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Question 1  

The function f  satisfies the following relationship. 

( ) ( )
2

1

x

f x f t dt=    ,    ( ) 12
2

f = . 

Determine the value of ( )1
2

f . 

SPX-Y , ( )1 2
72

f =  
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Question 2      

Find the value of 

3 2

0
2 1

6
lim

4

p
x

p

p

d x
dx

dp x

+

→
−

  
+   

        
 . 

MM1P , 23
5
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Question 3      

Find the general solution of the following equation 

( ) ( )
1
6

2
2 2 2

sin cos 2

x
d

t t dt
dx xπ

 
 + = −
 
 
 ,  x ∈� . 

SPX-N , ( )1 4 1
4

x k kπ= − ∈�  
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Question 4      

The function g  is defined as 

( ) ( )
( )

( )
,

b x

a x

g x f x t dt=  . 

a) State Leibniz integral theorem for ( )g x′ . 

b) Find a simplified expression for 

1

2 21
x

x

d x t
dt

dx t
−

 
+ 

 
  
 . 

MM1G , 
1

2 2 41 2 1
x

x

d x t x
dt

dx t x−

 + +
  =
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Question 1 

It is given that the following integral converges. 

4
3

1

0

lnx x dx . 

a) Evaluate the above integral by introducing a parameter and carrying out a 

suitable differentiation under the integral sign. 

b) Verify the answer obtained in part (a) by evaluating the integral by standard 

integration by parts. 

V , MM1A , 9
49

−  
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Question 2 

( )

1

2
2

0

8

1

dx

x+ . 

Evaluate the above integral by introducing a parameter k  and carrying out a suitable 

differentiation under the integral sign. 

You may not use standard integration techniques in this question. 

V , 2π +  
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Question 3 

( )
2

2

4

1 4

dx

x− . 

Find a simplified expression for the above integral by introducing a parameter a  and 

carrying out a suitable differentiation under the integral sign. 

You may assume 

• 
2 2

1 1
artanh constant

x
dx

a aa x

 
= + 

−   , x a< . 

• ( )
2

1
artanh

1

d
u

du u
=

−
 

You may not use standard integration techniques in this question. 

2

2
artanh 2

1 4

x
x C

x
+ +

−
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Question 4 

3 2e x
x dx . 

Find a simplified expression for the above integral by introducing a parameter α  and 

carrying out a suitable differentiation under the integral sign. 

You may not use integration by parts or a reduction formula in this question. 

2 3 21 e 4 6 6 3
8

x
x x x C − + − +
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Question 5 

( )
3
22

1

5 4

dx

x x+ − . 

Find a simplified expression for the above integral by introducing a parameter a  and 

carrying out a suitable differentiation under the integral sign. 

You may assume 

2 2

1
arcsin constant

x
dx

aa x

 
= + 

 − , x a≤ . 

You may not use standard integration techniques in this question. 

2

2

9 5 4

x
C

x x

−
+

+ −
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Question 6 

It is given that the following integral converges 

0

en x
x dx

α
∞

− , 

where α  is a positive parameter and n  is a positive integer. 

By carrying out a suitable differentiation under the integral sign, show that 

( )1 !n nΓ + =  . 

You may not use integration by parts or a reduction formula in this question. 

proof  

 

 

 

 

 

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 7 

It is given that the following integral converges 

[ ]
1

0

ln
nm

x x dx , 

where n  is a positive integer and m  is a positive constant. 

By carrying out a suitable differentiation under the integral sign, show that 

[ ]
( )

( )

1

1
0

1 !
ln

1

n
nm

n

n
x x dx

m
+

−
=

+  . 

You may not use standard integration techniques in this question. 

MM1B , proof  
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Question 8 

( )
0

1

cos
dx

x
I

π

α
α

=
− , 1α > . 

a) Use an appropriate method to show that 

( )
2 1

I
π

α
α

=
−

. 

b) By carrying out a suitable differentiation under the integral sign, evaluate 

( )
2

0

1

2 cos

dx

x

π

− . 

You may not use standard integration techniques in this part of the question. 

2π  
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Question 1 

( )2

2

0

ln 1 4x
dx

x
I

∞
+

= . 

By introducing a parameter in the integrand and carrying a suitable differentiation 

under the integral sign show that  

2I π= . 

V , proof  

 

 

 

 

 

 

 

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 2 

It is given that the following integral converges. 

1

0

1

ln

x
dx

x
I

−
=  . 

Evaluate I  by carrying out a suitable differentiation under the integral sign. 

You may not use standard integration techniques in this question. 

V , MM1C , ln 2  
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Question 3 

2 8

0

e e
x x

dx
x

I
∞ − −−

=  . 

By introducing a parameter in the integrand and carrying a suitable differentiation 

under the integral sign show that  

ln 4I = . 

V , proof  
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Question 4 

It is given that 

( )

0

sin

2

kx
dx

kx

π
∞

= . 

Use Leibniz’s integral rule to show that 

2

2

0

sin

2

x
dx

x

π
∞

= . 

MM1J , proof  
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Question 5 

It is given that the following integral converges. 

1 5

0

1

ln

x
dx

x

−

 . 

Evaluate the above integral by introducing a parameter and carrying out a suitable 

differentiation under the integral sign. 

You may not use standard integration techniques in this question. 

ln 6  
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Question 6 

2

0

e sin
x

x
dx

x
I

∞ −

=  . 

By introducing in the integrand a parameter k  and carrying a suitable differentiation 

under the integral sign show that  

arccot 2I = . 

V , MM1E , proof  
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Question 7 

7

0

e e

sec

x x

dx
x x

I
∞ − −−

=  . 

By introducing in the integrand a parameter α  and carrying a suitable differentiation 

under the integral sign show that  

ln5I = . 

V , proof  
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Question 8 

4 6

0

cos
e ex xx

dx
x

I
∞

− − = −
  . 

By introducing in the integrand a parameter λ  and carrying a suitable differentiation 

under the integral sign show that  

1 ln 2
2

I = . 

proof  
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Question 9 

( )
0

e 31 cos
4

x

x dx
x

I
∞ −

 = −
  . 

By introducing in the integrand a parameter λ  and carrying a suitable differentiation 

under the integral sign show that  

ln5 ln 4I = − . 

proof  

  

 

 

 

 

 

 

 

 



Created by T. Madas 
 

Created by T. Madas 
 

Question 10 

It is given that the following integral converges 

0

sin t
dt

t

∞

 . 

Evaluate the above integral by introducing the term e tα− , where α  is a positive 

parameter and carrying out a suitable differentiation under the integral sign. 

You may not use contour integration techniques in this question. 

V , 
2

π
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Question 11 

Show, by carrying out a suitable differentiation under the integral sign, that 

0

e sin
arctan

ax
bx b

dx
x a

∞ −
 

=  
  , 

where a  and b  are positive constants. 

You may assume 

0

sin

2

t
dt

t

π
∞

= . 

V , proof  
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Question 12 

Given that a  is a positive constant, find an exact simplified value for 

( ) ( )
2

2

22 2 2 2
0 0

sin sinxy xy
a dx dx

yx a x x a x

∞ ∞ 
∂  −

 ∂+ +
 

  . 

You may assume 

0

sin

2

t
dt

t

π
∞

= . 

2

π
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Question 13 

1
2

2

0

en x
n x dxI =  ,    0, 1, 2, 3, ...n =  

By introducing in the integrand a parameter k  and carrying a suitable differentiation 

under the integral sign show that  

( )
( )

1 1

0

1 !e
1 !

2 2

n n
n

n n n

r

n n
r

r
I

+ +

=

  − 
= − −  

  
 . 

proof  
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Question 14 

2
1

2 1

0

en x
n x dxI +=  ,    0, 1, 2, 3, ...n =  

By introducing in the integrand a parameter k  and carrying a suitable differentiation 

under the integral sign show that  

( ) ( )
0

e 1
1 ! 1 !

2 2

n

n n
n

r

n
r n

r
I

=

  
= − − −  

  
 . 

proof  
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Question 15 

0

arctan8 arctan 2x x
dx

x
I

∞
−

=  . 

By introducing a parameter in the integrand and carrying a suitable differentiation 

under the integral sign show that  

ln 2I π= . 

V , proof  
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Question 16 

It is given that the following integral converges 

0

e eax bx

dx
x

∞ − −−

 ,  

where  a  and b  are positive constants. 

By carrying out a suitable differentiation under the integral sign, show that 

0

e e
ln

ax bx
b

dx
x a

∞ − −−  
=     . 

V , proof  
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Question 17 

It is given that the following integral converges 

0

cos
e eax bxkx

dx
x

∞
− − −

  ,  

where k , a  and b  are constants with 0a >  and 0b > . 

By carrying out a suitable differentiation under the integral sign, show that 

2 2

2 2
0

cos 1
e e ln

2

ax bxkx b k
dx

x a k

∞
− −  + − =    +    . 

proof  
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Question 18 

It is given that the following integral converges 

1

0
ln

a b
x x

dx
x

−

 ,  

where  a  and b  are constants greater than 1− . 

By carrying out a suitable differentiation under the integral sign, show that 

1

0

1
ln

ln 1

a b
x x a

dx
x b

− + 
=  +   . 

proof  
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Question 19 

It is given that the following integral converges 

0

sin
e eax bxmx

dx
x

∞
− − −

  ,  

where  a , b  and m are constants, with 0m ≠ , 0a > , 0b > . 

By carrying out a suitable differentiation under the integral sign, show that 

0

sin
e e arctan arctanax bxmx b a

dx
x m m

∞
− −     − = −          . 

proof  
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Question 20 

It is given that the following integral converges 

( )2

0

arctan

1

ax
dx

x x

∞

+ , 1a > − . 

By carrying out a suitable differentiation under the integral sign, show that 

( )
( )

2

0

arctan
ln 1

21

ax
dx a

x x

π
∞

= +
+  . 

proof  
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Question 21 

It is given that the following integral converges 

( )2 2

2 2

0

ln 1

1

a x
dx

b x

∞
+

+ ,  

where a  and  b are constants. 

By carrying out a suitable differentiation under the integral sign, show that the exact 

value of the above integral is 

ln
a b

b b

π +
 . 

MM1F , proof  
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Question 22 

It is given that the following integral converges 

2

0

e ex x

dx
x

∞ − −−

 . 

a) By introducing a parameter k  and carrying out a suitable differentiation under 

the integral sign, show that 

2

0

e e
ln 2

x x

dx
x

∞ − −−
= . 

b) Use the result of part (a) and differentiation under the integral sign to show 

further that 

2

0

e 1 1
2 e 2 ln 27

x
x

dx
x x x

∞ −
− 

− + = − +   . 

proof  
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Question 23 

The integral function ( )y y x=  is defined as 

( )

2

21
16

2

cos cos

1 sin

x
x

y x d

π

θ
θ

θ
=

+ . 

Evaluate ( )y π′ . 

2π  
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Question 24 

An integral I  is defined in terms of a parameter α  as 

( )
2

2

2

0

exp x dx
x

I
α

α

∞
 

= − − 
   . 

By carrying out a suitable differentiation on I  under the integral sign, show that  

2

2

0

1
exp

4e16
x dx

x

π
∞

 
− − =   . 

proof  
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Question 25 

An integral I  with variable limits is defined as 

( )

2

e

x
u

x

x duI =  . 

a) Use a suitable substitution followed by integration by parts to find a simplified 

expression for  

( )
d

I x
dx
   . 

b) Verify the answer obtained in part (a) by carrying the differentiation over the 

integral sign. 

MM1D , ( ) 2 e ex xd
I x x

dx
= −    
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Question 26         

Use complex variables and the Leibniz integral rule to evaluate 

( )
1

0

sin ln

ln

x
dx

x . 

You may assume that the integral converges. 

MM1H , 1
4

π  
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Question 27      

2

0

e cosx
x dxI

∞
−=   

Assuming that the above integral converges, use the Leibniz integral rule to evaluate 

it. 

Give the answer in the form 4 k , where k  is an exact constant. 

You may use without proof 
2

0

1e
2

x
dx π

∞
− = . 

MM1I , 
2

4

16e
I

π
=  
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Question 28 

It is given that the following integral converges 

( )
2

0

11 cos
6

x
dx

x

∞
−

 . 

By introducing a parameter in the integrand and carrying out a suitable differentiation 

under the integral sign, show that 

( )
2

0

11 cos
6

12

x
dx

x

π
∞

−
= . 

proof  
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Question 29       

It is given that the following integral converges 

1
2

0

1

ln

x
dx

x
I

 −
=  

  . 

By carrying out a suitable differentiation under the integral sign, show that 

5ln3 3ln 3I = −  . 

V , MM1K , proof  
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Question 30 

It is given that the following integral converges 

1
2

0

e ln
t

t dt

∞
−

 . 

Evaluate the above integral by introducing a new parametric term in the integrand and 

carrying out a suitable differentiation under the integral sign. 

You may assume that 

( ) ( )
1

1 1 1

k

x x
x k x k

γ

∞

=

 
  ′Γ = Γ − + + −  + 

 
 . 

( )2 ln 2γ− +  
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Question 31 

( )2

0

ln 1 cos cos

cos

x
dx

x
I

π

α+
=  . 

By carrying out a suitable differentiation on I  under the integral sign, show that  

2 21 1
8 2

I π α= − . 

proof  
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Question 32 

( )22

2

0

ln 1 3sin

sin

x
dx

x
I

π

+
= . 

By introducing a parameter a  in the integrand and carrying out differentiation on I  

under the integral sign, show that  

I π= . 

proof  
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Question 33 

( )2

0

e e
nn xx

dx
x

I

∞
−− −

= , n ∈� . 

By carrying out a suitable differentiation on I  under the integral sign, show that for 

all  n ∈� , 

ln 2I = . 

proof  
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Question 34 

( ) ( )
1
2

0

1exp tan exp 3 tan
3

sin 2

x x

dx
x

I

π
− − −

= . 

By carrying out a suitable differentiation on I  under the integral sign, show that  

1 ln3
2

I = . 

proof  
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Question 35 

2

2 2
0

1

1 tan
dx

k x
J

π

=
+ ,   1k ≠ . 

a) Use appropriate methods to find, in terms of k , a simplified expression for J . 

( )
( )2

0

arctan tan

tan

k x
k dx

x
I

π

=  ,   1k ≠ . 

b) By carrying out a suitable differentiation on I  under the integral sign, show 

that  

2

0

1cot ln 2
2

x x dx

π

π= . 

c) Deduce the value of   

( )
2

0

ln sin x dx

π

 . 

( )2 1
J

k

π
=

+
, 1 ln 2

2
π−  
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Question 36 

The integral function ( )I k  is defined as 

( ) ( )cos

0

e cos sink x
k k x dxI

π

=  ,   k ∈� . 

By carrying out a suitable differentiation on I  under the integral sign, show that  

( )cos

0

e cos sinx
x dx

π

π= . 

proof  
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Question 37 

( )

0

ln 1 cos cos

cos
dI

π α θ
θ

θ

+
=  . 

By carrying out a suitable differentiation on I  under the integral sign, show that  

( ) 2

0

ln 1 cos

cos 2
d

π θ π
θ

θ

+
= . 

proof  
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Question 38 

( ) ( )
0

ln 1 cosI k k x dx

π

≡ − ,   1k < . 

By differentiating both sides of the above equation with respect to k , show that   

( ) ( )21ln 1 1
2

I k kπ  = − −  
. 

proof  
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Question 39 

Find the following inverse Laplace transform, by using differentiation under the 

integral sign. 

( )
1

2
2 2

s

s a

−

 
 
 

+  

L , 0a > . 

( )
1

2
2 2

sin

2

s t at

a
s a

−

 
 

= 
+  

L  
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Question 40 

The integral I  is defined in terms of the constants α  and k , by 

( ) ( )
2

0

, e cosx
I k kx dx

αα
∞

−≡  ,   0α > . 

By differentiating both sides of the above equation with respect to k , followed by 

integration by parts, show that   

( )
2

2

0

e cos exp
4 4

x k
kx dx

α π

α α

∞
−  

= −  
  . 

You may assume without proof that 

2

0

1e
2

x
dx π

∞
− = . 

You may not use contour integration techniques in this question. 

proof  
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Question 41 

It is given that the following integral converges 

3

0

e 1 1
3 e

x
x

dx
x x x

∞ −
− 

− +   . 

By introducing a parameter λ  and carrying out a suitable differentiation under the 

integral sign, show that 

3

0

e 1 1
3 e 3 ln 256

x
x

dx
x x x

∞ −
− 

− + = − +    . 

proof  
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Question 42 

The following integral is to be evaluated 

2 2 2 2 2

0

ln cos sina b d

π

θ θ θ +
  , 

where a  and b  are distinct constants such that 0a b+ > . 

By carrying out a suitable differentiation under the integral sign, show that 

2 2 2 2 2

0

ln cos sin ln
2

a b
a b d

π

θ θ θ π
+  + =      . 

proof  
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Question 43 

It is given that 

cos
arcsin

1 cos

x
y

x

α

α

+ 
=  + 

, 

where α  is a constant. 

a) Show that 

21

1 cos

dy

dx x

α

α

−
= −

+
. 

The integral function ( ),I xα  is defined as 

( ) ( )
0

ln 1 cosI x dx

π

α α= + . 

b) By differentiating both sides of the above relationship with respect to α , show 

further that   

( )1 ln 2I π= − . 

proof  

 

[ solution overleaf ] 
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Question 44 

By carrying out suitable differentiations on I  under the integral sign, show that  

( ) ( ) ( )
0

271arccot 2 arccot 4 ln
8 4

x x dxI π

∞

= = . 

V , proof  
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Question 45 

( )
2

2

0

e

t
x

A t dx
−

 
≡  
  
 . 

By differentiating both sides of the above equation with respect to t , followed by the 

substitution x ty= , show that   

2

0

1e
2

x
dx π

∞
− = . 

proof  
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Question 46 

( )
2

2

i

0

e

t
x

t dxI −
 

≡  
  
 . 

By differentiating both sides of the above equation with respect to t , followed by the 

substitution x ty= , show that   

( ) ( )2 2

0 0

1cos sin 2
4

x dx x dx π
∞ ∞

= =  . 

proof  
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Question 1 

By integrating both sides of an appropriate integral relationship, with suitable limits, 

show that 

1

0

1
ln

ln 1

b a
x x b

dx
x a

− + 
=  +  , 

where 0b a> > . 

You may assume that for 0k > , constant
ln

x
x k

k dx
k

= + . 

proof  
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Question 2 

By integrating both sides of an appropriate integral relationship, with suitable limits, 

show that 

2 2

2
0

e eax bx

dx b a
x

π π
∞ − −−

= − , 

where 0b a> > . 

You may assume that 
2

0

1e
2

t
dt π

∞
− = . 

proof  
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Question 3 

The integral I  is defined as 

0

e sinkx
x dxI

∞

=  . 

where k  is a constant. 

a) Use a suitable method to show that 

2

1

1
I

k
=

+
. 

b) By integrating both sides of an appropriate integral relationship with respect to 

k , with suitable limits, show further that 

2

0

e sin
arccot 2

x
x

dx
x

∞ −

= . 

You may assume that  
0

sin

2

x
dx

x

π
∞

= . 

 

proof  
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Question 4 

By integrating both sides of an appropriate integral relationship with respect to b , 

with suitable limits, show that 

0

e sinh 1 1
ln

2 1

x
bx b

dx
x b

∞ − + 
=  −  . 

proof  

 

 

 

 

 

 


