DIFFERENCE EQUATIONS

Created by T. Madas

Question 1 (**)
A sequence of numbers $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, \ldots, T_{n}, \ldots$ is generated by the recurrence relation

$$
T_{n+1}=2 T_{n}-5, \quad T_{1}=6
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.
\square
$T_{n}=2^{n-1}+5$

Created by T. Madas

Created by T. Madas

Question 2 (**)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+1}=2 u_{n}+n, \quad u_{1}=2
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.
$\square, u_{n}=2^{n+1}-n-1$

$44_{4}=22_{1}+h_{1}, 4+2$	
	Semomemen
$\frac{c^{\prime}}{}$	
-	atice
$\Rightarrow 4=$	

Created by T. Madas

Created by T. Madas

Question 3 (**+)
A sequence of numbers $b_{1}, b_{2}, b_{3}, b_{4}, b_{5} \ldots, b_{n}, \ldots$ is generated by

$$
b_{n+2}=2 b_{n}+n, \quad b_{1}=1, \quad b_{2}=5
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

$$
b_{n}=2^{n}+(-1)^{n}
$$

Created by T. Madas

Question 4 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+1}=2 u_{n}-n^{2}+3, \quad u_{1}=2
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

Created by T. Madas

Question 5 (***)
A sequence of numbers $t_{1}, t_{2}, t_{3}, t_{4}, t_{5} \ldots, t_{n}, \ldots$ is generated by the recurrence relation

$$
t_{n+1}=(A+1) t_{n}-M, \quad t_{1}=M,
$$

where A and M are positive constants.

Determine an expression for the $n^{\text {th }}$ term of this sequence is given by

$\xi_{t}=t_{t}(+1+)-M-t_{1}=M$
$t_{t . m-} t_{(}(t+1)=-\mu$

- Auxcuater equation
$\lambda-(A+i)=0$
$\lambda=A+1$
\therefore "Complimmiary functan" $\quad t_{1}=(A+1)^{n} \times \Gamma^{D}$ constant - "Parnavir interact"

TRY $\quad t_{n}=c$ (bashan)
$\begin{aligned}-A c & =M \\ c & =-\frac{M}{A}\end{aligned}$

$\begin{aligned} t_{1}=\mu & \Rightarrow M=M\left(A M+\frac{M}{A}=P(A+1)^{A}\right. \\ & \Rightarrow M\end{aligned}$
$\Rightarrow \frac{M A+M}{A}=P(A+1)$ $\Rightarrow \frac{M(A+1)}{A}=P(A+1)$ $\left\{\begin{array}{l}A+L \neq 0 \\ \text { ortacoust }\end{array}\right.$ Trubrew sovran.
$\Rightarrow P=\frac{M}{A}$
$t_{1}=\frac{M}{A}(+1+1)^{n}-\frac{M}{A}$
$t_{n}=\frac{M}{A}\left[(4+1)^{2}-1\right]$

Question 6 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the following recurrence relation

$$
u_{n+2}=u_{n+1}+6 u_{n}, \quad u_{1}=1, \quad u_{2}=1
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

Question 7 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+2}=5 u_{n+1}-6 u_{n}+4 n, \quad u_{1}=1, u_{2}=3 .
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

Question 8 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+1}=u_{n}+3 n-2, \quad u_{1}=-1
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

Give the answer in the form $u_{n}=\frac{1}{2}(a n+b)(n+c)$, where a, b and c are integers.
\square

Question 9 (***)
A sequence of numbers, $u_{1}, u_{2}, u_{3}, u_{4}, \ldots$, is defined by

$$
u_{n+1}=3 u_{n}-1, \quad u_{1}=2
$$

Determine, in terms of n, a simplified expression for

$$
\sum_{r=1}^{n} u_{r}
$$

\square

$$
S_{n}=\frac{1}{4}\left[3^{n+1}+2 n-3\right]
$$

$$
\Rightarrow \oint_{n}=\sum_{r=1}^{n}\left(\frac{1}{2}+\frac{1}{2}\left(b^{n}\right)=\frac{1}{2} \sum_{r=1}^{n} 1+\frac{1}{2} \sum_{n=1}^{n}\right.
$$

$$
\rightarrow s_{4}=\frac{1}{2} \times n+\frac{1}{2}\left(3+3^{2}+3^{2}+3^{4}+\cdots+3^{n}\right)
$$

$$
\Rightarrow s_{4}=\frac{n}{2}+\frac{1}{2}\left(\frac{3\left(3^{n}-1\right)}{3-1}\right)=\frac{n}{2}+\frac{1}{7}\left(3^{n+1}-3\right) .
$$

$$
\Rightarrow S_{1}=\frac{n}{2}+\frac{3^{4+1}-3}{4}
$$

$\Rightarrow \underline{s_{4}=\frac{3^{n+1}+2 n-3}{t}}$

Question 10 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+1}=u_{n}+n+1, \quad u_{1}=0
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence is given by

$$
u_{n}=\frac{1}{2}(n+A)(n+B),
$$

where A and B are integers to be found.

Question 11 (***)
A sequence of numbers $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} \ldots, u_{n}, \ldots$ is generated by the recurrence relation

$$
u_{n+1}=4 u_{n}-(n+1)^{2}, \quad u_{1}=2
$$

Determine an expression for the $n^{\text {th }}$ term of this sequence.

$$
u_{n}=\frac{107}{108}\left(4^{n}\right)-\frac{1}{3} n^{2}-\frac{8}{9} n-\frac{20}{27}=\frac{1}{108}\left[107\left(4^{n}\right)-\left(36 n^{2}+96 n+80\right)\right]
$$

Question 12 (***+)
Arecurrence relation is defined as

$$
u_{n+1}=(\sin x) u_{n}+\cos 2 x, u_{1}=k, 0<x<\frac{\pi}{2}
$$

a) Explain why this recurrence relation will converge to a limit L, for all real values of the constant k.
b) Given that $L=\frac{1}{2} \sin x$, write the recurrence relation in the form

$$
u_{n+1}=A u_{n}+B
$$

where A and B are rational constants to be found.
c) Given further that $k=\frac{305}{24}$, show that $u_{4}=4$.

$$
u_{n+1}=\frac{1}{3} u_{n}+\frac{1}{9}
$$

Created by T. Madas

Question 13 (****)
The Fibonacci sequence of numbers is generated by the recurrence relation

$$
u_{n+2}=u_{n+1}+u_{n}, \quad n \in \mathbb{N}
$$

with $u_{1}=1, u_{2}=1$.

Solve the above difference equation to show that the $n^{\text {th }}$ term of Fibonacci sequence is given by

$$
u_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Question 14 (****)
A sequence of numbers is generated by the recurrence relation

$$
u_{n+2}=2 u_{n+1}-2 u_{n}, \quad n \in \mathbb{N}
$$

with $u_{1}=1, u_{2}=6$.

Determine a simplified expression for the $n^{\text {th }}$ term of this sequence.
The final answer may not contain complex numbers

$$
u_{n}=\frac{1}{2}(-2+3 \mathrm{i})(1-\mathrm{i})^{n}-\frac{1}{2}(2+3 \mathrm{i})(1+\mathrm{i})^{n}=2^{\frac{1}{2} n}\left[3 \sin \left(\frac{1}{4} n \pi\right)-2 \mathrm{~s} \cos \left(\frac{1}{4} n \pi\right)\right],
$$

\square

$\Rightarrow A i-B i=3$	$\rightarrow A(1+i)+B(1-i)=1$
$\Rightarrow A-B=\frac{3}{i}$	$\Rightarrow(B-3 i)(1+i)+B(1-i)=1$
$\rightarrow A-B=-3 i$	$\Rightarrow B(1+i)-3 P(1+i)+8(1-i)=1$
$\Rightarrow A=B-3 i$	$\Rightarrow 2 B=1+3 i(1+i)$
	$\Rightarrow 2 B=1+3 i-3$
	$\Rightarrow B=-1+\frac{3}{2} i$ or $\frac{1}{2}(-2+3 i)$
	tus Hence
	$A=-1+\frac{3}{2} i-3 i$
	$A=-1-\frac{3}{2} i$ or $-\frac{1}{2}(2+3 i)$

THe Southaw and Now Be wertion As

 $\left.\Rightarrow u_{4}=\frac{1}{2}\left[(-2+3 i)\left(\sqrt{2} e^{-i q}\right)^{n}-(2+3 i)\left(\sqrt{2} e^{i}\right)^{4}\right)^{n}\right]$ $\Rightarrow u_{\eta}=\frac{1}{2}\left[(-2+3 i)\left(2^{2-2 \pi} e^{\frac{1 \pi}{4}}\right)-(2+3 i)\left(2^{2} e^{\left.i \frac{\pi y}{7}\right)}\right]\right.$

Created by T. Madas

Question 15 (****)
A sequence of numbers is generated by the recurrence relation

$$
u_{n}=5 u_{n-1}-4 u_{n-2}-12 n+31, \quad n \in \mathbb{N}, \quad n \geq 2
$$

with $u_{0}=7, u_{1}=9$.

Determine a simplified expression for the $n^{\text {th }}$ term of this sequence.

Question 16 (****)
A sequence of numbers is generated by the recurrence relation

$$
a_{n+2}=a_{n+1}-a_{n}+21\left(2^{n}\right), \quad n \in \mathbb{N}
$$

with $a_{0}=10, a_{1}=\frac{1}{2}[31+5 \sqrt{3}]$.

Determine a simplified expression for the $n^{\text {th }}$ term of this sequence.

$$
a_{n}=7 \times 2^{n}+3 \cos \left(\frac{1}{3} \pi n\right)+5 \sin \left(\frac{1}{3} \pi n\right)
$$

"Auxilunder GPuAtan" $\lambda^{2}-\lambda+1=0$ $4 \lambda^{2}-4 \lambda+4=0$
$4 \lambda^{2}-4 \lambda+1=-3$ $(2 x-1)^{2}=-3$ $2 \lambda-1= \pm \sqrt{3}$
\qquad Try "Pratioune" sowntian

SOBSTLUTNG WND THK REATIION
$4 P \times 2^{n}=2 P \times 2^{n}$
$\begin{aligned} 3 p & =21 \\ P & =7\end{aligned}$
$\therefore a_{n}=A\left(\frac{1+\sqrt{3} i}{2}\right)^{n}+B\left(\frac{1-\sqrt{5} i}{2}\right)^{n}+7 \times 2^{n}$
$\left.a_{4}=A\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{n}+B\left(\cos \frac{\pi}{3}-i \sin 4\right)^{4}\right)^{n}+7 \times 2^{4}$
$a_{n}=A\left(\cos \frac{\pi n}{3}+i \sin \frac{\pi n}{3}\right)+B\left(\cos \frac{\pi n}{3}-i \sin \frac{\pi n}{3}\right)+7 \times 2^{n}$
$a_{n}=(A+B) \cos \frac{\pi n}{3}+i(A-B) \sin \pi n$
\qquad
findully hefey consotroas
$a_{0}=10^{\circ} \Rightarrow 10=D+7 \quad \Rightarrow \quad D=3$
$a_{1}=\frac{1}{2}(31+5 \sqrt{3}) \Rightarrow \frac{1}{2}(31+5 \sqrt{3})=D \times \frac{1}{2}+\frac{\sqrt{3}}{2} E+14$ $\Rightarrow 3 r+5 \sqrt{3}=3+\sqrt{3} E+28$ $\Rightarrow E=5$

Created by T. Madas

Question 17 (****)
A sequence is defined by the recurrence relation

$$
u_{n}=\frac{2 n}{2 n+1} u_{n-1}, n \in \mathbb{N} \quad u_{0}=1 .
$$

Show, by direct manipulation, that

$$
u_{n}=\frac{4^{n} \times(n!)^{2}}{(2 n+1)!}
$$

[you may not use proof by induction]

Created by T. Madas

Question 18 (****)
A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{n}{2 n+1} u_{n}, n \in \mathbb{N} \quad u_{1}=2
$$

Show, by direct manipulation, that
[you may not use proof by induction]

Question 19 (****+)
The $n^{\text {th }}$ term of a series is given recursively by

$$
A_{n}=\frac{a(2 n+1)}{2 n+4} A_{n-1}, n \in \mathbb{N}, n \geq 1
$$

where a is a positive constant.

Given further that $A_{0}=1$, show that

