 0\right]$
$\rightarrow 0=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{2}}{n^{2}}\right]$
$\Rightarrow \frac{4}{\pi^{1}} \sum_{n=1}^{\infty} \frac{\left(-1 n^{n}\right.}{n^{2}}=-\frac{1}{3}$
$\Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{T^{2}}{12}$
$\Rightarrow-1+\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+\cdots=-\frac{\pi^{2}}{12}$
$\Rightarrow 1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\cdots=\frac{\pi^{2}}{12}$

Question 8
A function $f(x)$ is defined in an interval $(-\pi, \pi)$.
a) State the general formula for the Fourier series of $f(x)$ in $(-\pi, \pi)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)= \begin{cases}0 & -\pi \leq x \leq-\frac{1}{2} \pi \\ 1 & -\frac{1}{2} \pi<x \leq \frac{1}{2} \pi \\ 0 & \frac{1}{2} \pi \leq x \leq \pi\end{cases}
$$

c) Hence determine the exact value of

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots
$$

$$
f(x)=\frac{1}{2}+\frac{4}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1} \cos (n x)}{2 n-1}\right], 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\ldots=\frac{\pi}{4}
$$

\square

Question 9
A function $f(x)$ is defined in an interval $(\alpha, \alpha+2 L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(\alpha, \alpha+2 L)$, giving general expressions for the coefficients of the series.

$$
f(x)=x, 0 \leq x \leq 4
$$

b) Find the Fourier series of $f(x) \ldots$
i. \ldots in the interval $0 \leq x \leq 4$, with period 4 .
ii. ... in the interval $0 \leq x \leq 4$, with period 8 , by building a suitable "extension" to $f(x)$.

Illustrate the solution in each case with a sketch.

$$
x=2-\frac{4}{\pi} \sum_{n=1}^{\infty}\left[\frac{1}{n} \sin \left(\frac{1}{2} n \pi x\right)\right], x=\frac{8}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1}}{n} \sin \left(\frac{1}{4} n \pi x\right)\right]
$$

\square

Question 10

A function $f(x)$ is defined in an interval $(\alpha, \alpha+2 L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(\alpha, \alpha+2 L)$, giving general expressions for the coefficients of the series.

$$
f(x)=x^{2}, 0 \leq x \leq 1
$$

b) Find the Fourier series of $f(x) \ldots$
i. \ldots in the interval $0 \leq x \leq 1$, with period 1 .
ii. ... in the interval $0 \leq x \leq 1$, with period 2 , by building a suitable "extension" to $f(x)$.

Illustrate the solution in each case with a sketch.

$$
x^{2}=\frac{1}{3}+\sum_{n=1}^{\infty}\left[\frac{\cos (2 n \pi x)}{n^{2} \pi^{2}}-\frac{\sin (2 n \pi x)}{n \pi}\right], x^{2}=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos (n \pi x)\right]
$$

Question 11

$$
f(x)=\left\{\begin{array}{lr}
\pi-x & 0 \leq x \leq \pi \\
\pi+x & -\pi<x \leq 0
\end{array}\right.
$$

for $x \in \mathbb{R}, f(x)=f(x+2 \pi)$.
a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}
$$

c) Show that

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left[\frac{\sin \frac{n \pi}{2}-\cos \frac{n \pi}{2}}{(2 n+1)^{2}}\right]=-\frac{\pi^{2}}{8 \sqrt{2}} \\
& f(x)=\frac{\pi}{2}+\frac{4}{\pi} \sum_{n=1}^{\infty}\left[\frac{\cos [(2 n-1) x]}{(2 n-1)^{2}}\right], \sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}=\frac{\pi^{2}}{8}
\end{aligned}
$$

Question 12
The periodic function f is defined as

$$
f(t)=\left\{\begin{array}{rr}
0 & -1 \leq t<0 \\
t^{2} & 0 \leq t \leq 1
\end{array}\right.
$$

for $t \in \mathbb{R}, f(t)=f(t+2)$.

Determine the Fourier series expansion of $f(t)$.

$$
f(t)=\frac{1}{6}+\sum_{n=1}^{\infty}\left\{\frac{(-1)^{n} \times 2 \cos (n \pi t)}{n^{2} \pi^{2}}+\left[\frac{(-1)^{n+1}}{n \pi}+\frac{2}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right]\right] \sin (n \pi t)\right\}
$$

\square
 $=\frac{1}{n \pi}(-)^{n+1}+\frac{2}{6 \pi}\left\{\frac{1}{n \pi}[\tan (\sqrt{3} \pi t)]_{0}^{1}-\frac{1}{4 \pi} \int_{0}^{1} \operatorname{snn} n t d t\right.$ $=\frac{1}{n \pi}(-1)^{n+1}-\frac{2}{k^{2} \pi^{2}}\left[-\frac{1}{4 \pi} \cos (n \pi+t)\right]_{0}^{1}$
$\left.=\frac{1}{n \pi}(-1)^{n+1}+\frac{2}{4 \pi^{2}}[-1)^{n}-1\right]$
Thes $\left.f(t)=\frac{1}{6}+\sum_{n=1}^{\infty}\left[\frac{2}{n^{2} \pi^{2}}(-1)^{n} \cos (n \pi t)+\left[\frac{1}{n \pi}(-1)^{n+1}+\frac{2}{n^{2}+2 \pi}[-1)^{4}-\right]\right] \sin (n \pi t)\right]$

Question 13

$$
f(x)=x, x \in \mathbb{R}, 0 \leq x \leq 2 \pi
$$

$$
f(x)=f(x+2 \pi) .
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}
$$

$$
f(x)=\pi-2 \sum_{n=1}^{\infty} \frac{\sin n x}{n}, \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}=\frac{\pi}{4}
$$

Question 14
A function $f(x)$ is defined in an interval $(-\pi, \pi)$.
a) State the general formula for the Fourier series of $f(x)$ in $(-\pi, \pi)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=3 x^{2}-\pi^{2},-\pi \leq x \leq \pi
$$

c) Hence determine the exact value of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

$$
3 x^{2}-\pi^{2}=12 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos n x}{n^{2}}\right],
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

Question 15

$$
\begin{aligned}
& f(x)=|x|, x \in \mathbb{R},-\pi \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos [(2 n-1) x]}{(2 n-1)^{2}}, \sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}=\frac{\pi^{2}}{8}
$$

$$
\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}} \text {. }
$$

Question 16

$$
f(x)=x, x \in \mathbb{R},-1 \leq x \leq 1
$$

$$
f(x)=f(x+2)
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
f(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n \pi x}{n}, \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n}{n}=\frac{1}{2}
$$

Question 17

$$
f(x)=x^{2}, x \in \mathbb{R},-2 \leq x \leq 2 .
$$

$$
f(x)=f(x+4)
$$

Determine the Fourier series expansion of $f(x)$.

$$
f(x)=\frac{4}{3}+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos \left(\frac{1}{2} n \pi x\right)
$$

\square

Question 18
A function $f(x)$ is defined in the interval $(-\pi, \pi)$.
a) State the general formula for the Fourier series of $f(x)$ in $(-\pi, \pi)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=x,-\pi \leq x \leq \pi
$$

c) Hence determine the exact value of

$$
\begin{gathered}
g(x)=x^{2},-\pi \leq x \leq \pi . \\
f(x)=2 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n+1} \sin n x}{n}\right] g(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos n x}{n^{2}}\right]
\end{gathered}
$$

Question 19

$$
f(x)=x^{2}, x \in \mathbb{R}, 0 \leq x \leq 1
$$

Determine the Fourier series of $f(x)$ as
a) \ldots as half range cosine expansion.
b) \ldots as half range sine expansion.

$$
\begin{aligned}
& f(x)=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos (n \pi x)\right] \\
& f(x)=\frac{2}{\pi^{3}} \sum_{n=1}^{\infty}\left[\frac{2}{n^{3}}\left[\left(2-n^{2} \pi^{2}\right)(-1)^{n}-2\right] \sin (n \pi x)\right]
\end{aligned}
$$

\square

Created by T. Madas

Question 20

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\pi-x & 0 \leq x \leq \pi \\
0 & \pi \leq x \leq 2 \pi
\end{array}, x \in \mathbb{R} .\right. \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}
$$

$$
f(x)=\frac{\pi}{4}+\sum_{m=1}^{\infty}\left[\frac{2 \cos [(2 m-1) x]}{\pi(2 m-1)^{2}}+\frac{\sin m x}{m}\right], \sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}=\frac{\pi^{2}}{8}
$$

\square
\square

Question 21

$$
f(x)=x^{2}, x \in \mathbb{R},-\pi \leq x \leq \pi
$$

$$
f(x)=f(x+2 \pi)
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \text {. }
$$

$f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}}$,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

Question 22

$$
\begin{aligned}
& f(x)=x^{2}, x \in \mathbb{R}, 0 \leq x \leq 2 \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

a) Determine the Fourier series expansion of $f(x)$.
b) Hence determine the exact value of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$.

$$
f(x)=\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{\cos n x}{n^{2}}-\frac{\pi \sin n x}{n}\right]
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

Question 23
It is given that for $x \in \mathbb{R},-\pi \leq x \leq \pi$,

$$
|x|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos [(2 n-1) x]}{(2 n-1)^{2}}, \quad|x|=|x+2 \pi|
$$

a) Use the above Fourier series expansion to deduce the Fourier series expansion of $\operatorname{sgn}(x)$.
b) Verify the answer of part (a) by obtaining directly the Fourier series expansion of $\operatorname{sgn}(x)$.
c) Hence determine the exact value of

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{2 r-1}
$$

$\operatorname{sgn}(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin [(2 n-1) x]}{(2 n-1)^{2}}$

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{2 r-1}=\frac{\pi}{4}
$$

Question 24

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{rl}
-x & 0 \leq x \leq \frac{\pi}{2} \\
0 & \frac{\pi}{2}<x<\pi
\end{array}\right. \\
& f(x)=f(x+\pi)
\end{aligned}
$$

Determine the Fourier series expansion of $f(x)$.

$$
f(x)=-\frac{\pi}{8}+\sum_{n=1}^{\infty} \frac{\cos [(4 n-2) x]}{(2 n-1)^{2} \pi}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n} \sin 2 n x}{n}
$$

Question 25
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Determine the Fourier series of

$$
\begin{gathered}
f(x)=\mathrm{e}^{x},-\pi \leq x \leq \pi . \\
\mathrm{e}^{x}=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}[\cos (n x)-n \sin (n x)]}{1+n^{2}}\right]
\end{gathered}
$$

Question 26
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Show that

$$
\int_{-\pi}^{\pi} \mathrm{e}^{a x} \mathrm{e}^{\mathrm{i} n x} d x=\frac{2(a-n \mathrm{i})(-1)^{n}}{\mathrm{a}^{2}+n^{2}} \sinh (a \pi)
$$

c) Determine the Fourier series of

$$
f(x)=\mathrm{e}^{a x}, a>0,-\pi \leq x \leq \pi
$$

d) Hence find the Fourier series of $\cosh (a x)$ and $\sinh (a x)$, for $-\pi \leq x \leq \pi$.

$$
\mathrm{e}^{a x}=\frac{\sinh (a \pi)}{a \pi}+\frac{2 \sinh (a \pi)}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}[a \cos (n x)-n \sin (n x)]}{a^{2}+n^{2}}\right],
$$

$$
\cosh (a x)=\frac{\sinh (a \pi)}{a \pi}+\frac{2 a \sinh (a \pi)}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos (n x)}{a^{2}+n^{2}}\right]
$$

$$
\sinh (a x)=\frac{2 \sinh (a \pi)}{\pi} \sum_{n=1}^{\infty}\left[\frac{n(-1)^{n+1} \sin (n x)}{a^{2}+n^{2}}\right]
$$

Question 27
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Determine the Fourier series of

$$
f(x)=\mathrm{e}^{x},-\pi \leq x \leq \pi
$$

c) Hence find the Fourier series of $\sinh x$ and $\cosh x$, for $-\pi \leq x \leq \pi$.

$$
\mathrm{e}^{x}=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}[\cos (n x)-n \sin (n x)]}{1+n^{2}}\right]
$$

$\sinh x=\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty}\left[\frac{n(-1)^{n+1} \sin (n x)}{1+n^{2}}\right]$,
$\cosh x=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \cos (n x)}{1+n^{2}}\right]$,

Created by T. Madas

Question 28
A function f is defined by

$$
f(t)=V|\cos \omega t|, t \in \mathbb{R}
$$

where V and ω are positive constants.

Show that the Fourier series of f is given by

$$
f(t)=\frac{2 V}{\pi}+\frac{4 V}{\pi}\left[\frac{1}{3} \cos (2 \omega t)-\frac{1}{15} \cos (4 \omega t)+\frac{1}{35} \cos (6 \omega t)+\ldots\right]
$$

\square

PARSEVAL'S IDENTITY

Question 1
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=|x|, \quad-\pi \leq x \leq \pi
$$

c) State Parseval's identity for the Fourier series of $f(x)$ from part (a).
d) Hence show that

Question 2
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=\operatorname{sign}(x), \quad-\pi \leq x \leq \pi
$$

c) Prove Parseval's identity for the Fourier series of $f(x)$ in $(-\pi, \pi)$.
d) Hence show that

Question 3
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Find the Fourier series of

$$
f(x)=\frac{1}{2}+\frac{1}{2} \operatorname{sign}(x), \quad-\pi \leq x \leq \pi
$$

c) Prove the validity of Parseval's identity for the Fourier series of $f(x)$ in the interval $(-L, L)$.
d) Hence show that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

\square $\frac{1}{2}+\frac{1}{2} \operatorname{sign}(x)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty}\left[\frac{\sin [(2 n-1) x]}{(2 n-1)}\right]$
a) STATNO THE "FOVZIGR SSERES THERRM"

If $f(x)$ is pieceuse coninveus av $(-L, L), L>0$, THEN
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{1} \operatorname{bos} \frac{\operatorname{six}}{L}+b_{n} \sin \frac{n \pi x}{L}\right]$
whare

$$
\begin{array}{ll}
a_{4}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n n x}{L} d x & n=0,1,2,3, \ldots \\
b_{1}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x & n=1,2,3,4, \ldots
\end{array}
$$

b) $\quad f(a)=\frac{1}{2}+\frac{1}{2} \operatorname{sign} x$

d)
 The initwat $(-\pi, \pi)$.
$\Rightarrow \frac{1}{\pi} \int_{-\pi}^{\pi}[f(a)]^{2} d x=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{4}^{2}+b_{n}^{2}\right)$
$\Rightarrow \frac{1}{\pi} \int_{0}^{\pi} t^{2} d x=\frac{1^{2}}{2}+\sum_{k=1}^{\infty}\left[0^{2}+\left[\frac{2}{(2 x-1) \pi}\right]^{2}\right]$
$\Rightarrow \frac{1}{a} \int_{0}^{\pi} 1 d t=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{4}{\pi^{2}(2 \pi-1)^{2}}$
$\rightarrow \frac{1}{\pi} \times \pi=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{4=1}^{\infty} \frac{1}{(2 n-1)^{2}}$
$\Rightarrow 1=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2-1)^{2}}$
$\Rightarrow \frac{1}{2}=\frac{4}{T^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 a-1)^{2}}$
$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{(a-1)^{2}}=\frac{\pi^{2}}{8} / /$ He equulem

Question 4

$$
\begin{aligned}
& f(x)=x, x \in \mathbb{R},-\pi \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

Use Parseval's identity for the Fourier coefficients of $f(x)$ to determine the exact value of

Question 5

$$
\begin{aligned}
& f(x)=x^{2}, x \in \mathbb{R},-\pi \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

Use Parseval's identity for the Fourier coefficients of $f(x)$ to determine the exact value of

Question 6
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) Prove the validity of Parseval's identity for the Fourier series of $f(x)$ in the interval $(-L, L)$.
c) Find the Fourier series of

$$
f(x)=x^{2}, \quad-\pi \leq x \leq \pi
$$

d) Hence show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

$$
x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}\left[\frac{(-1)^{n}}{n^{2}} \cos n x\right]
$$

Question 7
A function $f(x)$ is defined in an interval $(-L, L), L>0$.
a) State the general formula for the Fourier series of $f(x)$ in $(-L, L)$, giving general expressions for the coefficients of the series.
b) State and prove Parseval's identity for the Fourier series of $f(x)$ in $(-L, L)$.
c) By considering the Fourier series of

$$
f(x)=x^{3},-\pi \leq x \leq \pi
$$

show that $\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$.

You may use without proof the following results.

- $\int x^{3} \sin n x d x=\frac{1}{n^{4}}\left[n x\left(6-n^{2} x^{2}\right) \cos n x+3\left(n^{2} x^{2}-2\right) \sin n x\right]+C$
- $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
- $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$

FOURIER SERIES

Complex Expansions

Created by T. Madas

Question 1

A periodic function $f(t)$ is defined in the interval $(-L, L), L>0, f(t+2 L)=f(t)$.

It is further given that $f(t)$ is continuous or piecewise continuous in $(-L, L)$ and has Fourier series

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right]
$$

where $a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t, n=0,1,2,3, \ldots$
and $\quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t, n=1,2,3,4, \ldots$

Show that the complex Fourier series expansion of $f(t)$ is

$$
f(t)=\sum_{n=-\infty}^{\infty}\left[c_{n} \mathrm{e}^{\frac{\mathrm{in} \pi t}{L}}\right]
$$

where $c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(t) \mathrm{e}^{-\frac{\mathrm{i} n \pi t}{L}} d t, n \in \mathbb{Z}$

Created by T. Madas

Question 2

$$
f(t)=\left\{\begin{array}{rr}
1 & -2 \leq t \leq 2 \\
0 & 2<t<6
\end{array}, \quad f(t+8)=f(t)\right.
$$

Determine the complex Fourier series expansion of $f(t)$.

$$
f(t)=\frac{1}{2}+\frac{1}{2} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left[\mathrm{e}^{\frac{1}{4} n \pi t \mathrm{i}} \operatorname{sinc}\left(\frac{1}{2} n \pi\right)\right]
$$

\square
$\Rightarrow c_{n}=\frac{1}{n \pi}\left[\sin \frac{n \pi}{2}-0\right], n \neq 0$

$f(t)=c_{0}+\sum_{k=0}^{\infty} c_{n} e^{\frac{m p t}{L T}}$
$f(t)=\frac{1}{2}+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left[\frac{\sin \frac{2 \pi}{2}}{n \pi} e^{i \frac{m \pi t}{4}}\right]$ $f(t)=\frac{1}{2}+\sum_{\substack{n=\infty \\ n \neq 0}}^{\infty} \frac{1}{2}\left(\frac{\sin n \pi / 2}{n \pi / 2}\right) e^{i \frac{i n t t}{4}}$ $f(t)=\frac{1}{2}+\sum_{n=-\infty}^{\infty} \frac{1}{2} \sin c\left(\frac{n \pi}{2}\right) e^{i \frac{n \pi t}{4}}$

Question 3

$$
f(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq a \\
0 & a<t<T
\end{array}, \quad a<\frac{1}{2} T, \quad f(t+T)=f(t)\right.
$$

Determine the complex Fourier series expansion of $f(t)$.

$$
f(t)=\frac{a}{T}+\frac{a}{T} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left[\exp \left(\frac{n \pi(2 t-a)}{T}\right) \operatorname{sinc}\left(\frac{n \pi a}{T}\right)\right]
$$

\square

Question 4

$$
f(t)=t, \quad 0 \leq t<1, \quad f(t+1)=f(t) .
$$

Determine the complex Fourier series expansion of $f(t)$.

$$
f(t)=\frac{1}{2}+\frac{\mathrm{i}}{2 \pi} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left[\frac{\mathrm{e}^{2 n \pi t \mathrm{i}}}{n}\right]
$$

Created by T. Madas

Question 5

$$
f(t)=\mathrm{e}^{\pi t}, 0 \leq t<2, \quad f(t+2)=f(t)
$$

Determine the complex Fourier series expansion of $f(t)$.

Question 6

$$
f(t)=\cos (\pi t),-\frac{1}{2} \leq t<\frac{1}{2}, \quad f(t+1)=f(t)
$$

Determine the complex Fourier series expansion of $f(t)$.

Question 7

$$
f(t)=\sin (\pi t), 0 \leq t<1, \quad f(t+1)=f(t)
$$

Determine the complex Fourier series expansion of $f(t)$.

- THE Finction IS NETHHR ODD-NOR Qurn CNUTE THAT BUILDING

An Gien extrusion Falls)
$f(t)=\sum_{n=-\infty}^{\infty}\left[C_{n} e^{i \frac{n \pi t}{L}}\right], m+G e C_{n}=\frac{1}{2 L} \int_{-L}^{L} f(t) e^{-i \frac{m \pi t}{L}} d t$ Catulate the coefficians c_{h}.
$\Rightarrow C_{4}=\frac{1}{2 \times \frac{1}{2}} \int_{0}^{1} \sin \pi t e^{-(2 n \pi t) i} d t$
$\Rightarrow C_{1}=\int_{0}^{1} \sin \pi t[\cos 2 n \pi t-i \sin 2 n \pi t] d t$
$\Rightarrow C_{n}=\int_{0}^{1} \sin \pi t \cos 2 n \pi t-i \sin \pi t \sin 2 n \pi t d t$
$\left.\begin{array}{rl}\cos (\pi t+2 m t) & \equiv \cos \pi t \cos 2 n \pi t-\sin \pi t \cdot \sin 2 n \pi t \\ \cos (\pi t-2 n \pi t) & \equiv \cos \pi t \cos 2 n \pi t+\sin \pi t \sin 2 n \pi t\end{array}\right)$
$\therefore-2 \sin \pi t \sin 2 n n t=\cos [(1+2 n) \pi t]-\cos [(1-2 n) \pi t]$

- $\sin (\pi t+2 n t)=\sin t \cos 2 \pi+\cos +\sin 2 \pi t)$
$\sin (\pi t-2 n \pi t) \equiv \sin \pi t \cos 2 n \pi t-\cos \pi t \sin 2 n \pi t)$
$\therefore 2 \sin \pi t \cos 2 n \pi t=\sin [(1+2 n) \pi t]+\sin [(1-2 n) \pi t]$
$\sin \pi t \cos 2 n \pi t=\frac{1}{2} \sin [(1+2 n) \pi t]+\frac{1}{2} \cdot \sin [(1-24) \pi t]$

$$
f(t)=-\frac{2}{\pi} \sum_{n=-\infty}^{\infty}\left[\frac{\mathrm{e}^{2 n \pi t \mathrm{i}}}{4 n^{2}-1}\right]
$$

\checkmark

Question 8
The function f is defined as

$$
f(t)=V \cos \left(\frac{\pi t}{T}\right),-\frac{1}{2} T \leq t<\frac{1}{2} T, \quad f(t)=f(t+T)
$$

where V and T are positive constants.

Determine the complex Fourier series expansion of $f(t)$.

$$
f(t)=\frac{2 V}{\pi} \sum_{n=-\infty}^{\infty}\left[\frac{\mathrm{e}^{2 n \pi t \mathrm{i}}}{\left(1-4 n^{2}\right)}\right]
$$

\square

