DIFFERENTIATION

UNDER

THE

INTEGRAL SIGN

LEIBNIZ INTEGRAL

Question 1
The function f satisfies the following relationship.

Created by T. Madas

Question 2
Find the value of

Question 3
Find the general solution of the following equation

$$
\frac{d}{d x}\left[\int_{\frac{1}{6} \pi}^{\sqrt{2 x}} \sin \left(t^{2}\right)+\cos \left(2 t^{2}\right) d t\right]=-\sqrt{\frac{2}{x}}, x \in \mathbb{R} \text {. }
$$

Question 4
The function g is defined as

$$
g(x)=\int_{a(x)}^{b(x)} f(x, t) d t
$$

a) State Leibniz integral theorem for $g^{\prime}(x)$.
b) Find a simplified expression for $\frac{d}{d x}\left[\int_{x^{-1}}^{x} \frac{\sqrt{1+x^{2} t^{2}}}{t} d t\right]$.

INTEGRATION

APPLICATIONS INTRODUCTION

Question 1
It is given that the following integral converges.

$$
\int_{0}^{1} x^{\frac{4}{3}} \ln x d x
$$

a) Evaluate the above integral by introducing a parameter and carrying out a suitable differentiation under the integral sign.
b) Verify the answer obtained in part (a) by evaluating the integral by standard integration by parts.

Question 2

Evaluate the above integral by introducing a parameter k and carrying out a suitable differentiation under the integral sign.

You may not use standard integration techniques in this question.

Question 3

Find a simplified expression for the above integral by introducing a parameter a and carrying out a suitable differentiation under the integral sign.

You may assume

- $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{a} \operatorname{artanh}\left(\frac{x}{a}\right)+$ constant,$|x|<a$.
- $\frac{d}{d u}(\operatorname{artanh} u)=\frac{1}{1-u^{2}}$

You may not use standard integration techniques in this question.

$$
\operatorname{artanh} 2 x+\frac{2 x}{1-4 x^{2}}+C
$$

\square

Question 4

Find a simplified expression for the above integral by introducing a parameter α and carrying out a suitable differentiation under the integral sign.

You may not use integration by parts or a reduction formula in this question.

$$
\frac{1}{8} \mathrm{e}^{2 x}\left[4 x^{3}-6 x^{2}+6 x-3\right]+C
$$

\square

Created by T. Madas

Created by T. Madas

Question 5

$$
\int \frac{1}{\left(5+4 x-x^{2}\right)^{\frac{3}{2}}} d x
$$

Find a simplified expression for the above integral by introducing a parameter a and carrying out a suitable differentiation under the integral sign.

You may assume

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+\text { constant },|x| \leq a .
$$

You may not use standard integration techniques in this question.

$$
\frac{x-2}{9 \sqrt{5+4 x-x^{2}}}+C
$$

Question 6
It is given that the following integral converges

$$
\int_{0}^{\infty} x^{n} \mathrm{e}^{-\alpha x} d x
$$

where α is a positive parameter and n is a positive integer.

By carrying out a suitable differentiation under the integral sign, show that

$$
\Gamma(n+1)=n!
$$

You may not use integration by parts or a reduction formula in this question.

Question 7
It is given that the following integral converges

$$
\int_{0}^{1} x^{m}[\ln x]^{n} d x
$$

where n is a positive integer and m is a positive constant.

By carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{1} x^{m}[\ln x]^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}
$$

You may not use standard integration techniques in this question.
\square , proof

Question 8

$$
I(\alpha)=\int_{0}^{\pi} \frac{1}{\alpha-\cos x} d x,|\alpha|>1
$$

a) Use an appropriate method to show that

$$
I(\alpha)=\frac{\pi}{\sqrt{\alpha^{2}-1}}
$$

b) By carrying out a suitable differentiation under the integral sign, evaluate

$$
\int_{0}^{\pi} \frac{1}{(\sqrt{2}-\cos x)^{2}} d x
$$

You may not use standard integration techniques in this part of the question.

FURTHER

INTEGRATION

APPLICATIONS

Created by T. Madas

Question 1

$$
I=\int_{0}^{\infty} \frac{\ln \left(1+4 x^{2}\right)}{x^{2}} d x
$$

By introducing a parameter in the integrand and carrying a suitable differentiation under the integral sign show that

$$
I=2 \pi
$$

\square
V
proof

Question 2
It is given that the following integral converges.

$$
I=\int_{0}^{1} \frac{x-1}{\ln x} d x
$$

Evaluate I by carrying out a suitable differentiation under the integral sign.

You may not use standard integration techniques in this question.

V \square , $\ln 2$

Question 3

$$
I=\int_{0}^{\infty} \frac{\mathrm{e}^{-2 x}-\mathrm{e}^{-8 x}}{x} d x
$$

By introducing a parameter in the integrand and carrying a suitable differentiation under the integral sign show that

$$
I=\ln 4
$$

\square
\square
$\int_{0}^{\infty} \frac{e^{-2 x}-e^{-b x}}{x} d x=\ln b x-\ln 2$ $\int_{0}^{\infty} \frac{e^{-2 x}-e^{-b x}}{x} d x=\ln \frac{b}{2}$ LET $b=8$ $\int_{0}^{\infty} \frac{e^{-x}-e^{-5 x}}{x} d x=\ln 4 /$

Created by T. Madas

Question 4
It is given that

Use Leibniz's integral rule to show that
\square , proof

$$
\int_{0}^{\infty} \frac{\sin (k x)}{k x} d x=\frac{\pi}{2}
$$

Question 5
It is given that the following integral converges.

$$
\int_{0}^{1} \frac{x^{5}-1}{\ln x} d x
$$

Evaluate the above integral by introducing a parameter and carrying out a suitable differentiation under the integral sign.

You may not use standard integration techniques in this question.

Question 6

$$
I=\int_{0}^{\infty} \frac{\mathrm{e}^{-2 x} \sin x}{x} d x
$$

By introducing in the integrand a parameter k and carrying a suitable differentiation under the integral sign show that

$$
I=\operatorname{arccot} 2
$$

\square , proof

LET $I=\int_{0}^{\infty} \frac{e^{-k x} \sin \alpha}{2} d x, k+$ ach anerattre 裂 $=$

Finduy we trive.
$\Rightarrow \frac{\partial I}{\partial k}=-\frac{1}{k^{2}+1}$
$\Rightarrow I=-\arctan k+C$
$\Rightarrow \int_{0}^{\infty} \frac{e^{-k x} \sin x}{x} d x=C-\operatorname{arctank}$

$\begin{aligned} & t \in t=0 \operatorname{lic} \pi c \\ & \int_{0}^{\infty} \frac{\sin x}{x} d x=c \\ & \\ & \int_{0}^{\infty} \frac{\sin x}{x} d x-\frac{\pi}{2}=c \end{aligned}$	$\begin{aligned} & 0=c-\operatorname{antan}(\infty) \\ & 0=c-\frac{\pi}{2} \\ & c=\frac{\pi}{2} \end{aligned}$

$\Rightarrow \int_{0}^{\infty} \frac{e^{-x} \sin x}{x} d x=\frac{\pi}{2}-\operatorname{arctank}$
$\Rightarrow \int_{0}^{\infty} \frac{e^{-k x} \sin x}{x} d x=$ arecth
LET $k=2$ in Tif herat Gopftion, neads nie rpurieo Resout
$\Rightarrow \int_{0}^{\infty} \frac{e^{-2 x} \sin x}{x} d x=\operatorname{arccot} 2$

Question 7

$$
I=\int_{0}^{\infty} \frac{\mathrm{e}^{-x}-\mathrm{e}^{-7 x}}{x \sec x} d x
$$

By introducing in the integrand a parameter α and carrying a suitable differentiation under the integral sign show that

$$
I=\ln 5
$$

Question 8

$$
I=\int_{0}^{\infty} \frac{\cos x}{x}\left[\mathrm{e}^{-4 x}-\mathrm{e}^{-6 x}\right] d x
$$

By introducing in the integrand a parameter λ and carrying a suitable differentiation under the integral sign show that

$$
I=\frac{1}{2} \ln 2
$$

\square

Question 9

$$
I=\int_{0}^{\infty} \frac{\mathrm{e}^{-x}}{x}\left[1-\cos \left(\frac{3}{4} x\right)\right] d x
$$

By introducing in the integrand a parameter λ and carrying a suitable differentiation under the integral sign show that

$$
I=\ln 5-\ln 4
$$

Question 10
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\sin t}{t} d t
$$

Evaluate the above integral by introducing the term $\mathrm{e}^{-\alpha t}$, where α is a positive parameter and carrying out a suitable differentiation under the integral sign.

You may not use contour integration techniques in this question.
\square

Question 11
Show, by carrying out a suitable differentiation under the integral sign, that

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-a x} \sin b x}{x} d x=\arctan \left(\frac{b}{a}\right)
$$

where a and b are positive constants.

You may assume

$$
\int_{0}^{\infty} \frac{\sin t}{t} d t=\frac{\pi}{2}
$$

Created by T. Madas

Question 12
Given that a is a positive constant, find an exact simplified value for
4
ay assume

Question 13

$$
I_{n}=\int_{0}^{\frac{1}{2}} x^{n} \mathrm{e}^{2 x} d x, \quad n=0,1,2,3, \ldots
$$

By introducing in the integrand a parameter k and carrying a suitable differentiation under the integral sign show that

$$
I_{n}=\frac{\mathrm{e}}{2^{n+1}} \sum_{r=0}^{n}\left[\binom{n}{r}(-1)^{n} r!\right]-\frac{(-1)^{n} n!}{2^{n+1}} .
$$

\square
\square

Question 14

$$
I_{n}=\int_{0}^{1} x^{2 n+1} \mathrm{e}^{x^{2}} d x, \quad n=0,1,2,3, \ldots
$$

By introducing in the integrand a parameter k and carrying a suitable differentiation under the integral sign show that

$$
I_{n}=\frac{\mathrm{e}}{2} \sum_{r=0}^{n}\left[\binom{n}{r}(-1)^{n} r!\right]-\frac{1}{2}(-1)^{n} n!
$$

\square

 OST k-1

Created by T. Madas

Question 15

$$
I=\int_{0}^{\infty} \frac{\arctan 8 x-\arctan 2 x}{x} d x
$$

By introducing a parameter in the integrand and carrying a suitable differentiation under the integral sign show that

$$
I=\pi \ln 2
$$

\square
 $I(\lambda)=\int_{0}^{\infty} \frac{\operatorname{antan} \operatorname{ex}-\arctan d x}{x} d x$ $\rightarrow \frac{\partial I}{\partial \lambda}=\frac{\partial}{\partial \lambda} \int_{0}^{\infty} \frac{\operatorname{antan} B_{x}-\arctan \lambda x}{x} d x=\int_{0}^{\infty} \frac{\partial}{\partial \lambda}\left[\frac{\arctan \theta x}{x}-\frac{\arctan \lambda x}{x}\right] d x$ $\Rightarrow \frac{\partial I}{\partial \lambda}=\int_{0}^{\infty}-\frac{x}{x} \frac{1}{1+(\lambda x)^{2}} d x=\int_{0}^{\infty}-\frac{1}{1+\lambda^{2} x^{2}} d x=-\frac{1}{\lambda^{2}} \int_{0}^{\infty} \frac{1}{\frac{1}{\lambda^{2}}+x^{2}} d x$ $\Rightarrow \frac{\partial I}{\partial \lambda}=-\frac{1}{\lambda^{2}} \times \frac{1}{\frac{1}{\lambda}}\left[\arctan \frac{x}{\lambda}\right]_{0}^{\infty}=-\frac{1}{\lambda}\{\arctan \lambda x]_{0}^{\infty}=-\frac{1}{\lambda}\left(\frac{\pi}{2}-0\right)$ $\Rightarrow \frac{\partial I}{\partial \lambda}=-\frac{\pi}{2 \lambda}$

- INTfratit witt respect को λ
$\rightarrow=-\frac{\pi}{2} \ln \lambda+C$
$\rightarrow \int_{0}^{\infty} \frac{\operatorname{arctar} e^{2}-\arctan \lambda x}{2} d x=-\frac{\pi}{2} \ln \lambda+C$

$\Rightarrow \int_{0}^{\infty} \frac{\operatorname{artan} 8 x-\arctan \lambda x}{x} d x=-\frac{\pi}{2} \ln x+\frac{\pi}{2} \ln 8$ - पस $\lambda=2$
$\Rightarrow \int_{0}^{\operatorname{son}} \frac{\operatorname{antay} \theta_{2}-\arctan 2 x}{x} d_{2}=-\frac{\pi}{2} \ln 2+\frac{\pi}{2} \ln 8=\frac{\pi}{2} \ln 4$

Question 16
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-a x}-\mathrm{e}^{-b x}}{x} d x
$$

where a and b are positive constants.
By carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-a x}-\mathrm{e}^{-b x}}{x} d x=\ln \left[\frac{b}{a}\right]
$$

Question 17
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\cos k x}{x}\left[\mathrm{e}^{-a x}-\mathrm{e}^{-b x}\right] d x
$$

where k, a and b are constants with $a>0$ and $b>0$.

By carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{\infty} \frac{\cos k x}{x}\left[\mathrm{e}^{-a x}-\mathrm{e}^{-b x}\right] d x=\frac{1}{2} \ln \left[\frac{b^{2}+k^{2}}{a^{2}+k^{2}}\right]
$$

Question 18
It is given that the following integral converges

$$
\int_{0}^{1} \frac{x^{a}-x^{b}}{\ln x} d x
$$

where a and b are constants greater than -1 .

By carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{1} \frac{x^{a}-x^{b}}{\ln x} d x=\ln \left[\frac{a+1}{b+1}\right]
$$

Question 19
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\sin m x}{x}\left[\mathrm{e}^{-a x}-\mathrm{e}^{-b x}\right] d x
$$

where a, b and m are constants, with $m \neq 0, a>0, b>0$.

By carrying out a suitable differentiation under the integral sign, show that

Question 20
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\arctan a x}{x\left(1+x^{2}\right)} d x, a>-1
$$

By carrying out a suitable differentiation under the integral sign, show that

Question 21
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\ln \left(1+a^{2} x^{2}\right)}{1+b^{2} x^{2}} d x
$$

where a and b are constants.

By carrying out a suitable differentiation under the integral sign, show that the exact value of the above integral is

$$
\frac{\pi}{b} \ln \left|\frac{a+b}{b}\right|
$$

\square , proof

Question 22
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-x}-\mathrm{e}^{-2 x}}{x} d x
$$

a) By introducing a parameter k and carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-x}-\mathrm{e}^{-2 x}}{x} d x=\ln 2
$$

b) Use the result of part (a) and differentiation under the integral sign to show further that

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-x}}{x}\left[2-\frac{1}{x}+\frac{1}{x} \mathrm{e}^{-2 x}\right] d x=-2+\ln 27
$$

Created by T. Madas

Question 23
The integral function $y=y(x)$ is defined as

Question 24
An integral I is defined in terms of a parameter α as

$$
I(\alpha)=\int_{0}^{\infty} \exp \left[-x^{2}-\frac{\alpha^{2}}{x^{2}}\right] d x
$$

By carrying out a suitable differentiation on I under the integral sign, show that

$$
\int_{0}^{\infty} \exp \left[-x^{2}-\frac{1}{16 x^{2}}\right] d x=\sqrt{\frac{\pi}{4 \mathrm{e}}}
$$

Question 25
An integral I with variable limits is defined as

$$
I(x)=\int_{x}^{x^{2}} \mathrm{e}^{\sqrt{u}} d u
$$

a) Use a suitable substitution followed by integration by parts to find a simplified expression for

$$
\frac{d}{d x}[I(x)] .
$$

b) Verify the answer obtained in part (a) by carrying the differentiation over the integral sign.

Question 26
Use complex variables and the Leibniz integral rule to evaluate

$$
\int_{0}^{1} \frac{\sin (\ln x)}{\ln x} d x
$$

You may assume that the integral converges.
\square ,$\frac{1}{4} \pi$

$$
\begin{aligned}
& \Rightarrow \frac{\partial I}{\partial t}=\frac{1}{2} \times \frac{2}{1++2} \\
& \Rightarrow \frac{\partial \tau}{\partial t}=\frac{1}{1+t^{2}} \\
& \rightarrow I(t)=\arctan t+C \\
& \text { Betures io THE DEFANION } \\
& I(t) \equiv \frac{1}{2 i} \int_{0}^{1} \frac{e^{i t \ln x}-e^{-i t \ln x}}{\ln x} d x \\
& I(0)=\frac{1}{2 i} \int_{0}^{1} \frac{1-1}{\ln x} d x=0 \\
& \text { Henct we that } \\
& \begin{array}{l}
I(0)=\arctan 0+C \\
0=0+c \\
c=0
\end{array} \\
& \text { Fiwaly wo Hfowt } \\
& I(t)=\frac{1}{2 i} \int_{0}^{1} \frac{e^{i t \ln x}}{\ln x} e^{-i t \ln x} d x=\arctan t \\
& \begin{aligned}
I(1)= & \frac{1}{2 i} \int_{0}^{1} \frac{e^{i \ln x}-e^{-i \ln x}}{\ln x} d x=\operatorname{antan} \\
& \int_{0}^{1} \frac{\sin (\ln x)}{\ln x} d x=\frac{\pi}{4}
\end{aligned}
\end{aligned}
$$

Question 27

$$
I=\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos x d x
$$

Assuming that the above integral converges, use the Leibniz integral rule to evaluate it.

Give the answer in the form $\sqrt[4]{k}$, where k is an exact constant.

You may use without proof $\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$.

Question 28
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{1-\cos \left(\frac{1}{6} x\right)}{x^{2}} d x
$$

By introducing a parameter in the integrand and carrying out a suitable differentiation under the integral sign, show that

Question 29
It is given that the following integral converges

$$
I=\int_{0}^{1}\left[\frac{\sqrt{x}-1}{\ln x}\right]^{2} d x
$$

$$
1
$$

$$
0
$$

$$
\theta
$$

By carrying out a suitable differentiation under the integral sign, show that

$$
I=5 \ln 3-3 \ln 3
$$

\square , proof

$\int_{0}^{1}\left(\frac{\sqrt{x}-1}{\sqrt{x} x}\right)^{2} d x=\int_{0}^{1} \frac{\left(x^{1 / 2}-1\right)^{2}}{(\ln x)^{2}} d x$ Let $J(t)=\int_{0}^{1} \frac{\left(x^{2}-1\right)^{2}}{(\ln x)^{2}} d x$ twD piffensiall wint retifet is t $\begin{aligned} & \Rightarrow \frac{d I}{d t}=\frac{d}{d t}\left[\int_{0}^{1} \frac{\left(x^{t}-1\right)^{2}}{(\ln x)^{2}} d x\right]=\int_{0}^{1} \frac{\partial}{\partial t}\left[\frac{\left(x^{t}-1\right)^{2}}{(\ln x)^{2}}\right] d x \\ & \Rightarrow \frac{d I}{d t}-\int_{0}^{1} 2 x^{t} \ln x(3 t-1) d x \cdot \int_{0}^{1} \frac{2 x^{t}\left(x^{t}-1\right)}{\ln x} d x \\ & \Rightarrow \frac{d I}{d t}=2 \int_{0}^{1} \frac{x^{2 t}-x^{t}}{\ln x} d x \end{aligned}$ $\begin{aligned} & \Rightarrow \frac{d^{2} I}{d t^{2}}=2 \frac{d}{d t}\left[\int_{0}^{1} \frac{x^{2 t}-x^{t}}{\ln x} d x\right]=2 \int_{0}^{1} \frac{\partial}{\partial t}\left(\frac{x^{2 t}-x^{t}}{\ln x}\right) d x \\ & \Rightarrow \frac{d^{2} \delta}{d t^{2}}=2 \int_{0}^{1} \frac{2 x^{2 t} \ln x-x^{t} \ln x}{\ln \lambda} d x-\int_{0}^{1} 4 x^{2 t} \quad 2 x^{t} d x \end{aligned}$ INRERTina THE R.4.5 WINt RAPEET To a $\Rightarrow \frac{d^{2} I}{d t}=\left[\frac{4}{2 t+1} x^{2 t+1}-\frac{2}{t+1} x^{t+1}\right]_{0}^{1}=\frac{4}{2 t+1}-\frac{2}{t+1}$ $\Rightarrow \frac{d s}{d t}=2 \ln (2 t+1)-2 \ln (t+1)+c$

Question 30
It is given that the following integral converges

$$
\int_{0}^{\infty} \mathrm{e}^{-\frac{1}{2} t} \ln t d t
$$

Evaluate the above integral by introducing a new parametric term in the integrand and carrying out a suitable differentiation under the integral sign.

You may assume that

$$
\Gamma^{\prime}(x)=\Gamma(x)\left[-\gamma+\frac{1}{x}+\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{x+k}\right)\right]
$$

$$
2(-\gamma+\ln 2)
$$

\square

Question 31

$$
I=\int_{0}^{\frac{\pi}{2}} \frac{\ln (1+\cos \alpha \cos x)}{\cos x} d x
$$

By carrying out a suitable differentiation on I under the integral sign, show that

$$
I=\frac{1}{8} \pi^{2}-\frac{1}{2} \alpha^{2}
$$

Question 32

$$
I=\int_{0}^{\frac{\pi}{2}} \frac{\ln \left(1+3 \sin ^{2} x\right)}{\sin ^{2} x} d x
$$

By introducing a parameter a in the integrand and carrying out differentiation on I under the integral sign, show that

$$
I=\pi
$$

\square
\square

Question 33

$$
I=\int_{0}^{\infty} \frac{\mathrm{e}^{-x^{n}}-\mathrm{e}^{-(2 x)^{n}}}{x} d x, n \in \mathbb{N}
$$

By carrying out a suitable differentiation on I under the integral sign, show that for all $n \in \mathbb{N}$,
\square
 $\mathrm{O}_{2} \mathrm{~S}_{2}$

Question 34

$$
I=\int_{0}^{\frac{1}{2} \pi} \frac{\exp \left(-\frac{1}{\sqrt{3}} \tan x\right)-\exp (-\sqrt{3} \tan x)}{\sin 2 x} d x
$$

By carrying out a suitable differentiation on I under the integral sign, show that
\square
\square

- Jiffechinlatt w.er to a (ar b
$\partial I \quad 2 \int_{0}^{\infty} e^{-a t}-b t$

ALThRNATWH UREIATION BY MAPACE TEANSFORMS ARTR THE SuBstitution)
(0) Conside THE WAPCAGF TEANSGRM of $\frac{e^{-\frac{1}{3} t}}{t} e^{-\sqrt{3} t}$ (USING THE DiUSICN By t Rert) $\Rightarrow J\left[\frac{e^{-\frac{1}{2} t}-e^{-\sqrt{3} t}}{t}\right]=\int_{s}^{\infty}\left[\left[e^{-\frac{1}{2} t} e^{-\sqrt{3} t}\right] d \sigma\right.$ - GHEL That The curitexists $\operatorname{Lim}_{t \rightarrow \infty}\left[\frac{e^{-\frac{1}{3} t}-e^{-\sqrt{3} t}}{t}\right]=\ldots B y i^{2}+\operatorname{tsp} 1+t$
\qquad
\qquad $\Rightarrow \mathcal{L}\left[\frac{e^{-\frac{1}{s} t}-e^{-\sqrt{3} t}}{t}\right]=\int_{S}^{\infty} \frac{1}{\sigma+\frac{1}{\sqrt{3}}}-\frac{1}{\sigma+\sqrt{3}} d \sigma$ $\Rightarrow \int_{0}^{\infty} e^{-\sqrt{s} t}\left[\frac{e^{-\frac{1}{\sqrt{n} t}}-e^{-\sqrt{2} t}}{t}\right] d t=\left[\ln \left[\frac{\sigma+\frac{1}{\sqrt{3}}}{\sigma+\sqrt{3}}\right]\right]_{s^{\prime}}^{\infty}$ $\Rightarrow \int_{0}^{\infty} e^{-\frac{s t}{} t}\left[\frac{e^{-\frac{1}{3} t}-e^{-\sqrt{3} t}}{t}\right] d t=\ln t-\ln \left[\frac{s+\frac{1}{\sqrt{3}}}{5+\sqrt{5}}\right]$

Question 35

$$
J=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+k^{2} \tan ^{2} x} d x,|k| \neq 1
$$

a) Use appropriate methods to find, in terms of k, a simplified expression for J.

$$
I(k)=\int_{0}^{\frac{\pi}{2}} \frac{\arctan (k \tan x)}{\tan x} d x,|k| \neq 1
$$

b) By carrying out a suitable differentiation on I under the integral sign, show that

$$
\int_{0}^{\frac{\pi}{2}} x \cot x d x=\frac{1}{2} \pi \ln 2
$$

c) Deduce the value of

$$
\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x
$$

$$
J=\frac{\pi}{2(k+1)},-\frac{1}{2} \pi \ln 2
$$

\square
\square

Question 36
The integral function $I(k)$ is defined as

$$
I(k)=\int_{0}^{\pi} \mathrm{e}^{k \cos x} \cos (k \sin x) d x, \quad k \in \mathbb{R}
$$

By carrying out a suitable differentiation on I under the integral sign, show that

Created by T. Madas

Question 37

$$
I=\int_{0}^{\pi} \frac{\ln (1+\cos \alpha \cos \theta)}{\cos \theta} d \theta
$$

By carrying out a suitable differentiation on I under the integral sign, show that

Question 38

$$
I(k) \equiv \int_{0}^{\pi} \ln (1-k \cos x) d x, \quad|k|<1
$$

By differentiating both sides of the above equation with respect to k, show that

$$
I(k)=\pi \ln \left[\frac{1}{2}\left(1-\sqrt{1-k^{2}}\right)\right]
$$

\square
$\Rightarrow \int_{0}^{\pi} \ln (1-k \cos 2) d x=\pi \ln \left[1+\sqrt{1-x^{2}}\right]+C$ (a) LeT $k=0$
$\int_{0}^{\pi} \ln 1 d x=\pi \ln 2+C$ $\begin{aligned} 0 & =\pi \ln 2+C \\ C & =-\pi \ln 2\end{aligned}$
$\Rightarrow \int_{0}^{\pi} \ln (1-k \cos x) d x=\pi \ln \left[1+\sqrt{1-k^{2}}\right]-\pi \ln 2$ $\therefore \int_{0}^{\pi} \ln (1-k \cos x) d x=\pi \ln \left[\frac{1+\sqrt{1-k^{2}}}{2}\right] /$

Created by T. Madas

Question 39
Find the following inverse Laplace transform, by using differentiation under the integral sign.

Question 40
The integral I is defined in terms of the constants α and k, by

$$
I(\alpha, k) \equiv \int_{0}^{\infty} \mathrm{e}^{-\alpha x^{2}} \cos (k x) d x, \quad \alpha>0
$$

By differentiating both sides of the above equation with respect to k, followed by integration by parts, show that

$$
\int_{0}^{\infty} \mathrm{e}^{-\alpha x^{2}} \cos (k x) d x=\sqrt{\frac{\pi}{4 \alpha}} \exp \left(-\frac{k^{2}}{4 \alpha}\right)
$$

You may assume without proof that

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}
$$

You may not use contour integration techniques in this question.

Question 41
It is given that the following integral converges

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-x}}{x}\left[3-\frac{1}{x}+\frac{1}{x} \mathrm{e}^{-3 x}\right] d x
$$

By introducing a parameter λ and carrying out a suitable differentiation under the integral sign, show that

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{-x}}{x}\left[3-\frac{1}{x}+\frac{1}{x} \mathrm{e}^{-3 x}\right] d x=-3+\ln 256
$$

Question 42
The following integral is to be evaluated

$$
\int_{0}^{\frac{\pi}{2}} \ln \left[a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right] d \theta
$$

where a and b are distinct constants such that $a+b>0$.

By carrying out a suitable differentiation under the integral sign, show that

	$\int_{0}^{\frac{\pi}{2}} \ln \left(a^{2} \sigma^{2} \theta+b^{2}=s^{2} \theta\right) d \theta=\pi \ln \left(\frac{a+b}{2}\right) \begin{aligned} & a \neq b \\ & a+b>0 \end{aligned}$
- Teart a is A meanetre \& b as 4 constant	
$\Rightarrow \frac{\partial I}{\partial a}=\frac{\partial}{\partial a} \int_{0}^{\frac{\pi}{2}} \ln _{n}\left(a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right) d \theta=\int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial a}\left[\ln \left(a^{2} \cos ^{3} \theta+b^{2} s^{2} \alpha^{2} \theta\right)\right] d \theta$	
$\begin{aligned} & \Rightarrow \frac{\partial I}{\partial a}=\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \cos ^{2} \theta+1^{2} m^{2} \theta} \times 2 a \cos ^{2} \theta d \theta \\ & \Rightarrow \frac{\partial I}{\partial a}=\int_{0}^{\frac{\pi}{2}} \frac{2 a \cos ^{2} \theta}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta=\int_{0}^{\frac{\pi}{2}} \frac{2 a \cos ^{2} \theta}{a^{2} \cos \theta^{2} \theta+b^{2}-b^{2} \cos ^{2} \theta} d \theta \end{aligned}$	
$\Rightarrow \frac{\partial s}{\partial a}=\int_{0}^{\frac{\pi}{2}} \frac{2 a \cos ^{2} \theta}{\left(a^{2}-b^{2}\right) \cos ^{2} \theta+b^{2}} d \theta$	
$\Rightarrow \frac{\partial I}{\partial a}=\frac{2 a}{a^{2}-b^{-b}} \int_{0}^{\frac{\pi}{2}} \frac{\left(a^{2}-b^{2}\right) \cos ^{2} \theta}{\left(a^{2}-b^{2}\right) \cos \theta+b^{2}} d \theta$	
$\Rightarrow \frac{Q I}{\partial a}=\frac{2 a}{a^{2}-b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\left(a^{2}-b^{2}\right) \cos ^{2} \theta+b^{2}-b^{2}}{\left(a^{2}-b^{2}\right) \cos ^{2} \theta+b^{2}} d \theta$	
$\Rightarrow \frac{\partial I}{\partial a}=\frac{2 a}{a^{2}-b^{2}} \int_{0}^{\frac{T}{2}}-\frac{b^{2}}{\left(a^{2}-b^{2}\right) \cos \theta+b^{2}} d \theta$	
$\Rightarrow \frac{\partial I}{\partial a}=\frac{2 a}{a^{2}-b^{2}} \int_{0}^{\frac{\pi}{2}} 1-\frac{b^{2} \sec ^{2} \theta}{\left(a^{2}-b^{2}\right)+b^{2} \sec ^{2} \theta \theta} d \theta$	
$\Rightarrow \frac{\partial I}{\partial a}=\frac{2 a}{a^{2}-b^{2}} \int_{0}^{\frac{\pi}{2}} 1-\frac{b^{2}+c^{2} \theta}{\left(a^{2}-b^{2}\right)+b^{2}\left(1+t-x^{2} \theta\right)} d \theta$	
	$\rightarrow \frac{\partial I}{\partial \alpha}=\frac{2 a}{a^{2}-b^{2}} \int_{0}^{\frac{\pi}{2}} 1-\frac{b^{2} \sec ^{2} \theta}{a^{2}+b^{2} \tan \theta} d \theta$

Question 43
It is given that

$$
y=\arcsin \left[\frac{\alpha+\cos x}{1+\alpha \cos x}\right]
$$

where α is a constant.
a) Show that

$$
I(\alpha)=\int_{0}^{\pi} \ln (1+\alpha \cos x) d x
$$

b) By differentiating both sides of the above relationship with respect to α, show further that

Question 44
By carrying out suitable differentiations on I under the integral sign, show that

Created by T. Madas

Question 45

$$
A(t) \equiv\left[\int_{0}^{t} \mathrm{e}^{-x^{2}} d x\right]^{2}
$$

By differentiating both sides of the above equation with respect to t, followed by the substitution $x=t y$, show that

Question 46

$$
I(t) \equiv\left[\int_{0}^{t} \mathrm{e}^{-\mathrm{i} x^{2}} d x\right]^{2}
$$

By differentiating both sides of the above equation with respect to t, followed by the substitution $x=t y$, show that

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{4} \sqrt{2 \pi}
$$

INTEGRATION

UNDER

THE

INTEGRAL SIGN

Question 1
By integrating both sides of an appropriate integral relationship, with suitable limits, show that
where $b>a>0$.

$$
\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} d x=\ln \left[\frac{b+1}{a+1}\right]
$$

You may assume that for $k>0, \int k^{x} d x=\frac{k^{x}}{\ln k}+$ constant.

Question 2
By integrating both sides of an appropriate integral relationship, with suitable limits, show that
where $b>a>0$.

You may assume that $\int_{0}^{\infty} \mathrm{e}^{-t^{2}} d t=\frac{1}{2} \sqrt{\pi}$.

Created by T. Madas

Question 3
The integral I is defined as

$$
I=\int_{0}^{\infty} \mathrm{e}^{k x} \sin x d x
$$

where k is a constant.
a) Use a suitable method to show that

$$
I=\frac{1}{k^{2}+1}
$$

b) By integrating both sides of an appropriate integral relationship with respect to k, with suitable limits, show further that

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\mathrm{e}^{-2 x} \sin x}{x} d x=\operatorname{arccot} 2 \\
& \text { You may assume that } \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2} \text {. }
\end{aligned}
$$

Question 4
By integrating both sides of an appropriate integral relationship with respect to b, with suitable limits, show that
proof

