FOURIER TRIES FOUL SERIES SUBJECT FOUL FROM THE REAL STRATE

The Fourier Theorem

If f(x) is a piecewise continuous function on (α, β) , then

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right],$$

adasma

Com

Madasn,

ŀ.C.p

2017

where
$$a_n = \frac{1}{L} \int_{\alpha}^{\beta} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$b_n = \frac{1}{L} \int_{\alpha}^{\beta} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$L = \frac{\beta - \alpha}{2} = \text{half period}$$

Parseval's Identity

I.C.p

$$\frac{1}{L} \int_{\alpha}^{\beta} \left[f(x) \right]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left[a_n^2 + b_n^2 \right]$$

Created by T. Madas

0

FOURIER SERIES EXPANSIONS TASTRATISCOTT I. Y.C.P. TRADASTRATISCOTT I. Y.C.P. TRADASTRATISCOTT

Question 1

COM

I.F.C.B.

0

$$f(x) = x, x \in \mathbb{R}, -\pi \le x \le \pi.$$

$$f(x) = f(x+2\pi).$$

Determine the Fourier series expansion of f(x).

っ

COM

I.G.S.

K.G.

.

COM

I.V.C.B. Madash

Created by T. Madas

2017

1.1.01

Question 2

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L, L), giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

 $f(x) = 2x, \ -\pi \le x \le \pi.$

 $\frac{d_{o}}{2} + \sum_{l=1}^{\infty} \left[d_{y} \cos \frac{gm}{2} + b_{y} \cos \frac{g}{2} + \frac{g}{2} \right]$ WHERE CHy = 1 fa)aas ma da N= 0(1,2,3,4). by = + $f_{(i)} \leq_M \cdot \underbrace{\min_{L}}_{L} d = v_{i} \leq_{i} \leq_{j} q_{j}.$ fa) = 22 is all = a4=0 For AU n $b_{\mu} = \frac{1}{\pi} \int_{-\infty}^{\infty} (2\lambda) \operatorname{SM} \frac{\operatorname{MBZ}}{\pi} d\lambda = \frac{1}{\pi} \int_{-\infty}^{\infty} 2\lambda \operatorname{SM} \lambda \Delta d\lambda$ $\simeq \frac{4}{\pi} \int_{-\infty}^{\pi} 2sum dx = ...$ $\int xb \tan 20 \int \frac{1}{p} + \int x \sin 2x \frac{1}{p} - \int \frac{1}{p} =$ $\pi n_{200} \frac{4}{\eta} - = \left\{ \frac{\pi}{\eta} \left[2\pi m^2 \right]_{H}^{2} + \pi n^2 \cos \frac{\pi}{\eta} - \frac{4}{\eta} \cos \frac{\pi}{\eta} - \frac{4}{\eta} \sin \frac{\pi}{\eta} \right\}$ $-\frac{4}{\eta}(-1)^{N} = -\frac{4}{\eta}(-1)^{N}$:. fa)= 2 + 60 SMA $\mathfrak{A} = 4 \left[-\frac{\mathfrak{S}\mathfrak{M}\mathfrak{X}}{\mathfrak{l}} - \frac{\mathfrak{S}\mathfrak{M}\mathfrak{X}}{\mathfrak{Z}} + \frac{\mathfrak{S}\mathfrak{M}\mathfrak{X}}{\mathfrak{Z}} - \frac{\mathfrak{S}\mathfrak{M}\mathfrak{Y}\mathfrak{X}}{\mathfrak{Z}} + \frac{\mathfrak{S}\mathfrak{M}\mathfrak{Y}}{\mathfrak{Z}} + \cdots \right]$

Question 3

I.C.B.

I.F.G.B.

 $F(t) = \begin{cases} 2t+2 & -1 \le t \le 0\\ 0 & 0 \le t \le 1 \end{cases}$

$$f(t) = f(t+2).$$

Determine the Fourier series expansion of f(t).

I.C.B.

mana,

Ś

1.

Created by T. Madas

R.

Question 5

F.G.B.

I.G.B.

The "Top Hat" function is defined as

$$f(x) = \begin{cases} 1 & |x| \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < |x| \le \pi \end{cases}$$

for $x \in \mathbb{R}$, $f(x) = f(x+2\pi)$.

Determine the Fourier series expansion of f(x).

Y.C.B.

F.C.P.

- $$\begin{split} & \int (\Delta f_{ij}) = \frac{1}{2} + \left[\sum_{q=1}^{\infty} \frac{\delta (Q_{ij} Z_{ij}) \frac{1}{2} \delta (Q_{ij}$$

Question 6

I.C.S.

I.F.G.B.

 $F(x) = \begin{cases} 1 & -1 \le x \le 0 \\ x & 0 \le x \le 1 \end{cases}$

$$f(x+2) = f(x).$$

Determine the Fourier series expansion of f(x).

I.C.F.

3

Question 7

ics.

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L, L), giving general expressions for the coefficients of the series.
 - b) Find the Fourier series of

$$f(x) = x^2, \ -1 \le x \le 1.$$

c) Hence determine the exact value of

$$1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \dots$$

ſ'n

$$= \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n^2} \cos(n\pi x) \right], \quad \frac{1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \dots + \frac{\pi^2}{12}}{12}$$

$= \frac{4}{\pi^2 \pi^2} \left[x \cos(\theta \pi x) \right]_0^0 - \frac{1}{\pi^2 \pi^2} \int_0^1 \cos(\theta \pi x) dx$
$= \frac{4}{\sqrt{2}\pi^2} \left[x \cos(\epsilon \eta x) \right]_0^1 - \frac{1}{\sqrt{2}\pi^2} \left[\sin(\epsilon \eta x) \right]_0^1$
$= \frac{4}{n^{3}\pi^{2}} \left[\cos(n\pi) - 0 \right] = \frac{4\cos(n\pi)}{n^{2}\pi^{2}} = \frac{4(-1)^{4}}{n^{3}\pi^{2}}$
$\int \left(\int (\lambda_{1}) = -\frac{2\chi_{1}}{\lambda} + \sum_{n=1}^{\infty} \left[\frac{4(-1)^{n}}{n^{2}\pi^{2}} \cos(n\pi \lambda) \right]$
$\alpha^2 = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{[-1)^n}{n^2} \cos(n\alpha)$
 C) LETTING α=0 IN THE ABOVE EXPRISION
$\left[\begin{array}{c} 0_{2}\omega\right) \frac{\theta'(1-2)}{2k} \\ \frac{1}{2}\omega \frac{1}{2k} \frac{1}{k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2k} = \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2k} + \frac{1}{2} \circ \underbrace{0} \xrightarrow{k} \\ \frac{1}{2}\omega \frac{1}{2} \cdots \underbrace{0} \xrightarrow{k} \\ \frac{1}{2} \cdots \underbrace{0} \\ \frac{1}{2} \cdots \underbrace{0} \xrightarrow{k} \\ \frac{1}{2} $
\rightarrow $0 \sim \frac{1}{2} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \left[\frac{(-1)^k}{k^2} \right]$
\implies $\frac{u}{u^2} \sum_{k=1}^{\infty} \frac{h^k}{h^k} \sim -\frac{1}{2}$
$\longrightarrow \sum_{\infty}^{k-1} \frac{\omega_{x}}{(-1)_{k}} = -\frac{1}{m_{x}}$
$\implies -1 + \frac{1}{4} - \frac{1}{9} + \frac{1}{16} - \frac{1}{24} + \dots = -\frac{\pi^2}{12}$
$\implies 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots = \frac{1}{12}$

C.B.

Question 8

14

5

- A function f(x) is defined in an interval $(-\pi,\pi)$.
 - a) State the general formula for the Fourier series of f(x) in $(-\pi,\pi)$, giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

$$f(x) = \begin{cases} 0 & -\pi \le x \le -\frac{1}{2}\pi \\ 1 & -\frac{1}{2}\pi < x \le \frac{1}{2}\pi \\ 0 & \frac{1}{2}\pi \le x \le \pi \end{cases}$$

 $\frac{1}{7} + \frac{1}{9}$

c) Hence determine the exact value of

 $\frac{1}{3} + \frac{1}{5}$

 $f(x) = \frac{1}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1} \cos(nx)}{2n-1} \right], \quad \boxed{1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}}$

 $-\frac{2}{3\pi}\cos 3x + \frac{2}{5\pi}$

2 Costa + -

 $\frac{1}{11}$

a) IF
$$f(x)$$
 IS PRECEDENCE GARDINGLE ON $(-\pi_1,\pi_1)$, Thin

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} [G_n G_n \pi_n + b_n q_n m_n]$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} (G_n - \frac{1}{2} + \frac{1}{2}$$

Question 9

- A function f(x) is defined in an interval $(\alpha, \alpha + 2L), L > 0$.
 - a) State the general formula for the Fourier series of f(x) in $(\alpha, \alpha + 2L)$, giving general expressions for the coefficients of the series.

$$f(x) = x, \ 0 \le x \le 4.$$

- **b**) Find the Fourier series of f(x)...
 - i. ... in the interval $0 \le x \le 4$, with period 4.
 - ii. ... in the interval $0 \le x \le 4$, with period 8, by building a suitable "extension" to f(x).

Illustrate the solution in each case with a sketch.

Question 10

- A function f(x) is defined in an interval $(\alpha, \alpha + 2L), L > 0$.
 - a) State the general formula for the Fourier series of f(x) in $(\alpha, \alpha + 2L)$, giving general expressions for the coefficients of the series.

$$f(x) = x^2, \ 0 \le x \le 1.$$

- **b**) Find the Fourier series of f(x)...
 - ... in the interval $0 \le x \le 1$, with period 1. i.

1

ii. ... in the interval $0 \le x \le 1$, with period 2, by building a suitable "extension" to f(x).

Illustrate the solution in each case with a sketch.

Illustrate the solution in each case with a sketch.

$$\begin{aligned} x^{2} = \frac{1}{3} + \sum_{n=1}^{\infty} \left[\frac{\cos(2n\pi x)}{n^{2}\pi^{2}} - \frac{\sin(2n\pi x)}{n\pi} \right], \quad x^{2} = \frac{1}{3} + \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n}}{n^{2}} \cos(n\pi x) \right] \end{aligned}$$

 $0 \le x \le \pi$ - x f(x) $-\pi < x \le 0$ $\pi + x$

for $x \in \mathbb{R}$, $f(x) = f(x+2\pi)$.

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

c) Show that

I.C.B. III

Smaths,

I.C.B.

$$\sum_{n=0}^{\infty} \left[\frac{\sin \frac{n\pi}{2} - \cos \frac{n\pi}{2}}{\left(2n+1\right)^2} \right] = -\frac{\pi^2}{8\sqrt{2}}$$

$$f(x) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \left[\frac{\cos[(2n-1)x]}{(2n-1)^2} \right]$$

9

$ \mathbf{a} \left(\begin{array}{c} \mathbb{I}_{Q} = \begin{cases} \pi + \lambda & -\pi \leq \lambda \leq \sigma \\ \pi - \lambda & \sigma \leq \lambda \leq \pi \end{cases} \right) $
* 45 fa) is <u>sen</u> THE WULL BE NO (HALF PRIOD L= TT) SAMES PREAST, AS ALL DW = 0
• $\alpha_{0} = \prod_{i=1}^{n} \left[\int_{-\pi}^{\pi} f(x) dx = \dots \text{ for } \dots = \frac{2}{\pi} \int_{0}^{\pi} \pi - x dx = \frac{2}{\pi} \left[\pi x - \frac{1}{2} x^{2} \right]_{0}^{2}$
$= \frac{1}{T_{T}} \left[\frac{T_{T}^{2} - \frac{1}{2} \pi^{2}}{T_{T}} \right] = \frac{2}{T_{T}} \times \frac{T_{T}^{2}}{T_{T}} = \frac{T_{T}}{T_{T}}$ $\bullet Cl_{q} = \frac{1}{T_{T}} \left[\frac{T_{T}}{T_{T}} \left(Q \right) \cos \pi Q \right] dz = \dots \text{ Given } \dots = \frac{1}{T_{T}} \times 2 \left[\frac{T_{T}}{(T_{T}-2)} \cos \pi Q \right] dz$
$= \frac{1}{\pi r} \int_{-\infty}^{\infty} \frac{1}{r} \int_{-\infty}^{\infty} \frac{1}{r}$
$= \frac{1}{2\pi} \left[\frac{1}{16\pi} \left[\frac{1}{16\pi} \left[\frac{1}{16\pi} \left[\frac{1}{16\pi} \right]_{0}^{2} + \frac{1}{16\pi} \left[\frac{1}{$
$\begin{bmatrix} n'_{(1-)} = 1 \end{bmatrix} \frac{c_{2}}{c_{2}\pi} = \begin{bmatrix} \pi n 2c_{2} - 1 \end{bmatrix} \frac{c_{2}}{c_{1}\pi} = c_{2}\pi$
$=$ $\langle \frac{\mu}{m_{p}}$ if $n = deg$
$\alpha_{\nu_{H}} = \frac{4}{\pi(2\nu_{H})^{2}} \nu_{H} \in \mathbb{N}$
$\label{eq:head} \begin{array}{c} \mbox{Rel} \mathcal{H}_{\mathcal{U}} & \mbox{Rel} \mathcal{H}_{\mathcal{U}} $
$\left[\left[r(t-w_{n}^{2}) \right]_{223} + \frac{\psi}{t_{n}} \sum_{w_{n} = 0}^{2} + \frac{w}{2} = r(x) \right]_{n}$
In II , & Cas (and)2]

	101-2+市2 (24-1)2
	$T = \Xi + \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$
	$\frac{W}{2} = \frac{W}{\pi r} \sum_{k=0}^{\infty} \frac{1}{(2k+j)^2}$
	$\sum_{k=1}^{\infty} \frac{1}{(2w-1)^2} = \frac{\pi^2}{9} \qquad (\xi \cdot \frac{1}{1^k} + \frac{1}{3^k} + \frac{1}{2^k} + \frac{1}{7^2} + \cdots = \frac{7t^2}{\theta}$
-)	$ \begin{array}{c} \left[\begin{array}{c} L \Gamma & \chi_{2} \end{array} \right] \xrightarrow{\sim} \left[\left(\overline{\chi} \right) \times \frac{\pi}{2} + \frac{1}{\pi} \\ \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \end{array} \end{array} \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \end{array} \right] \xrightarrow{\sim} \left[\begin{array}{c} \frac{1}{2} \end{array} \end{array} \xrightarrow{\sim} $
	$\frac{\partial MS}{f(\frac{\pi}{4})} = \frac{\pi}{2} + \frac{4}{\pi} \sum_{k=k_1}^{40} \frac{\log\left(\frac{k_1}{2}\right) \log \frac{\pi}{4} + \frac{\log \frac{k_1}{2} \sin \frac{\pi}{4}}{(2m_1)^2}}{(2m_1)^2}$
	$\frac{3\pi}{4} = \frac{\pi}{2} + \frac{4}{\pi} \sum_{long}^{\infty} \frac{\frac{1}{\sqrt{2}} \left[\log \frac{long}{2} + Sln \frac{long}{2} \right]}{(2m-1)2}$
	$\frac{\pi}{4} = \frac{2\sqrt{2}}{\pi} \sum_{k=1}^{\infty} \frac{\cos \frac{k\pi}{2} + \sin \frac{k\pi}{2}}{(2k-1)^2}$

 $f(x) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{i \in Y}$ 161 7

(2r-1)

2ths.com

Smaths.com

 π^2 8

3

6

nadasm.

I.G.B.

Question 12

The periodic function f is defined as

$$(t) = \begin{cases} 0 & -1 \le t < 0 \\ t^2 & 0 \le t \le 1 \end{cases}$$

for $t \in \mathbb{R}$, f(t) = f(t+2).

Determine the Fourier series expansion of f(t).

 $\sum_{n=1}^{\infty} \left\{ \frac{\left(-1\right)^n \times 2\cos\left(n\pi t\right)}{n^2 \pi^2} + \right.$ $f(t) = \frac{1}{6} + \frac{1}{6}$ $\left[\frac{(-1)^{n+1}}{n\pi} + \frac{2}{n^3\pi^3} \left[(-1)^n - 1 \right] \sin(n\pi t) \right]$ $\square P_{n} = \frac{1}{L} \int_{0}^{a+2L} f(t) sm(mt) dt = \frac{1}{L} \int_{0}^{1} f(t) sm(mt) dt =$ $f(x) = \frac{a_n}{a_n} +$ et ay= L fata the cos time do, h=allas, h G1 = ⊥ ∫ +2L A(2) Sn 112 d, n= h23,4, -l≤t<0 0≤t≤1 $f(t) = \begin{cases} +z \\ 0 \end{cases}$ $= \left[-\frac{1}{4\pi} t^2 \cos(4\pi t) \right]_0^1 + \frac{2}{4\pi} \int_0^1 t \cos(4\pi t) dt \quad =$ $= \frac{1}{k \eta} (-1)^{N+1} + \frac{2}{k \eta} \left\{ \frac{1}{k \eta} \left[\frac{1}{k \eta} \left(\frac{1}{k \eta} \left(\frac{1}{k \eta} \left(\frac{1}{k \eta} \left(\frac{1}{k \eta} \right) \right) \right)_{0}^{1} - \frac{1}{k \eta} \left[\frac{1}{k \eta} \left(\frac{1}{k \eta} \left(\frac{1}{k \eta} \right) \right)_{0}^{1} \right] \right] \right\}$ $= \frac{1}{h\pi} (-1)^{NH} - \frac{2}{h^2 \pi^2} \left[-\frac{1}{h^2 \pi^2} \left(o_{\lambda}(h\pi^{\dagger}) \right) \right]_{0}^{1}$ $\bigcirc Q_{y} = \frac{1}{L} \int_{a}^{a+2L} R(t) \log(\frac{mL}{L}) dt = + \int_{a}^{L} f(t) \log(mt) dt = \int_{a}^{L} t^{2} \cosh(t) dt \dots w$ that $= \frac{1}{\hbar\pi} \left(-i \right)^{\eta_{\rm H}} + \frac{2}{\eta_{\rm H}^2 \eta_{\rm h}^2} \left[\left(-i \right)^{\eta_{\rm h}} - 1 \right]$ $= \left[\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \int_{0}^{1} -\frac{2}{\sqrt{n}} \int_{0}^{1} t \sin(n\pi t) dt = -\frac{2}{\sqrt{n}} \int_{0}^{1} t \sin(n\pi t) dt \dots \text{ for received} \right]$ $\widehat{I}_{1}^{\text{LUS}} \qquad \widehat{f}(t) = \quad \frac{1}{6} \quad + \quad \sum_{k=1}^{\infty} \left[-\frac{2}{k^{k+2}} \left(-1 \right)^{k} \left(\log(nT_{1}^{k}) + \left(\frac{1}{kT_{1}} \right)^{k} \right) \right]$ $=-\frac{2}{k\pi} \left\{ \left[-\frac{1}{k\pi} \text{tradiunt} \right]_{0}^{4} + \frac{1}{k\pi} \int_{0}^{1} \text{capat} + \frac{2}{k^{2}\pi^{2}} \left[-\frac{2}{k^{2}\pi^{2}} \int_{0}^{1} \frac{1}{k\pi^{2}} + \frac{1}{k\pi^{2}} \int_{0}^{1} \frac{1}{k\pi^{2}} + \frac{1}{k\pi^{2}} \int_{0}^{1} \frac{1}{k\pi^{2}} + \frac{1}{k\pi^$ $=-\frac{2}{k_{11}^{2}}\left[0-\log(\eta)\right]-\frac{2}{k_{11}^{2}}\left[\log(\eta)\right]_{0}^{1}=\frac{2}{k_{11}^{2}}\left[\log(\eta)\right]_{0}^{1}=\frac{2}{k_{11}^{2}}\left[\log(\eta)\right]_{0}^{1}=\frac{2}{k_{11}^{2}}\left[\log(\eta)\right]_{0}^{1}$

 $(-1)^{n+1}$

2n - 1

Question 13

I.C.B.

I.G.B.

$$f(x) = x, x \in \mathbb{R}, 0 \le x \le 2\pi.$$

 $f(x) = f(x + 2\pi).$

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

21/20

F.G.B.

5

madasn

Question 14

- A function f(x) is defined in an interval $(-\pi,\pi)$.
 - a) State the general formula for the Fourier series of f(x) in $(-\pi,\pi)$, giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

 $f(x) = 3x^2 - \pi^2, \ -\pi \le x \le \pi$

c) Hence determine the exact value of

n=1

 $3x^2 - \pi^2 = 12$

a) IF fa) is preceduse continuous an (-11,17) -1744 $f(x) = \frac{\alpha_0}{2} + \sum_{N=1}^{\infty} \left[\alpha_V \cos N \chi + b_V S b_N \chi \right]$ where $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $\alpha_{i_{i_{j}}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \, dx \qquad n = i_{1} z_{i_{j}} z_{j} \dots$ $b_{ij} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) s_{inj} \chi dx \qquad u \neq 1_{i} z_{i} z_{j} \cdots$ b) $e f(a) = 3x^2 - \pi^2$ (without is find)

: lan = 0 FOR ALL NI SINCE IT JE (32-TZ)SINNE de = 0 $= \frac{2}{\pi} \left[\left[\chi^{3} - \eta^{2} \chi \right]_{0}^{\eta} = \frac{2}{\eta} \left[\left(\eta^{3} - \eta^{3} \right)_{-} (0 - 0) \right] = 0$ $d_0 = 0$ $O_{H_1} = \frac{1}{\pi} \int_{-\infty}^{\infty} (3t^2 - \pi^2) \cos(tx_1 \dots x_N) PARTS ...$

 $\Omega_{V_{1}} = \frac{1}{\pi} \left\{ \left[\frac{1}{2} \left(\frac{3x^{2}}{3\pi^{2}} \right) \frac{3\pi}{3\pi^{2}} - \frac{5}{\pi} \int_{-\pi}^{\pi} - \frac{5}{\pi} \int_{-\pi}^{\pi} \frac{3\pi}{3\pi^{2}} \left(\frac{3\pi}{3\pi^{2}} \right) \frac{3\pi}{3\pi^{2}} \right\}$

 $0_{y} = -\frac{c}{n\pi} \int_{-\infty}^{\infty} x_{nnx} dx$ 4 = 12 -xannx ... BY PART

 $Q_{4} = \frac{12}{N^{2}} (-1)^{10}$ $\int_{0}^{\infty} \frac{1}{2} (\hat{x}) = 3x^{2} - \pi^{2} = \sum_{\mu=1}^{\infty} \alpha_{\mu} \log h x$ $3t^2 = \pi^2 = \sum_{have = 1}^{\infty} \frac{12}{h^2} (-1)^h \cos ha$ 32-172 = -12652 + 126522 - 12652 + 12654+ 5 60% $\frac{\pi z}{12} = \sum_{N=1}^{\infty} -\frac{\zeta_{N}}{N^{2}}$ $\sum_{n=1}^{\infty} \frac{\overline{C(n_n+1)}}{n_n} = \frac{\pi_n}{n_n}$

 $\alpha_{\eta} = \frac{12}{n\pi} \left\{ \left[\frac{2 \cos n\chi}{n} \right]_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \cos n\chi \, d\chi \right\}$

 $\alpha_{y} = \frac{12}{\sqrt{n}} \times \left(\frac{2\pi c_{aa}}{n} - 0\right)$

-1)

12

 $(-1)^n \cos nx$

I.C.B.

(2r

F.G.B.

nadası

3

2

20/20

 π^2

Question 15

Ka

I.G.B.

$$f(x) = |x|, x \in \mathbb{R}, -\pi \le x \le \pi.$$

 $f(x) = f(x+2\pi).$

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

 $\sum_{r=1}^{n} \frac{1}{\left(2r-1\right)^2}.$ $\neg \cos[(2n-1)x]$ $f(x) = \frac{\pi}{2}$ $\frac{1}{\pi}$ $(2n-1)^2$

$\begin{pmatrix} 0 \\ \downarrow \\ (\lambda)_{2} = \frac{\alpha_{1}}{\alpha_{2}} + \sum_{k=1}^{\infty} \left[f_{1} \cos \frac{m \alpha_{2}}{m_{2}} + b_{k} \sin \frac{m \alpha_{2}}{m_{2}} \right] \text{with} \alpha_{n} = \frac{1}{2} \int_{0}^{0} \frac{1}{4} (\Delta) d\Delta $ $(L = 104.6 \text{ Frike}) \alpha_{n} + \frac{1}{2} \int_{0}^{0} \frac{1}{4} (\Delta) \cos \frac{m \alpha_{2}}{m_{2}} d\Delta$	Here $L = HALE Relation = T$ $\frac{MTR}{L} = \frac{MTR}{T} = HAR$	$\mathcal{D}_{\mathcal{A}}^{\mathcal{A}} = \frac{\alpha_{-}}{2} + \sum_{i=1}^{\infty} \alpha_{i} \cos h_{i}.$
$d_{x} = \frac{1}{L} \int_{a}^{a} \frac{1}{L} dx$	f(x) = [x] (sew)	$\left \chi\right = \frac{1}{2} - \frac{4}{11} \sum_{ \eta =1}^{20} \frac{\cos[(\eta_{1})_{\eta}]}{(2m-1)^{2}}$
• $Q_{i} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{x} d\mathbf{x} = -\mathbf{v} \mathbf{x}_{i} - \mathbf{z} + \frac{1}{2\pi} \mathbf{x}_{i} \int_{-\pi}^{\pi} \mathbf{x}_{i} d\mathbf{x} = \frac{1}{2\pi} \mathbf{v} \left[\frac{1}{2\pi} \mathbf{x}_{i} \right]_{-\pi}^{\pi} - \frac{1}{2\pi}$ • $Q_{i} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2\pi} (\mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} + \mathbf{x}_{i} - \mathbf{z} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2\pi} \mathbf{x}_{i} \mathbf{x}_{i} d\mathbf{x}_{i} - \mathbf{v} \mathbf{x}_{i}$ $= \frac{1}{2\pi} \left\{ \int_{-\pi}^{\pi} \frac{1}{2\pi} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} d\mathbf{x}_{i} - \frac{1}{2\pi} \mathbf{x}_{i} \mathbf{x}_{i} d\mathbf{x}_{i} d\mathbf{x}_{i} - \frac{1}{2\pi} \mathbf{x}_{i} \mathbf{x}_{i} d\mathbf{x}_{i} d\mathbf{x}_$	<u></u>	$\begin{bmatrix} \dots, \frac{x_{100}}{x_{1}} + \frac{x_{200}}{x_{2}} + \frac{x_{200}}{x_{2}} + \frac{x_{200}}{x_{1}} \end{bmatrix}_{\overline{W}}^{\underline{W}} - \frac{\pi}{x} = x \exists J$ $= 0 = x \forall J (d = 1)$
$= -\frac{2}{\pi_1 *} \left[- \alpha S_{HI} - \frac{1}{\omega_0} \right]_0^T = \frac{2}{11 \gamma_1} \left[\cos \omega_{HI} - \left[- \right] \right]$	E the same (assig	$0 = \frac{1}{2} - \frac{4}{3^{2}} \left[\frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$
$= \frac{2}{\pi \eta h} \left[\frac{\zeta \eta h}{\eta} - \frac{1}{\eta} \right]$ $= \frac{2}{\eta \eta h} \left[\frac{\zeta \eta h}{\eta} - \frac{1}{\eta} \right]$ $= \frac{2}{\eta \eta h} \left[\frac{1}{\eta} + \frac{1}{\eta} + \frac{1}{\eta} \right]$ $= \frac{2}{\eta \eta h} \left[\frac{1}{\eta h} + \frac{1}{\eta h} + \frac{1}{\eta h} \right]$		$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ &$
let $\kappa = 2m - i$, $m \in \mathbb{N}$		$\prod_{i=1}^{m} \frac{1}{(2i^{n})^{i}} = \frac{1}{6}$
$\sigma_{\text{SM}} = \frac{1}{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x \sin \alpha \cdot \phi_{x} = \phi_{x} + \frac{1}{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} x \sin \alpha \cdot \phi_{x} = 0$	- DOUHTIN	

Created by T. Madas

R.

Question 16

COM

I.V.G.B.

6

$$f(x) = x, x \in \mathbb{R}, -1 \le x \le 1.$$

f(x) = f(x+2).

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sin n}{n}$$

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n\pi x}{n}, \left[\frac{1}{2} + \frac{1}{2} +$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n}{n} = \frac{1}{2}$$

I.V.G.B.

ths.com

1.G.D.

6

.

madasm.

2011

I.Y.C.B. Madash

Created by T. Madas

2017

R.

Question 17

nana,

Smaths.com

I.F.G.B.

0

$$f(x) = x^2, x \in \mathbb{R}, -2 \le x \le 2.$$

$$f(x) = f(x+4).$$

1. Y.G.J Determine the Fourier series expansion of f(x).

1. Y. G.B.

-2< x<2 -f(x) = -f(x+4) $-f(x) = \frac{\alpha_e}{2} + \sum_{h=1}^{\infty} \left[A_{h_{H}} \cos \frac{y_{H2}x}{L} + B_{h_{h}} \sin \frac{y_{H2}x}{L} \right]_{J} \quad L= HAGE PRODUCE$ -(GI) COS MITA de N= 011,2,3,4, -(a) SIN MAX dx 4= 1,23,4, I.V.C.B. Madasman $\frac{1}{2}\int_{-\infty}^{\infty}a^{2} dx = \int_{-\infty}^{\infty}a^{2} dx = \left[\frac{1}{3}a^{3}\right]_{0}^{\infty} = \frac{8}{3}$ $\Rightarrow Q_{4} = \frac{1}{2} \int_{-\infty}^{2} \frac{x^{2} \cos \frac{y\pi a}{2}}{z} dx = \int_{-\infty}^{\infty} \frac{x^{2} \cos \frac{y\pi a}{2}}{z^{2} \cos \frac{y\pi a}{2}} dx$

 $f(x) = \frac{4}{3} + \frac{16}{\pi^2}$

 $= d_{H} = -\frac{\mu}{4\pi} \left\{ -\frac{2}{4\pi} \left[2 \cos \frac{4\pi \lambda}{2} \right]_{0}^{2} + \frac{2}{4\pi} \int_{0}^{2} \cos \frac{4\pi \lambda}{2} d\lambda \right\}$ $\Rightarrow \quad Q_{y} = \frac{B}{v_{1}^{2}\pi^{2}} \left(2\log v_{11}\right) - \frac{B}{v_{1}^{2}\pi^{2}} \int_{0}^{2} \log \frac{v_{11}\chi}{2} d\chi.$ $\Rightarrow \Box_{ij} = \frac{16 (-1)^{N}}{N^{2} \pi^{2}} - \frac{8}{N^{2} \pi^{2}} \times \frac{2}{N \pi} \left[\sum_{ij} \frac{1}{N} \frac{1}{N} \right]_{ij}^{2}$ $\Rightarrow a_{j} \sim \frac{16(-1)^{4j}}{\mu^{2}\pi^{2j}}$ these the fourier securits of $f(\omega) = \alpha^2$, $f(\omega)$

 $\int \frac{\left(-1\right)^n}{n^2} \cos\left(\frac{1}{2}n\pi x\right)$

I.Y.C.

The Com

The COL

1.Y.C.B.

1.6

2

aths com

 $f(t) = \frac{\vartheta_{\lambda}}{2} + \sum_{h=1}^{\infty} \left[\frac{I_0(-1)^h}{h^2 \pi^{2}} \log \frac{h\pi^2}{2} \right]$ $-\left(j_{k}\right) = -\frac{4}{3} + \frac{16}{\pi^{2}} \sum_{h=1}^{\infty} \left[\frac{(-1)^{h}}{h^{2}} \cos\left(\frac{M^{2}}{2}\right) \right]$

COM

Question 18

Y.C.P.

I.C.B.

- A function f(x) is defined in the interval $(-\pi,\pi)$.
 - a) State the general formula for the Fourier series of f(x) in $(-\pi,\pi)$, giving general expressions for the coefficients of the series.
 - b) Find the Fourier series of

 $f(x) = x, \ -\pi \le x \le \pi$

c) Hence determine the exact value of

 $g(x) = x^2, \ -\pi \le x \le \pi \ .$

 $g(x) = \frac{\pi^2}{3} + 4\sum^{\infty}$ $\left(-1\right)^{n+1} \sin nx$ f(x) = 2 $(-1)^n \cos nx$ п

 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_t \cos nx + b_n \sin nx)$ $= \frac{2}{\pi} \left[\left(-\frac{1}{h} \alpha \cos nx \right]_{0}^{T} + \frac{1}{h} \int_{0}^{T} \cos nx \, dx \right] = \frac{2}{n\pi} \left[-\alpha x \right]_{0}^{T}$ $\frac{1}{2} \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2}$ fa) = 2 = $\frac{d}{dt}(g(s)) = 2x_{t}$ $\frac{d}{dt}(g(k)) = 2 f(k)$ $g(\alpha) = 2 \int f(\alpha) d\alpha$

 $d(a) = a^{2} = \frac{\pi^{2}}{3} + \frac{\pi^{2}}{5} + \frac{\pi^{2}}{5} \frac{G0^{4}}{100} \cos(a)$

4.63

4.6

I.C.B.

Question 19

I.C.p

 $f(x) = x^2, x \in \mathbb{R}, 0 \le x \le 1.$

Determine the Fourier series of f(x) as

- **a**) ... as half range cosine expansion.
- **b**) ... as half range sine expansion.

Created by T. Madas

N.C.

1

E.

I.G.B.

m=1

$$\frac{\operatorname{os}\left[(2m-1)x\right]}{\pi(2m-1)^2} + \frac{\operatorname{sin} mx}{m}, \quad \sum_{r=1}^{\infty} \frac{1}{(2r-1)^r}$$

 π

8

 $f(\mathbf{x}) = \frac{\mathbf{a}_0}{2} + \sum_{n=1}^{\infty} \left[\mathbf{a}_n \cos \frac{\mathbf{n}_n \mathbf{x}}{\mathbf{n}_n \mathbf{x}} + \mathbf{b}_n \sin \frac{\mathbf{n}_n \mathbf{x}}{\mathbf{n}_n \mathbf{x}} \right] \quad \left(\mathbf{1} = \mathbf{n}_n \mathbf{x} \right)$ $f(\underline{z}) = \frac{\eta_{1}}{\eta_{1}} + \sum_{k=1}^{\infty} \left(\frac{\omega}{\pi} \times \frac{\log((\omega_{1})\underline{z})}{\log(\omega_{1})} + \frac{\log(w_{2})}{w_{1}} \right)$

 $f(\tau) = \frac{1}{1} + \sum_{m=1}^{\infty} \left(\frac{2}{\tau} \cdot \frac{\cos\left(2\omega_{-1}\right)\tau}{(2m-1)^2} + \frac{\sin m\tau}{\omega_{-1}} \right)$ + 5 = + -1

i C.B.

6) LET 2=TT

 $x \in \mathbb{R}$.

$ (4) \left(\frac{1}{4} (b) = \frac{a_{2}}{2} + \sum_{n=1}^{\infty} [c_{n}(z_{n}) \frac{a_{n}}{z_{n}} + b_{n}(z_{n}) \frac{a_{n}}{z_{n}}] \text{where } a_{n} = \frac{1}{4} \int_{0}^{0} \frac{4}{3} (a) dx \qquad \text{there } L = \overline{V} (\text{there requer}) \right) $	
$\begin{array}{c} \left(1 - \left[\left(1 + \left[\left(\frac{1}{2}\right)\right] - \left(\frac{1}{2}\right)\right] + \left[\left(\frac{1}{2}\right)\right] + \left[\left(\frac{1}{2}\right)\right] + \left[\left(\frac{1}{2}\right)\right] + \left(\frac{1}{2}\right) + \left(1$	
$\bullet \ \ \mathbf{a}_{k} = \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{T} \cdot \mathbf{A}_{k} \ \ \mathbf{b}_{k} + \frac{1}{T} \int_{0}^{T} \mathbf{A}_{k} \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \mathbf{b}_{k} \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \mathbf{b}_{k} \ \ \mathbf{b}_{k} \ \ \ \ \mathbf{b}_{k} \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \ \mathbf{b}_{k} \ \ \ \ \ \mathbf{b}_{k} \ \ \ \ \ \ \ \ \mathbf{b}_{k} \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$ \mathbf{O}_{\mathbf{x}} = \frac{1}{\pi} \int_{0}^{\pi} (1 - \mathbf{x}) \cos(\mathbf{x}) d\mathbf{x} + \frac{1}{4\pi} \int_{0}^{2\pi} (\cos(\mathbf{x}) d\mathbf{x}) d\mathbf{x} + \frac{1}{4\pi} \int_{0}^{\pi} (\cos(\mathbf{x}) d\mathbf{x}) d\mathbf{x} + \frac{1}{4\pi} \int_{0}^{2\pi} (\cos(\mathbf{x}) d\mathbf{x}) d\mathbf{x} + \frac{1}{4\pi} \int_{$	
$= \frac{b}{b} \left(\frac{b}{b} \right) \dots = \frac{b}{b} \left(\frac{b}{b} \right) \frac{b}{b} \left(\frac{b}{b} \left(\frac{b}{b} \right) \frac{b}{b} \left(\frac{b}{b} \right) b$	
$= \frac{1}{4} \left\{ \left[\frac{1}{2} \frac{1}$	
$= \frac{1}{16\pi} \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{\sqrt{2}} \int_{0}^{-\frac{1}{2}} \frac{1}{\sqrt{2}} $	
$= \frac{1}{1/\pi} \left[\log \log_{10} \right]_{q}^{q}$ $= \frac{1}{1/\pi} \left[1 - (3)^{q} \right] \underbrace{ 1^{16} 6^{4} 6^{10} 0}_{16 6^{10} 6^{10}} \underbrace{ 2^{16} \frac{1}{10^{10}}}_{\frac{1}{10^{10}}} \underbrace{ 1^{16} 6^{10} 0}_{\frac{1}{10^{10}}} \underbrace{ 2^{16} \frac{1}{10^{10}}}_{\frac{1}{10^{10}}} \underbrace{ 2^{16} $	
The GOD = with the SN	
	15

Question 21

Com

K?

I.V.G.B.

$$f(x) = x^2, x \in \mathbb{R}, -\pi \le x \le \pi.$$

 $f(x) = f(x + 2\pi).$

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

 $\overline{n^2}$

They.

I.C.B.

COM

nadasm

1.00

	$a = \frac{2}{T} \int_{a}^{a} f(0) dz$ T = 2T
2 0.	$y = \frac{2}{2} \int_{0}^{1} f(a) \cos 2\frac{a}{2} da \leq \frac{2a}{2} \frac{2a}{a} a = 0$
Lunion k	$h_{\mu} = \frac{2}{2} \int_{a}^{a+T} \frac{1}{2a} \sin \frac{2\pi \pi a}{a} dx $
$Q_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} 3^{2} dx = \frac{1}{\pi} \int_{0}^{\pi} 3^{2} dx = \frac{1}{\pi} \int_{0}^{\pi} 3^{2} dx = \frac{1}{\pi} \left[\frac{1}{2} 3^{2} \right]_{0}^{\pi} =$	$\frac{2}{\pi} \times \frac{\pi^3}{3} = \frac{\pi^2}{3}$
$a_{y} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \cos nx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \cos nx dx \dots parts \dots$	$\frac{2}{\pi} \left[\left[\frac{1}{4\pi} \frac{2}{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} - \frac{2}{5} \right] \frac{1}{\pi} \frac{1}{5} $
$= -\frac{\alpha}{m}\int_{-\infty}^{\pi} dx \sin x dx \dots$ For the gravity	$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}$
$= -\frac{\mu}{6\pi} \left[-\frac{\pi}{\eta} \cos \left(\frac{\pi}{\eta} - \frac{\pi}{$	$u_{T} = \frac{4}{h^{2}} (-1)^{8}$
$b_{\eta} = \frac{1}{\pi} \int_{-\pi}^{\pi} dz \sin \eta dz = 0 (ato \ find \eta o) \ n = 1$	the notestation of symmetry and all all and the symmetry (
$\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial t_{i}} = \frac{\partial f_{i}}{\partial t_{i}} + \sum_{i=1}^{\infty} \frac{\partial f_{i}}{\partial t_{i}} (-1)^{i} (\partial D \partial D t_{i}) = \frac{\partial f_{i}}{\partial t_{i}} + \frac{\partial f_{i}}{\partial t_$	
= = +4 -9	$\frac{\cos x}{1} + \frac{\cos 2x}{4} - \frac{\cos 2x}{2} + \frac{\cos 4x}{16} - \dots$

 $\begin{array}{c} = \frac{T^{2}}{3} + q \begin{bmatrix} \frac{1}{2} \frac{\cos 2}{4} + \frac{\cos 2}{4} + \frac{\cos 4}{4} & \cdots \end{bmatrix}$ (b) (if I = 0 $O^{2} = \frac{T^{2}}{3} + q \frac{1}{8} \frac{\frac{O}{2} \frac{O}{2} \frac{O}{4}}{\frac{1}{8}} \frac{O^{2}}{4} \frac{O^{2}}{4} & \cdots \end{bmatrix}$ $O = \frac{T^{2}}{3} - q \frac{1}{8} \frac{O^{2}}{4} \frac{O^{2}}{4} \frac{O^{2}}{4} & \cdots \end{bmatrix}$ $\therefore \sum_{\substack{p \in I \\ p \in I}} \frac{O^{2}}{k^{2}} = \frac{T^{2}}{2}$

Ths.com

3

nadasm

 π^2

12

COM

I.C.P.

n=1

Question 22

I.C.F

I.F.G.B.

$$f(x) = x^2, x \in \mathbb{R}, 0 \le x \le 2\pi.$$

 $f(x) = f(x+2\pi).$

- a) Determine the Fourier series expansion of f(x).
- **b**) Hence determine the exact value of

$f(x) = \frac{d_0}{2} + \sum_{k=1}^{\infty} \left[b_k \cos \frac{n\pi x}{L} + b_{kk} \sin \frac{n\pi x}{L} \right] \text{where}$	a = L (for de tore L = HALF FRELOD
(L= HALF HELDOD)	an
Luni	$b_{1} = \frac{1}{L} \int_{-\infty}^{0} \frac{f(\alpha)}{L} \sin \frac{\sin \alpha}{L} d\alpha \qquad f(\alpha) = \chi^{2}.$
	$\int \bullet b_{ij} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2} \sin \eta_{X} dx \dots By PAPTI = \frac{1}{-\frac{1}{2}} \frac{2x}{-\frac{1}{2}}$
• $U_{ij} = \frac{1}{10} \int_{-\infty}^{\infty} x^2 \cos hx dx bi \ prot_{ij} = \frac{1}{10} \int_{-\infty}^{\infty} \frac{x^2}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	$=\frac{1}{\pi}\left\{\begin{bmatrix}-\frac{1}{4}x^2\cos^2 x\end{bmatrix}^{\frac{2\pi}{4}} + \frac{2}{4\sqrt{2}}\int_{-2}^{2\pi}\cos^2 x dx\right\}$
= #{[#251ma]- = = [= == [==========================	$(= \frac{1}{2}) - \frac{1}{2}(m^2) + \frac{2}{2} (\frac{1}{2} \cos \omega d \theta)$
= - 2 Jassinna da == Br Photo Homen.	$= -\frac{4\pi}{\eta} + \frac{2}{\eta \pi} \int_{0}^{2\pi} x \cos \alpha dx$
$= -\frac{1}{2} \int_{0}^{1} \left[-\frac{1}{4} \cos \alpha \right]_{0}^{H} + \frac{1}{4} \int_{0}^{H} \cos \alpha d\alpha d\alpha d\alpha$	
$= -\frac{2}{\eta_{N}} \left\{ -\frac{2\eta}{\eta} + \frac{1}{\eta_{N}} + \frac{1}{\eta_{N}} \right\}_{n} $	$\begin{cases} \frac{\alpha}{1+sum} & \frac{1}{sum} \\ \frac{1}{sum} & \frac{1}{sum} \end{cases}$
4	$ = -\frac{4\pi}{\eta} + \frac{2\pi}{\eta_{H}} \int_{0}^{\frac{1}{2}} Sum(\chi) d\chi $ $ = -\frac{4\pi}{\eta} - \frac{2\pi}{\eta_{H}} \int_{0}^{\frac{1}{2}} Sum(\chi) d\chi $
A STATE	
	$\int_{a}^{b} \left[\sum_{n \neq a} \sum_{j=1}^{a} \frac{-a}{n} + \frac{-a}{n} + \frac{-a}{n} \right]_{a}^{a}$
	く = ~ 舞

2017

R,

Question 23

It is given that for $x \in \mathbb{R}$, $-\pi \le x \le \pi$,

$$|x| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}, \quad |x| = |x+2\pi|.$$

- a) Use the above Fourier series expansion to deduce the Fourier series expansion of sgn(x).
- b) Verify the answer of part (a) by obtaining directly the Fourier series expansion of sgn(x).
- c) Hence determine the exact value of

$$\left[sgn(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{sin[(2n-1)x]}{(2n-1)^2} \right], \left[\sum_{r=1}^{\infty} \frac{(-1)r}{2r} \right]$$

$$\begin{split} & \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{i=1}^{n}$$

- $\left[\frac{\nu}{r} (-) 1 \right] \frac{c}{r \pi} = \left[\frac{\pi r 2 \omega 1}{\pi r 2} \frac{c}{r \pi} \right] = \frac{\sigma}{\pi} \left[c r r 2 \omega \right] \frac{c}{r \pi} =$

 $\frac{1}{2} \frac{1}{2} \frac{1$ $\begin{bmatrix} 02 & b_{ij} = \frac{4}{\pi(2^{ij}-1)}, i = i_1 2_1 3_j \dots \end{bmatrix}$ HAVE WE GAN SUBSTITUTE WHO THE EDUCER FORMULA $f(x) = \frac{q_0}{2} + \sum_{k=1}^{\infty} \left[-\Omega_k \cos\left(\frac{k\pi x}{L}\right) + b_k Sw\left(\frac{k\pi x}{L}\right) \right]$ $S^{*}_{i} \underline{d}_{ij}(\underline{x}) = \sum_{k=1}^{\infty} \left[\frac{\mu}{\pi} (2k-i) \cdot S^{*}_{ij} \sqrt{2k-i} (2k-i) \cdot \lambda_{ij} \right]$ $Sigh(\lambda) = \frac{4}{\pi} \sum_{k=1}^{\infty} \left[\frac{Sim[(2k-1)\lambda]}{(2k-1)} \right]$ 45 Elever

 π 4

-1

C) SUBSTITUTING 2= 至 IND THE ABOUT GOULD GUES $\operatorname{Sgn}\left(\frac{\pi}{2}\right) = \frac{\mu}{\pi} \sum_{h_{11}}^{\infty} \left[\frac{1}{(2h-1)} \operatorname{Syn}\left[\frac{\pi}{2}(h_{1-1}) \right] \right]$ $l = \frac{l}{ll} \sum_{k=1}^{N_{HI}} \left[\frac{l}{(2N-1)} \cdot (-l)^{N_{HI}} \right]$ $\sum_{h=1}^{\infty} \left[\frac{(-1)^{h+1}}{2h-1} \right] = \frac{11}{4}$ $\mathcal{O}_{k} = \sum_{r=1}^{\infty} \left[\frac{\underline{(-1)}^{r+1}}{2r-1} \right] = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{1}{4}$

TTH IF N 5 000

N.

4.60

5

.

Madasn

 $(-1)^n \sin 2nx$

п

Fef--f(3) = {-x

T = T, $\frac{2}{T} = \frac{2}{T}$ $\frac{2\pi T}{T} = 2\pi$

21 SUL202 605202

SMan S

Question 25

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.

 $f(x) = e^x, \ -\pi \le x \le \pi \ .$

b) Determine the Fourier series of

 $=\frac{\sinh\pi}{\pi}+\frac{2\sinh\pi}{\pi}\sum_{n=1}\left\lfloor\frac{(-1)^n\left[\cos(nx)-n\sin(nx)\right]}{1+n^2}\right\rfloor$

 $f(x) = \frac{2}{\alpha^0} + \frac{2}{\sum_{k=1}^{N}} \left[\alpha_k \cos \frac{1}{2\alpha x} + p^k \sum_{k=1}^{N} \frac{1}{2\alpha^k} \right]$
$$\begin{split} & \Box_{ij} = \frac{1}{L} \int_{-L}^{L} f(\boldsymbol{y}) \cos \frac{i \pi i \boldsymbol{x}}{L} \, d\boldsymbol{x} & h = o_i(\boldsymbol{z}_i \boldsymbol{z}_i \boldsymbol{y}_{ij}, \boldsymbol{y}_j, \boldsymbol{z}_j, \boldsymbol{z}_j$$
 $f(x) = e^x$, $x \in (-\pi, \pi)$ $e^{e^{i h x}} d_{L} = \frac{1}{L} \int_{-\pi}^{\pi} e^{x (1+i n)} d_{L} = \frac{1}{\pi (1+i n)} \left[e^{x (1+i n)} \right]_{\pi}^{\pi}$ $\frac{1-in}{\pi(1+n^2)} \left[e^{\pi(1+in)} - e^{\pi(1+in)} \right]$ I in it is a contract of the intervention of t $\left[\left(n\pi\alpha_{2}i-n\pi\omega_{3}\right)^{T}\right] = \left(n\pi\alpha_{2}i+n\pi\omega_{3}\right)^{T}\right] \left[\left(\frac{n(-1)}{2}\right)^{T}\right]$ $\frac{1}{\pi} \left(\frac{\mu - i}{2} \right) + \mu \pi R e^{T} = + \pi \pi a c = - \pi \pi \pi a c = - \pi \pi a$

 $\frac{(-i)' \sin \left(\frac{1}{n}\right)}{\pi \left(\frac{1}{n}\right)} = \frac{1}{n} \left(\frac{1}{n}\right)$ $0_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(0 \right) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{e^{2}}{2} dx = \frac{1}{\pi} \left[e^{2} \right]_{0}^{\pi}$ RIFT $=\frac{1}{\pi}\left[e^{iT}-e^{-iT}\right]=\frac{1}{\pi}\left(2cmh\pi\right)=\frac{2}{\pi}cmh\pi$ $Q_{ij} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\lambda) d\lambda = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x}{e^{i} \cos nx} d\lambda$ TAKE THE PAR $\Omega_{ij} = \frac{2(-i)^{ij} \sin h_{ij}}{\pi C(+N^2)}$ $S(M)URRY b_{y} = \frac{-2n(-i)^{4}s}{\pi(1+u^{2})}$ $\underbrace{\frac{1}{2}h}_{1} \qquad e^{2t} = \frac{t}{\pi} sh \eta \pi + \sum_{n=1}^{\infty} \left[\underbrace{\frac{2(c_1)^2 sn \eta \pi}{\pi C(e_1 e_2)}}_{m C(e_1 e_2)} \cos n \chi - \frac{2\eta (c_1)^2 sn \eta \pi}{\pi C(e_1 e_2)} \sin \eta \chi \right]$

 $c^{\infty} = \frac{SWh\pi}{\pi} + \frac{2smh\pi}{\pi} \sum_{h=1}^{\infty} \frac{G(h^{h}benz)}{(+h^{2})} - \frac{hG(h^{h}ghmz)}{(+h^{2})}$ $e^{\chi} = \frac{\sinh \pi}{\pi} \left[1 + 2 \sum_{k=1}^{\infty} \left[\frac{G_k}{1+N^2} \left(\cosh \chi_k - 4 \sin M \chi_k \right) \right] \right]$

Question 26

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L, L), giving general expressions for the coefficients of the series.
 - **b**) Show that

$$\int_{-\pi}^{\pi} e^{ax} e^{inx} dx = \frac{2(a-ni)(-1)^n}{a^2 + n^2} \sinh(a\pi)$$

c) Determine the Fourier series of

$$f(x) = e^{ax}, a > 0, -\pi \le x \le \pi$$

d) Hence find the Fourier series of $\cosh(ax)$ and $\sinh(ax)$, for $-\pi \le x \le \pi$.

Question 27

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - b) Determine the Fourier series of

$$f(x) = e^x, \ -\pi \le x \le \pi.$$

c) Hence find the Fourier series of $\sinh x$ and $\cosh x$, for $-\pi \le x \le \pi$.

 $e^x = \frac{\sinh \pi}{\pi}$ $(-1)^n \left[\cos(nx) - n\sin(nx) \right]$ $2\sinh\pi$ $1 + n^2$ n= $n(-1)^{n+1}\sin(nx)$ $2\sinh\pi$ $\sinh x =$ $1+\overline{n^2}$ π $(-1)^n \cos(nx)$ $\sinh \pi$ $2\sinh\pi$ $\cosh x =$ 1+*n*⁴ π π $e^{\frac{\pi}{2}} = \frac{1}{\pi} \operatorname{Sinh} \pi + \sum_{n=1}^{\infty} \frac{2(n+1)}{\pi} \frac{\sin n}{\pi} \frac{\sin n}{\pi} \frac{1}{\pi} \frac{\sin n}{\pi} \frac{1}{\pi} \frac{1$ $f(i) = \frac{a_0}{2} + \sum_{h=0}^{\infty} \left[a_{ij} \cos \frac{m\pi x}{L} + b_{ij} \sin \frac{m\pi x}{L} \right]$ $e^{2} = \frac{1}{\pi} \operatorname{SubiT} + \frac{2 \operatorname{SubiT}}{\pi} \sum_{N=1}^{\infty} \frac{(-1)^N}{N^2 + 1} \left[\operatorname{Cost}(2) - \ln \operatorname{Sub}(n) \right]$ an = 1 (fa) cos (m) de h=0,1,2,3,. c) $g(x) = sintra = \frac{1}{2} \left(e^2 - e^2 \right)$ $b_{ij} = \frac{1}{L} \int_{-L}^{L} f(G_{ij} \sin \frac{m_{ij}}{L}) dx \quad h \in I_{12,3,\dots}$ $\frac{1}{2} + \frac{2\pi i h \pi}{\pi} + \frac{2\pi i h \pi}{\pi} \sum_{N=1}^{\infty} \frac{(-1)^N}{n^2 + 1} \left[\cos(nx) - h \sin(nx) \right]$ = + [eT - eT] $\Im(z) = \frac{1}{2} \left\{ \begin{array}{c} \frac{1}{2} \sum_{\substack{n = 1 \\ n \neq n}} \frac{1}{2} \sum_{\substack{n = 1 \\$ $g(u) = -\frac{2 \sinh u}{\pi} \sum_{n=1}^{\infty} \frac{G(1)^n}{n^2 + 1} n \sin n \omega$ $\beta(\lambda) = \frac{2 \sinh \pi}{\pi} \sum_{k=1}^{\infty} \left[\frac{n (-1)^{k+1} \sin n \lambda}{k^{2} + 1} \right]$ $e^{\frac{x}{e^{\pi \pi}x}}dx = \frac{1}{\pi}\int_{-\pi}^{\pi}e^{\frac{x}{e^{\pi}x}}dx = \frac{1}{\pi}\int_{-\pi}^{\pi}e^{\frac{x}{e^{\pi}x}}dx$ FILMULLY $\begin{bmatrix} 2C(1+i_N) \\ e \end{bmatrix}_{-i_i}^{T} = \frac{1-i_N}{\pi(\eta^2 N)} \begin{bmatrix} \pi(1+i_N) & -\pi(1+i_N) \\ e & -e \end{bmatrix}$ $(h b) = \cosh x = \frac{1}{2} (e^{x} + e^{x})^{2}$ $\frac{2(\underline{i} - i\eta)}{\pi(\hat{v}^{2}+i)} = \frac{2(\underline{i} - i\eta)}{\pi(\hat{v}^{2}+i)} \left[subprox h(iwr) + costron und(iwr) \right]$ $\sum_{i=1}^{\infty} \frac{(-1)^{ij}}{H^{2}+1} \Big[\log(0\lambda) - H \sum H_{i}(H\lambda) \Big]$ fr suhr + Zsuhr 2 (1-in) (cosm subr + i survey coshy $\frac{1}{\Pi} \sinh \Pi + \frac{2 \sinh \Pi}{\Pi} \sum_{h=1}^{\infty} \frac{(-1)^{H}}{h^{2} + 1} \left[\cos (-1)^{H} - \cos (-1)^{H} \right]$ $\left[\frac{2}{\left(\frac{2}{\left(\frac{1}{2}+1\right)}\right)} \cos \eta \sin \eta \right] + \left[-\frac{2\eta}{\left(\frac{1}{2}+1\right)} \cos \eta \sin \eta \right]$ $h(x) = \frac{3h\pi}{\pi} + \frac{2sih\pi}{\pi} \sum_{h=1}^{\infty} \frac{Gh^{h}}{h^{2}+1}$ $\frac{2(-1)^{h} \sin h \pi}{\pi (h^{2}+1)} = \frac{1}{\pi (h^{2}+1)} \frac{2n(-1)^{h} \sin h \pi}{\pi (h^{2}+1)}$ $\int \left(\alpha_{y} = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{2} \cos y a \, da = \frac{2(-1)^{2} \sin y}{\pi (-2\omega)} \right)$ $b_{\eta} = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{\frac{3}{2}} \sin 4x \, dx =$

Question 28

I.C.B.

.K.G.B.

A function f is defined by

$$f(t) = V |\cos \omega t|, t \in \mathbb{R},$$

where V and ω are positive constants.

Show that the Fourier series of f is given by

 $f(t) = \frac{2V}{\pi} + \frac{4V}{\pi} \left[\frac{1}{3} \cos(2\omega t) - \frac{1}{15} \cos(4\omega t) + \frac{1}{35} \cos(6\omega t) + \dots \right]$

proof

3

$\begin{array}{c} f(t) = \sqrt{(\cos \omega t)} \\ to const. At the const. construction of the sense construction of the$	
$ \begin{aligned} & \left\{ -\frac{1}{2} \left(\frac{a_{a}}{2} + \sum_{n=1}^{\infty} \left[a_{a} \cos \frac{n\pi}{2} + b_{a} \sin \frac{n\pi}{2} + b_{a} \sin \frac{n\pi}{2} \right] \right\} \\ & \left[b_{a} = 0 \right] (As - \frac{1}{2} (h) \ (s \ env) \end{aligned} $	
$ \begin{aligned} \bullet & \mathbf{e}_{0} = \frac{1}{L} \int_{-L}^{L} f(t) dt = \frac{1}{2\pi} \int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} \int_{\frac{\pi}{2\pi}}^{\frac{\pi}{2\pi}} \sqrt{ \log_{0} \mathbf{k} } dt = \frac{2\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \sqrt{ \log_{0} \mathbf{k} } dt \\ &= \frac{4\mathbf{e}_{0}}{4\mathbf{e}_{0}} \int_{0}^{\frac{\pi}{2\pi}} \left(\cos_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{0}}{\pi} \chi_{0} \int_{0}^{\frac{\pi}{2\pi}} \left(-\sin_{0} \mathbf{k} dt \right) = \frac{4\mathbf{e}_{$	¥ 9f
$= \frac{\pi}{m} \left[\cos \pi - \cos \right] = \frac{\pi}{m}$	
$ \begin{array}{l} \textcircled{O}_{t} = \frac{1}{L} \int_{L}^{L} \frac{f(t) \cos \frac{i\pi t}{L}}{2} dt = \frac{1}{2\omega} \int_{-\frac{\pi}{2\omega}}^{\frac{\pi}{2\omega}} \sqrt{ \omega_{trad} \cos \left(\frac{\pi t}{2\omega}\right) } dt \\ = \frac{2\omega}{\pi} \times 2 \int_{0}^{\frac{\pi}{2\omega}} \sqrt{ \omega_{trad} } \log (2\omega_{t}) dt = \frac{4\omega t}{2} \int_{0}^{\frac{\pi}{2\omega}} \frac{1}{\omega_{trad}} \int_{0}^{\frac{\pi}{$	4
$\int_{0}^{\infty} \frac{1}{(1+1)^{n-1}} \frac{1}{(1+1)^{n-1}} \int_{0}^{\infty} $	nus
200 V (The server that a 200 (The or (real with the server that the	h

 $\frac{1}{2^{n+1}} \left[\sum_{i=1}^{2^{n}} \operatorname{start}_{i} \operatorname{start}_{i} \operatorname{start}_{i} \left[\sum_{i=1}^{2^{n}} \operatorname{start}_{i} \operatorname{s$ $\frac{2V}{T} \begin{bmatrix} \frac{GOS}{2N+1} & -\frac{GOS}{2n-1} \end{bmatrix}$ $\left\lfloor \frac{1-iK-1-iK}{(1-iK)} \right\rfloor = \frac{1-iK}{\pi}$ $\frac{2N(-1)^{N}}{\pi} \times \frac{-2}{4\mu^{2}-1}$ <u>4W (-1)</u>" π(1-442) $-\left(\Theta\right) = \frac{\Theta_{1}}{2} + \sum_{N=1}^{\infty} \left[\frac{\Theta_{1}\left(-1\right)^{N}}{\pi\left(-4\theta\right)}\cos\frac{\pi t}{\pi t_{0}}\right]$ $f(t) = \frac{2\sqrt{2}}{\pi} + \frac{4\sqrt{2}}{\pi} \sum_{k=1}^{\infty} \left[\frac{(-1)^k}{1-4w^2} \cos(2\pi t) \right]$ $\frac{1}{2}\left(t\right) = \frac{2V}{\pi} + \frac{1}{2V} \int \frac{1}{3} \log 2ut - \frac{1}{15} \log 4ut + \frac{1}{25} \log 4ut + \dots \right]$

.Y.C.F.

 $\frac{2\omega V}{\overline{\pi}} \begin{bmatrix} \frac{1}{(2m_1)_U} & SW((2m_1)_U t_1^{-1}] + \frac{1}{(2m_1)_U} & SW(\underline{2m_1})_U t_2^{-1} \end{bmatrix} \int_{0}^{2} \frac{2\omega V}{\overline{\pi}} \begin{bmatrix} \frac{1}{(2m_1)_U} & SW(\underline{2m_1})_U t_2^{-1}] \\ \frac{2W}{\overline{\pi}} \begin{bmatrix} \frac{1}{(2m_1)_U} & SW(\underline{2m_1})_U t_2^{-1} \end{bmatrix} + \frac{1}{(2m_1)_U} & SW(\underline{2m_1})_U t_2^{-1} \end{bmatrix}$

. Y.G.

Created by T. Madas

N.

PARSEVAL'S TVENTITY T. Y. G.B. INALISSINGHI I. Y. G.B. MARIASINGHIS COM I. Y. G.B. MARIASINGHIS COM I. Y. G.B. MARIASINGHIS COM I. Y. ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARASIN

Question 1

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

$$f(x) = |x|, \quad -\pi \le x \le \pi.$$

- c) State Parseval's identity for the Fourier series of f(x) from part (a).
- d) Hence show that

 $\cos\left[(2n-1)x\right]$ $|x| = \frac{\pi}{2}$ $(2n-1)^2$

 $\begin{aligned} \begin{array}{l} \begin{array}{l} \left(\mathbf{x} \right) & \left($

e a - la bloom b - o a

$$\begin{split} \| \Delta \|_{\Delta} &= \frac{T}{\Delta} + \sum_{n=1}^{\infty} \left[\frac{1}{\pi} \sum_{i=1}^{n} \cos^{2} \alpha_{i} \cos^{2} \alpha_{i} \right] \\ &= \frac{T}{\Delta} - \frac{4}{\pi} \sum_{i=1}^{\infty} \frac{\cos^{2} \alpha_{i} \cos^{2} \alpha_{i} \cos^{2} \alpha_{i} - \alpha_{i}}{(2\pi - 1)^{2}} \\ &= \frac{T}{\Delta} - \frac{4}{\pi} \sum_{i=1}^{\infty} \frac{\cos^{2} \alpha_{i} \cos^{2} \alpha_{i}}{(2\pi - 1)^{2}} \\ &= \frac{T}{\Delta} - \frac{4}{\pi} \sum_{i=1}^{\infty} \frac{\cos^{2} \alpha_{i} \cos^{2} \alpha_{i}}{(2\pi - 1)^{2}} \\ &= \frac{T}{2} - \frac{4}{\pi} \sum_{i=1}^{\infty} \frac{\cos^{2} \alpha_{i}}{(2\pi - 1)^{2}} \\ &= \frac{T}{2} + \frac{T}{2} +$$

Question 2

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

$$f(x) = \operatorname{sign}(x), \quad -\pi \le x \le \pi$$

- c) Prove Parseval's identity for the Fourier series of f(x) in $(-\pi,\pi)$.
- **d**) Hence show that

 $\operatorname{sign}(x) = \frac{4}{\pi}$

 $\sin\left[(2n-1)x\right]$

 $1 d_{2} = \sum_{h=1}^{16} \frac{16}{\pi^{2}(2n-1)^{2}}$

= $\frac{l_0}{\pi^2}$ \sum_{hw}^{∞} $\frac{l}{(2_{h-1})^2}$

 $\Rightarrow \frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$

 $(\in \sum_{k=1}^{\infty} (2k-1)^2 = \frac{\mathbb{T}^2}{6}$

 $= \frac{16}{11^2} \sum_{h=1}^{24} (\frac{1}{2h-1})^2$

(2n-1)

is an (-TT,TT), THEN $f(x) = \frac{d_0}{2} + \sum_{k=1}^{\infty} [\alpha_k \alpha_k n x + b_k s_k n x]$ foi) wang da, u=0,1,2,3,4, 94 = + 1 - (a) SIMMA da, 4=1,23,4

$$\begin{split} b) \quad & \left\{ (\underline{k}) = Si_{0}^{1} (\underline{k}) = \sum_{i=1}^{j-1} \frac{2 \cdot 2 \cdot c}{1 \cdot 2 \cdot c} \\ & \quad (cbc \ fixel(\alpha) \Rightarrow \alpha_{1} = c) \right) \\ & \quad b_{\mu} = \frac{1}{\pi} \int_{-\pi}^{\pi} Sig_{\mu}(\underline{k}) \ Sig_{\mu$$

 $\frac{1}{\pi} \int_{-\pi}^{\pi} \left[\hat{\mathcal{L}}(t) \right]^2 dt = \frac{q_*^2}{2} + \sum_{k=1}^{\infty} \left[\hat{\alpha}_k^2 + \hat{b}_k^2 \right]$ $\left[\frac{1}{2} \alpha_{\mu} \alpha_{\mu} + \alpha_{\mu} \alpha_{\mu} \right] \stackrel{\infty}{\underset{\eta_{\mu}}{\overset{\sim}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}{\overset{\sigma}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}{\underset{\tau}}}$ }} $\frac{1}{2} \left[\frac{1}{2} \left$ $\frac{1}{\pi}\int_{-\pi}^{\pi} \left[\frac{1}{2}\left(\frac{1}{2}\right)\right]^2 dt = \frac{d_0}{2} \left(\frac{1}{\pi}\int_{-\pi}^{\pi} \frac{1}{2}\left(\frac{1}{2}\right) dt + \sum_{k=1}^{\infty} \left[\frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) dt + \sum_{k=1}^{\infty} \left[\frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) dt + \sum_{k=1}^{\infty} \left[\frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) dt + \sum_{k=1}^{\infty} \left[\frac{1}{2}\left(\frac{1}{2}\right) dt + \sum_{k=1$ $\frac{1}{\pi} \int_{-\infty}^{\infty} \left[\frac{q_0}{2} \right]^2 dt = \frac{a_0}{2} \cdot a_0 + \sum_{k=0}^{\infty} \left[\frac{q_k}{q_k} \cdot a_k \right] + \sum_{k=0}^{\infty} \left[\frac{b_k}{p_k} \cdot b_k \right]$ $\frac{1}{\nabla} \int_{-\pi}^{\pi} \left[f(h) \right]^2 dt = \frac{dt^{k}}{2} + \frac{\delta}{\delta_{k+1}} \left[h^{2} h^{2} + h^{2} \right]$ At 2470.04

Question 3

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - **b**) Find the Fourier series of

$$f(x) = \frac{1}{2} + \frac{1}{2} \operatorname{sign}(x), \quad -\pi \le x \le \pi$$

- c) Prove the validity of Parseval's identity for the Fourier series of f(x) in the interval (-L, L).
- **d**) Hence show that

$$\Box, \frac{1}{2} + \frac{1}{2} \operatorname{sign}(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{\sin[(2n-1)x]}{(2n-1)} \right]$$

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{pmatrix} \\ \end{array} \begin{pmatrix} \\ \end{array} \end{pmatrix} = \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \begin{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
$f(\lambda) = \frac{1}{2} + \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{\ln f(2n-1)\lambda}{2n-1}$
STAR ROW THE FOURINE THEREAM STATEMANS
$\implies f(\mathcal{J}) = \frac{\sigma}{\sigma} + \sum_{n=1}^{N+1} \left[\sigma^{n} \cos \frac{r}{r} + p^{2n} \frac{r}{r} \right]$
MULTIPH THEODER BY EFFO) & WithERPITE WRITIX, BOTWHEN -L Q L
$\Rightarrow \frac{1}{L} \int_{L} \left(\frac{1}{L} (\partial_{i}) \right)_{T}^{1} dt = \frac{2L}{2L} \int_{L} (\partial_{i}) dt + \frac{1}{L} \int_{L} (\partial_{i}) \sum_{k=1}^{k-1} \left(\frac{1}{L} (\partial_{i}) \sum_{k=1}^{k-1} (\partial_{i}) \frac{1}{L} \right) dt$
MARAHANE UNREATION AND SUMMITION
$\Rightarrow \underbrace{I}_{L} \begin{bmatrix} f(u) \\ f(u) \end{bmatrix}^2 dx = \frac{d}{2} \underbrace{I}_{L} \begin{bmatrix} f(u) \\ f(u) \end{bmatrix}^2 dx + \sum_{k=1}^{d} \begin{bmatrix} a_k \\ f_k \end{bmatrix}^L \underbrace{f_k \\ f(u) a_k \end{bmatrix}^{\frac{1}{2}} dx + \sum_{k=1}^{d} \begin{bmatrix} a_k \\ f_k \end{bmatrix}^L \underbrace{f_k \\ f(u) a_k \end{bmatrix}^{\frac{1}{2}} dx$
$= \frac{1}{L} \int_{-L}^{L} \left[f(\boldsymbol{\sigma}) \right]_{dx}^{2} = \frac{d_{x}}{2} \times \boldsymbol{\Phi} + \sum_{k=1}^{\infty} \left[\boldsymbol{\Omega}_{k} \times \boldsymbol{\alpha}_{k} + \boldsymbol{b}_{k} \cdot \boldsymbol{b}_{k} \right]$
$= \frac{1}{2} \left[\int_{0}^{1} \left[f_{0} f_{0} \right]^{2} dx = \frac{d_{0}^{2}}{2} + \sum_{h=1}^{\infty} \left[d_{h}^{2} + b_{h}^{2} \right] \right]$

 $p^{n} = \frac{(5n-1)}{5}d$

d) USING POPERate's IDITITY WITH for)= == +=====(a) a)
THE INTRUAL (-41T)
T
$\Rightarrow \frac{1}{\pi} \int_{-\pi}^{\pi} \left[f(\alpha) \right]^2 d\lambda = \frac{\alpha_0^2}{2} + \sum_{h=1}^{\infty} \left(\alpha_h^2 + b_h^2 \right)$
$\Longrightarrow \frac{1}{\pi} \int_{0}^{\pi} ^{2} dt = \frac{1}{2} + \frac{1}{2} \left[O^{2} + \left[\frac{2}{Q(r)T} \right]^{2} \right]$
$\Rightarrow \frac{1}{a} \int_{0}^{\overline{u}} 1 dx = \frac{1}{2} + \sum_{h=1}^{\infty} \frac{4}{\pi^{2} (2h)^{2}}$
$\implies \frac{1}{\pi} \times \pi = \frac{1}{2} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2n-i)^2}$
$ = \frac{1}{2} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-)^k} $
$\implies \frac{1}{2} = \frac{4}{12} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$
$\Rightarrow \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{\Theta}$ $\neq k$ Style (b)

2

the,

Question 4

 $f(x) = x, x \in \mathbb{R}, -\pi \le x \le \pi$.

 $f(x) = f(x+2\pi).$

Use Parseval's identity for the Fourier coefficients of f(x) to determine the exact

value of

inan.	$\sum_{n=1}^{\infty} \frac{1}{n}$	$\frac{1}{n^2}$.		
21/2028102	ile and	alls.	$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi}{6}$.,2 5
	•••	$\begin{aligned} \hat{\boldsymbol{x}}_{1} (\boldsymbol{y}_{1}) &= \frac{1}{\alpha} \left\{ \begin{array}{l} \sum_{\boldsymbol{y}_{1} \neq \boldsymbol{y}_{2} \neq \boldsymbol{y}_{$	$\begin{array}{c} \lim_{l \to \infty} h_{l} \\ \underset{l \to \infty}{\operatorname{print}} \\ l \to$	
S.B. Mad	S the second sec	RETRY THE	$\sum_{k=1}^{\infty} \frac{1}{k^2}$	20
Naths Com		naths Com	asman Inains	
	C.B.	I.C.D	1. y. C.J.	00
11200	Created by	T. Madas	20.	17.

athe,

Question 5

 $f(x) = x^2, x \in \mathbb{R}, -\pi \le x \le \pi.$

 $f(x) = f(x+2\pi).$

Use Parseval's identity for the Fourier coefficients of f(x) to determine the exact value of

value of	519			The second	
5B		∞	12	1	2.
" In	100	$\sum_{n=1}^{\infty} \frac{1}{n^4}.$	420	9	05
120	SINATIS	$\prod_{n=1}^{4} n^4$	42	r	935) 1951
	20.	Sp.		3	
	in.	121	, ,	$\sum_{n=1}^{\infty} \frac{1}{\pi^4} = \frac{\pi^4}{\pi^4}$	
98	1911		0	$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$	
°Cn.	8	10	Co	<u></u>	
~n	°Cn.		$a_{r} = \sum_{\tau} \int_{0}^{0} \int_{0}^{0} d\tau$	} {{@=2^, xe[-7,7]}}	9
×	x. 4	$\begin{cases} \gamma(3) = \frac{1}{2} 1$	and the second s	$\begin{cases} T = \pi t, \frac{2}{T} = \frac{1}{T} + \frac{20\pi}{T} = h \end{cases}$	·
N. 1	P		$b_q = \frac{2}{T} \int_{-q}^{\alpha_q T} \frac{2}{\sqrt{2}} \int_{-\pi}^{\pi_q} \frac{2}{\sqrt{2}} \int_{-\pi_q}^{\pi_q T} \frac{2}{\sqrt{2}} \int_{-\pi_q}^{\pi_q} \frac{2}{\sqrt{2}} \int_{-\pi_q}^{\pi_q T} \frac{2}{$	~ himins	
5	Ch.		$ \begin{array}{l} & = \frac{1}{\pi} \begin{bmatrix} 1 \\ \eta \end{bmatrix}_{q}^{T} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} = \frac{1}{\pi} \begin{bmatrix} 1 \\ \eta \end{bmatrix}_{q}^{T} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} = \frac{1}{\pi} \begin{bmatrix} 1 \\ \eta \end{bmatrix}_{q}^{T} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\pi} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} + \underbrace{\operatorname{L}}_{q} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \operatorname{ch} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \operatorname{ch} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \operatorname{ch} \underbrace{\operatorname{Koon}}_{q} \operatorname{ch} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \begin{bmatrix} 0 \\ \eta \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \end{bmatrix}_{q}^{T} \\ & = \frac{1}{\eta} \end{bmatrix}_{q}^{$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· by = +] 2 SMNX	da = O (eta) INTHERMIA IN A SYMUHTRIAN JONA	(μ	
-0-	· h	FILACLY IN THE ACT ON ANY :	$\begin{split} \lambda &= \frac{1}{T} \Big[\sum_{i=1}^{T} \frac{\pi^{i}}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{1}{2} \sum_{i=1}^{T} \frac{\pi^{i}}{2} \frac{i}{2} \frac{1}{2} \frac{1}{2} \sum_{i=1}^{T} \frac{\pi^{i}}{2} \frac{1}{2} \sum_{i=1}^{T} \frac{1}{2} \sum_{i=1}^{T$	$=\frac{1}{2\pi}\int_{\overline{M}}^{\infty} \nabla_{\overline{a}} - \nabla_{\overline{a}} = \frac{1}{2\pi}\int_{\overline{M}}^{\infty} \nabla_{\overline{a}} + \frac{1}{2\pi}\int_{\overline{M}^{\infty} \nabla_{\overline{A}} + \frac{1}{2\pi}\int_{\overline{M}^{$	
- Do		201	$\frac{2}{3}\pi^{4} + \sum_{i=1}^{N_{H}} \frac{1}{k_{eq}} \frac{1}{k_{eq}$	$\sum_{k=1}^{\infty} \frac{1}{k^{k}} = \frac{1}{20}$	20-2
d		and the second second	90	4=1 · 30 //	00
	180	n.	9	0.	
Ch_	12.	91	8 3	0.	1
18	"Ch	~	8	all.	
On	S.P.		On.	S.	2
	-0	3	-77	. "	2n
Þ.,	Ir.	× ×		1 x.	
L	10	- 60	2	1a	
0.	60	1	0.	62	
SP			sp -	.0	
· .		2.	Y A		2.
	Crea	ated by T. Ma	adas 🎧	مر	190
1	10	20	- 40	6	1

Question 6

- A function f(x) is defined in an interval (-L, L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - **b**) Prove the validity of Parseval's identity for the Fourier series of f(x) in the interval (-L, L).
 - c) Find the Fourier series of

 $f(x) = x^2,$ $-\pi \leq x \leq \pi$.

d) Hence show that

 $= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} \phi_{1} \right)^{2} dx = \frac{1}{2} \frac{1}{\pi} + \sum_{n=1}^{\infty} \left[\frac{1}{n_{n}^{2}} + \frac{1}{n_{n}^{2}} \right]^{2}$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} \right)^{2} dx = \frac{1}{2} \frac{1}{\pi} + \sum_{n=1}^{\infty} \frac{1}{n_{n}^{2}} \left(\frac{1}{n_{n}^{2}} \left(c_{1} \right)^{2} \right)^{2}$ $= \frac{1}{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dx = \frac{1}{2} \frac{1}{2} \pi^{2} + \sum_{n=1}^{\infty} \frac{1}{n_{n}^{2}} \frac{1}{n_{n}^{2}} \frac{1}{n_{n}^{2}} + \sum_{n=1}^{\infty} \frac{1}{n_{n}^{2}} \frac{1}{n_{n}^{2}} \frac{1}{n_{n}^{2}} \frac{1}{n_{n}^{2}} + \sum_{n=1}^{\infty} \frac{1}{n_{n}^{2}} \frac{1}{n_{$

 $\frac{1}{2\pi i} \frac{\partial}{\partial z} \frac{\partial}{\partial t} + \frac{1}{2\pi} \frac{\partial}{\partial z} = \frac{\pi}{2} \left[\frac{z_{L}}{z} \right] \frac{z_{L}}{R^{2}} \in \frac{1}{2\pi} \frac{1}{R^{2}} = \frac{1}{R^{2}} = \frac{1}{2\pi} \frac{1}{R^{2}} =$

= 16 2 44

⁴π ⁸/₂ €

 $\sum_{\infty} \frac{h_{\pm}}{\Gamma} = \frac{30}{-10}$

.K.

c) $(a) = a^{2}$ $(b_{0} = b_{0} + b_{1} + b_$
• $\mathbf{q}_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \mathbf{x}^{2} d\mathbf{x} < \frac{2}{\pi} \int_{0}^{\pi} \mathbf{x}^{2} d\mathbf{x} = \frac{2}{\pi} \left[\frac{1}{2} \mathbf{x}^{2} \right]_{0}^{\pi} = \frac{2}{\pi} \cdot \frac{\pi^{2}}{3} = \frac{2}{3} \pi^{2}$
= $\frac{4}{MI}\int_{0}^{U} 2SMNR dR$
$\begin{cases} \lim_{t \to \infty} \frac{1}{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{$
$= \frac{4}{18\pi} \left[\frac{2}{16\pi} \int_{0}^{\infty} \frac{1}{16\pi} \int_{0}^{0} \frac{1}{16\pi}$
$\mathcal{A}_{c}^{2} = \frac{f(\frac{2}{3}\mu_{c})}{d\theta} + \sum_{m=1}^{m} \frac{\mu^{2}}{d\theta} (m) \frac{1}{2} e^{2i\theta}$
$\mathcal{J}^{2} = \frac{T \lambda^{2}}{3} + 4 \frac{S^{2}}{4 \kappa_{\text{per}}} \frac{(-1)^{4}}{4 \kappa_{\text{per}}} \frac{1}{4 \kappa_$

Created by T. Madas

Question 7

- A function f(x) is defined in an interval (-L,L), L > 0.
 - a) State the general formula for the Fourier series of f(x) in (-L,L), giving general expressions for the coefficients of the series.
 - **b**) State and prove Parseval's identity for the Fourier series of f(x) in (-L, L).
 - c) By considering the Fourier series of

$$f(x) = x^3, \ -\pi \le x \le \pi \,,$$

show that $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$

 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

• $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$

.K.C.

You may use without proof the following results.

 $\int x^{3} \sin nx \, dx = \frac{1}{n^{4}} \Big[nx \Big(6 - n^{2} x^{2} \Big) \cos nx + 3 \Big(n^{2} x^{2} - 2 \Big) \sin nx \Big] + C$

ON (-L,L), L>0 THE $f(q) = \frac{q_0}{2} + \sum_{n=1}^{\infty} \left[a_n \log \frac{mn}{L} + b_n \sin \frac{mn}{L} \right]$ $l_q = \frac{1}{L} \left(\begin{array}{c} L \\ - \frac{1}{L} \end{array} \right) \left(c_{M} \frac{n\pi z}{L} dz \right) = o_{1} l_{1} l_{1} dz$

 $\int_{-\infty}^{1} (f_{0})^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} [a_{n}^{2} + b_{n}^{2}]$

 $f(x) = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} \left[\alpha_k \cos \frac{n\pi k}{2} + b_k \sin \frac{n\pi k}{2} \right]$ $\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{2}\right)^{2} = \frac{\Omega_{0}}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right) + \sum_{l=1}^{\infty}\left(\frac{1}{2}\alpha_{l}f(l)\cos^{l}\frac{\pi a_{l}}{L}\right) + \sum_{l=1}^{\infty}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right)^{2}\right)$ $\frac{1}{2}\left[\frac{1}{2}\left(20\right)^{2}d\mathbf{x}=-\frac{d_{0}}{2}\cdot\frac{1}{2}\left[\frac{1}{2}\left(20\right)d\mathbf{x}\right]+\sum_{n=1}^{\infty}\left[\alpha_{1}\left(\frac{1}{2}\right)\left(20\right)a^{n}\frac{d^{2}}{2}d\mathbf{x}\right]+$ $\frac{1}{L} \int_{0}^{L} \left[f(q) \right]^{2} dq = \frac{q_{0}}{2} \cdot q_{0} + \sum_{h=1}^{\infty} \left[q_{h} \cdot q_{h} \right] + \sum_{h=1}^{\infty} b_{h} \cdot b_{h}$

 $\frac{1}{2} \left[\int_{-\infty}^{\infty} \left[f(x) \right]^2 dx = \frac{1}{2} a_0^2 + \sum_{k=1}^{\infty} \left[a_k^2 + b_k^2 \right] \right]$

Created by T. Madas

1. ay=0 $b_{\eta} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^3 \sin n x \, dx = \frac{2}{\pi} \int_{-\pi}^{\pi} x^3 \sin n x \, dx$ NOW $\int x^3 \sin nx \, dx = \frac{1}{n_1} \left[\frac{n_2 (k - n_2^2)}{2} \cos nx + 3 (n_1^3 x^2 - 2) \sin nx \right]$ 12 (6-122) coshx + 3 (122-2) Shhx] $(6 - h^2 \pi^2) \log m = \frac{2}{h^3} (\zeta - h^2 \pi^2) (-1)^{H}$ $\sum_{n=1}^{\infty} \left(\frac{2}{\eta 3}\right)^2 \left(\varsigma - \eta^2 \eta^3\right)^2 \left(-1\right)^{2\eta}$ $\sum_{k=1}^{\infty} \frac{\mu}{\eta^6} \left(36 - 12 \eta^2 \eta^2 + \eta^6 \eta^4 \right)$ 5 [194 - $\frac{48\pi^2}{86} + \frac{4\pi^4}{88}$ $= 141 \sum_{n=1}^{\infty} \frac{1}{n^6} - 48\pi^2 \sum_{n=1}^{\infty} \frac{1}{n^4} + 4\pi^4 \sum_{n=1}^{\infty} \frac{1}{n^2}$ $144 \sum_{h=1}^{\infty} \frac{1}{h^4} - 480^2 \cdot \frac{\pi^4}{90} + 40^4 \cdot \frac{\pi^2}{6}$

proof

1

asmains.c. Created by T. Madas asmaths.com

às mans.com

I.V.G.S.

3smaths.com

, I.Y.G. FOURIER SERIES ARSTRAUSCORT I. Y. C.P. MARIASINATISCORT I. Y. C.P. MARIASIN

Question 1

A periodic function f(t) is defined in the interval (-L, L), L > 0, f(t+2L) = f(t).

It is further given that f(t) is continuous or piecewise continuous in (-L, L) and has Fourier series

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right]$$

where
$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt$$
, $n = 0, 1, 2, 3, ...$

and
$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt$$
, $n = 1, 2, 3, 4, ...$

Show that the complex Fourier series expansion of f(t) is

$$f(t) = \sum_{n=-\infty}^{\infty} \left[c_n e^{\frac{in\pi t}{L}} \right]$$

where $c_n = \frac{1}{2L} \int_{-L}^{L} f(t) e^{-\frac{in\pi t}{L}} dt$, $n \in \mathbb{Z}$

STAR WITH THE DEFINITION OF A RODERE SEPTER IN E, L< t < L
$f(t) = \frac{d_{or}}{2} + \sum_{n=1}^{\infty} \left[Q_n \alpha x(\frac{n \tau t}{L}) + b_n \sin n \frac{n \tau t}{L} \right]$
$\cdot \circ_{i} = \pm \int_{-1}^{i} \xi(t) \cos(tt) dt = \kappa \cdot \circ_{i} \cdot \varepsilon_{2} \cdot \varepsilon_{3} \cdot \cdots$
• $b_{ij} = \lim_{L} \int_{-L}^{L} \langle t \rangle Su(\frac{h_i t}{L}) dt = i_1 - i_2 - j_1 t_j \dots$
BY MANIPULATING CULES FORMULA & SUBSTITUTION INTO THE ABOUT
• 005 mt = 5 [e ^{int} + e ^{-int}]
$- \sin \frac{1}{2} = \frac{1}{2!} \left[e^{\frac{1}{2} \frac{1}{2}} - e^{\frac{1}{2} \frac{1}{2}} \right]$
$ \Longrightarrow \frac{-f(t)}{2} = \frac{1}{2t} + \sum_{h=1}^{\infty} \left[\frac{1}{2t} \left[e^{i\frac{h}{2t}} + e^{-i\frac{h}{2t}} \right] + \frac{1}{2t} \left[e^{i\frac{h}{2t}} - e^{-i\frac{h}{2t}} \right] \right] $
$\Longrightarrow f(\theta = \frac{\alpha}{2} + \sum_{k=1}^{\infty} \left[\left(\frac{1}{2} + \frac{i\underline{b}}{2} \right) e^{i\frac{k}{2}} + \left[\frac{\alpha}{2} + \frac{i\underline{b}}{2} \right] e^{-i\frac{k}{2}} \right]$
• LET $C_a = \frac{1}{2}a_a = \frac{1}{2}(a_a + ib_a)$ with $b_a = 0$
• Let $C_{ij} = \frac{1}{2}(a_{ij} - ib_{ij})$
• LET $\overline{C}_{q} = \frac{1}{2}(a_{q_{1}} + ib_{q})$) as C_{q} of \overline{C}_{q} are considered
$\rightarrow f(t) = c_{0} + \sum_{i=1}^{\infty} \left[c_{i} e^{i \frac{\pi i t}{L}} + c_{i} e^{i \frac{\pi i t}{L}} \right]$
NOW ADE INSTATIONAL CONVENIENCE OF WHITE THE CONVERTIGATION AS BUDOWS
$C_{ij} \equiv \frac{1}{2}(a_{ij}-ib_{ij})$
$\Longrightarrow C_{q} \equiv \frac{1}{2} (a_{q} + i\underline{b}_{q}) \Rightarrow \overline{C}_{q} = \frac{1}{2} (a_{q} + i\underline{b}_{q})$

Created by T. Madas

$$\begin{split} & \rightarrow -\{c_1\} = \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\{c_1\} = \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\{c_1\} = \sum_{n=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\{c_1\} = \sum_{n=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\{c_1\} = \sum_{n=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\{c_1\} = \sum_{n=1}^{n} \left[\zeta_{n} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\zeta_{n} + \sum_{k=1}^{n} \left[\zeta_{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] \\ & \rightarrow -\zeta_{n} + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \sum_{k=1}^{n} \left[\zeta_{k} \circ^{1\frac{2kk}{2}}\right] + \zeta_{n+1} + \zeta_{n+$$

$$-\sum_{n=-\infty} [c_n c_n],$$

, proof

2

Question 2

13ths.com

I.F.C.P.

$$f(t) = \begin{cases} 1 & -2 \le t \le 2\\ 0 & 2 < t < 6 \end{cases}, \quad f(t+8) = f(t).$$

Determine the complex Fourier series expansion of f(t). $f(t) = \frac{1}{2} + \frac{1}{2} +$

ろ

COM

I.G.S.

4.4

.

nn

Madası

I.F.G.B.

Created by T. Madas

2017

1.Y.C.

Question 3

COM

I.F.G.B.

$$f(t) = \begin{cases} 1 & 0 \le t \le a \\ 0 & a < t < T \end{cases}, \quad a < \frac{1}{2}T, \quad f(t+T) = f(t).$$

Determine the complex Fourier series expansion of f(t).

COM

1.G.D.

1.

.

nn

17₂₀₂

I.F.C.P.

Created by T. Madas

2017

I.C.

Question 4

¥.G.B.

V.C.B. Mal

I.F.G.B.

f(t) = t, $0 \le t < 1$, f(t+1) = f(t).

Determine the complex Fourier series expansion of f(t).

14

.

^COM

Madash

I.F.C.P.

Created by T. Madas

10

Question 5

200

I.F.G.B

ŀ.G.B.

f(t+2) = f(t). $f(t) = \mathrm{e}^{\pi t}$ $, \quad 0 \le t < 2 \,,$

Determine the complex Fourier series expansion of f(t).

I.G.B.

112/281

200

4.60

6

.

COM

Madası

I.F.C.B.

Created by T. Madas

2017

N.C.

Question 6

N'

, Y.G.B.

I.G.B.

 $f(t) = \cos(\pi t)$, $-\frac{1}{2} \le t < \frac{1}{2}$, f(t+1) = f(t).

Determine the complex Fourier series expansion of f(t).

1

I.C.B.

Maria

Created by T. Madas

R.

Question 7

Smaths.com

I.F.G.B.

$f(t) = \sin(\pi t)$, $0 \le t < 1$, f(t+1) = f(t).

Determine the complex Fourier series expansion of f(t). I.F.G.B.

201

ths.com

¥.G.5.

4.6

.

nn

Madasn

I.F.G.B.

Created by T. Madas

2017

I.V.C.

Question 8

I.C.B.

I.G.B.

The function f is defined as

 $f(t) = V \cos\left(\frac{\pi t}{T}\right)$, $-\frac{1}{2}T \le t < \frac{1}{2}T$, f(t) = f(t+T),

10.15

Maria

where V and T are positive constants.

Determine the complex Fourier series expansion of f(t).

 $e^{2n\pi t i}$ $f(t) = \frac{2V}{2}$ $1 - 4n^{2}$ $f(t) = V \log(\frac{\pi t}{\tau})$ -f(t) = -f(t+T) $\Rightarrow C_{1} = \frac{V}{\pi} \left[\frac{1}{2n_{H}} \left[\frac{\sin m \cos \pi}{2} + \cos m \sin \pi} \right] + \frac{1}{2n_{H}} \left[\sin m \sin \pi} \right]$ $= C_1 = \frac{V}{Tr} \frac{Tr}{200} = \frac{Tr}{1} \frac{Tr}{200} = \frac{Tr}{1} = \frac{Tr}{200} = \frac{Tr}$ FOL A COMPLEX ROUBLER" $-\left(t\right) = \sum_{k=1}^{\infty} \left[C_{k} e^{\frac{i \pi a t}{L}}\right]$ with $C_{k} = \frac{1}{2L} \int_{-}^{L} -\left(t\right) e^{\frac{i \pi a t}{L}}$ $\Rightarrow C_{ij} = \frac{V\omega_{ik}n_{ij}}{\pi} \left[\frac{1}{2n+1} - \frac{1}{2n-1} \right]$ $\implies C_{i_1} = \frac{V(-i)^{N}}{\pi} \left[\frac{2n-i_1-2n-i_1}{4q^2-i_1} \right]$ $= C_1 = \frac{2V(C-1)^4}{TT(1-4q^2)}$ the main is and the $\therefore f(t) = \sum_{N=-\infty}^{\infty} \left(\frac{2NC^{-1}}{\pi(1-4H^2)} e \right)$ in[(x-1)毕]]² I.C.B. 5

Created by T. Madas