COMPLEX

VARIABLES

CALCULATIONS OF RESIDUES

Question 1

$$
f(z) \equiv \frac{\sin z}{z^{2}}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$.

Question 2

$$
f(z) \equiv \mathrm{e}^{z} z^{-5}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$.
(20)

$$
4, \quad \square, \operatorname{res}(z=0)=\frac{1}{24}
$$

Created by T. Madas

Question 3

$$
f(z) \equiv \frac{z^{2}+2 z+1}{z^{2}-2 z+1}, z \in \mathbb{C}
$$

3
Find the residue of the pole of $f(z)$.
\square
, $\operatorname{res}(z=1)=4$

FACTBREIG THE ANTON
$f(z)=\frac{z^{2}+2 z+1}{z^{2}-2 z+1}=\frac{(z+1)^{2}}{(z-1)^{2}}$
$\underline{\underline{f(z)} \text { HAS A DOUBLE POLL AT } z=1}$

$\left.=\lim _{z \rightarrow 1}[8 x+1)\right]$
$= \pm$

Question 4

$$
f(z) \equiv \frac{2 z+1}{z^{2}-z-2}, z \in \mathbb{C}
$$

Find the residue of each of the two poles of $f(z)$.
\square $\operatorname{res}(z=2)=\frac{5}{3}, \operatorname{res}(z=-1)=\frac{1}{3}$

Start by facherzing The Denominator $f(z)=\frac{2 z+1}{z^{2}-z-2}=\frac{2 z+1}{(z+1)(z-2)}$
$\underline{f(z) \text { HAS SIMPAt Poles aT } z=-1 \text { \& a } A^{T} z=2}$

- $\operatorname{Res}(f ;-1)=\operatorname{Lim}_{z \rightarrow-1}[(z+1) f(z)]-\operatorname{Lim}_{z \rightarrow-1}\left[\left(z+1 \pi \frac{2 z+1}{(z+1)(z-2)}\right]\right.$
$=\frac{2(-1)+1}{-1-2}=\frac{-1}{-3}=\frac{1}{3}$
- $\operatorname{Res}(f ; 2)=\lim _{z \rightarrow 2}[(z-z) f(z)]=\lim _{z \rightarrow 2}\left[\operatorname{sz-2} \frac{2 z+1}{(z-2)(z+1)}\right]$ $=\frac{2 \times 2+1}{2+1}=\frac{5}{3}$

Created by T. Madas

Question 5

$$
f(z) \equiv \frac{z}{2 z^{2}-5 z+2}, \quad z \in \mathbb{C}
$$

Find the residue of each of the two poles of $f(z)$.

Question 6

$$
f(z) \equiv \frac{1-\mathrm{e}^{\mathrm{i} z}}{z^{3}}, z \in \mathbb{C}
$$

a) Find the first four terms in the Laurent expansion of $f(z)$ and hence state the residue of the pole of $f(z)$.
b) Determine the residue of the pole of $f(z)$ by an alternative method

$$
\operatorname{res}(z=0)=\frac{1}{2}
$$

$$
f(z) \equiv \frac{z^{2}+4}{z^{3}+2 z^{2}+2 z}, z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

$$
\operatorname{res}(z=0)=2, \operatorname{res}(z=-1+\mathrm{i})=\frac{1}{2}(-1+3 \mathrm{i}), \operatorname{res}(z=-1-\mathrm{i})=-\frac{1}{2}(1+3 \mathrm{i})
$$

Question 8

$$
f(z) \equiv \frac{\tan 3 z}{z^{4}}, z \in \mathbb{C}
$$

\square

Fieroy $\begin{aligned} z^{3}+2 z^{2}+2 z & =z\left(z^{2}+2 z+2\right) \\ & =z\left[(z+1)^{2}-1+2\right)\end{aligned}$ $=z\left[(z+1)^{2}+1\right]$ - $\lim _{z \rightarrow 0}[z f(z)]=\lim _{z \rightarrow \infty}\left[z \frac{z^{2}+4}{z\left(z^{2}+z+z\right)}\right]=\frac{4}{2}=2$ - $\lim _{z \rightarrow+1+i}[$ (3 $\left.4-1) \frac{z^{2}+4}{z(3+-1(2)+i)]}\right]=\lim _{z \rightarrow-1+i}\left[\frac{z^{2}+4}{z(z+1+i)}\right]$ $=\frac{(-1+i)^{2}+t}{(-1+i)(-1+i+1+i)}=\frac{1-2 i-1+4}{2 i(-1+i)}=\frac{k-2 i}{-2-2 i}=\frac{2-i}{-1-i}$ $=\frac{(2-i)(-1+i)}{(-1-i)(-i+i)}=\frac{-2+2 i+i+1}{2}=\frac{-i+3 i}{2}=\frac{1}{2}(-1+3 i)$ - $\lim _{z \rightarrow-1-i}\left[(z+z+i) \frac{z^{2}+4}{z(z+1-1)(z+1+i)}\right]=\lim _{z \rightarrow-1-1}\left[\frac{z^{2}+4}{z(z+1-1)}\right]$ $=\frac{(-1-1)^{2}+4}{(-1-i)(-1-i+1-i)}=\frac{(1+i)^{2}+4}{-(1+i)(-2 i)}=\frac{(+i+2)^{2}+4}{2 i(1+i)}=\frac{1+2 i-1+4}{-2+2 i}=\frac{4+2 i}{-2+2 i}$ $=\frac{-+1}{-i+i}=\frac{(2+i)(-1-1)}{(-1+i)(-1-i)}=\frac{-2-2 i-i+1}{2}=\frac{-1-3 i}{2}=-\frac{1}{2}(1+3 i)$

Find the residue of the pole of $f(z)$.

Created by T. Madas

Question 9

$$
f(z) \equiv \frac{z^{2}-2 z}{\left(z^{2}+4\right)(z+1)^{2}}, z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

$$
\operatorname{res}(z=2 \mathrm{i})=\frac{1}{25}(7+\mathrm{i}), \operatorname{res}(z=-2 \mathrm{i})=\frac{1}{25}(7-\mathrm{i}), \operatorname{res}(z=-1)=-\frac{14}{25}
$$

Question 10
$\left\{f(z)=\frac{z^{2}-2 z}{(z+1)^{2}(z+4)}=\frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)} \quad \begin{array}{ll}\text { thas supt fotts AT } z= \pm 2 i \\ \text { Hts +Dousit folt A } z=-1\end{array}\right.$ - manoct at $2 i$
$\lim _{z \rightarrow 2 i}\left[(z-2 i) \frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)}\right]=\lim _{z \rightarrow 2 i}\left[\frac{z^{2}-2 z}{(z+2 i)(z+1)^{2}}\right]=\frac{-4-4 i}{4 i(1+2 i)^{2}}$ $=\frac{-1-i}{\mid\left(1+\left.2 i\right|^{2}\right.}=\frac{(-1-i)(1-2 i)^{2}}{i \times 5 \times 5}=\frac{-(1+i)(1-4 i-4)}{25 i}=\frac{-(1+i)(-3-i i)}{25 i}$ $=\frac{(1+i)(3+4 i)}{25 i}=\frac{3+4 i+3 i-4}{25 i}=\frac{-1+7 i}{75 i}=\frac{-i-7}{-25}=\frac{7+i}{25}$ - RESIDU大 告 $-2 i$ $\lim _{2 \rightarrow-4}\left[(z+2 i) \frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)}\right]=\lim _{b \rightarrow-2 i}\left[\frac{z^{2}-2 z}{(914)^{2}(z-4 i)}\right]=\frac{-4+4 i}{(1-2)^{2}(-4 i)}$ $=\frac{1-i}{\left((1-2 i)^{2}\right.}=\frac{(1-i)(1+2 i)^{2}}{t \times 5 \times 5}=\frac{(1-i)(1+4 i-4)}{25 i}=\frac{(1-i)(-3+4 i)}{25 i}=\frac{-3+4 i+3 i+4}{25 i}$ $=\frac{1+7 i}{25 i}-\frac{i-7}{-25}+\frac{7 i}{25}$ atsiout 4. -1
 $\frac{s(-4)+2(3)}{s^{2}}=\frac{-20+6}{25}-\frac{14}{25}$

Find the residue of the pole of $f(z)$, at the origin.

Created by T. Madas

Created by T. Madas

Question 11

$$
f(z) \equiv \frac{z}{\left(3 z^{2}-10 \mathrm{i} z-3\right)^{2}}, z \in \mathbb{C}
$$

Find the residue of each of the two poles of $f(z)$.

$$
\operatorname{res}(z=3 \mathrm{i})=\frac{5}{256}, \quad \operatorname{res}\left(z=\frac{1}{3} \mathrm{i}\right)=-\frac{5}{256}
$$

Created by T. Madas

Question 12

$$
f(z) \equiv \frac{\cot z \operatorname{coth} z}{z^{3}}, z \in \mathbb{C}
$$

Find the residue of the pole of $f(z)$ at $z=0$.
\square $\operatorname{res}(z=0)=-\frac{7}{45}$

IB Best to findo THf zefiout By Expfinsias for $f(z)=\frac{\operatorname{cotzooth} z}{z^{3}}$ $f(z)=\frac{1}{z^{3}} \times \frac{\cos z}{\sin z} \times \frac{\cosh z}{\sin z}$
$=\frac{1}{z^{3}} \times \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}+o\left(z^{4}\right)}{z-\frac{z^{3}}{5}+\frac{z^{5}}{5}+o\left(z^{3}\right)} \times \frac{1+\frac{z^{2}}{2}+\frac{z^{4}}{24}+o\left(z^{(}\right)}{z+\frac{z^{3}}{3}}$ $=\frac{1}{z^{5}} \times \frac{1-\frac{z^{2}}{2}+\frac{z^{9}}{5}+0\left(z^{4}\right)}{1-\frac{z^{2}}{6}+\frac{z^{2}}{7^{2}}+O\left(z^{6}\right)} \times \frac{1+\frac{z^{2}}{2}+\frac{z^{4}}{4}+O(z)}{1+\frac{z^{2}}{4}+\frac{z^{4}}{4}+0(z)}$ $\frac{1}{25}>1+\frac{z^{2}}{2}+\frac{z^{4}}{4}-z^{2}-\frac{z^{4}}{4}+z^{4}+o\left(z^{c}\right)$
 $=\frac{1}{z^{5}} \times \frac{1-\frac{1}{6} z^{4}+O\left(z^{6}\right)}{1-\frac{1}{90} z^{4}+O\left(z^{6}\right)}$

Pewette in oence to complete the expanstal
$=\frac{1}{z^{5}}\left[1-\frac{1}{6} z^{4}+o\left(z^{6}\right)\right]\left[1-\frac{1}{9_{0}} z^{4}+o\left(z^{6}\right)\right]^{-1}$
$=\frac{1}{75}\left[1-\frac{1}{6} z^{4}+o\left(z^{c}\right)\right]\left[1+\frac{1}{30} z^{4}+o\left(z^{4}\right)\right]$
$=\frac{1}{z^{8}}\left[1+\frac{1}{80^{2}} z^{2}-\frac{1}{6} z^{4}-\frac{1}{5 p^{2}} z^{8}+o\left(z^{0}\right)\right]$
$=\frac{1}{z^{2}}\left[1-\frac{7}{18 z^{4}}+o\left(z^{8}\right)\right]$
$=\frac{1}{2^{5}}-\frac{7}{4 \sqrt{2}}+o\left(z^{2}\right)$

Created by T. Madas

Question 13

$$
f(z) \equiv \frac{z^{6}+1}{2 z^{5}-5 z^{4}+2 z^{3}}, \quad z \in \mathbb{C}
$$

Find the residue of each of the three poles of $f(z)$.

Question 14

$$
f(z)=\frac{4}{z^{2}(1-2 \mathrm{i})+6 z \mathrm{i}-(1+2 \mathrm{i})}, z \in \mathbb{C} .
$$

Find the residue of each of the two poles of $f(z)$.

$$
\operatorname{res}(z=2-\mathrm{i})=\mathrm{i}, \quad \operatorname{res}\left(z=\frac{1}{5}(2-\mathrm{i})\right)=-\mathrm{i}
$$

$\xi(z)=\frac{4}{z^{2}(1-2 i)+6 i z-(1+2 i)}$
BY THE Qutidnatic. Formwer
$z=\frac{-6 i \pm \sqrt{\left(6 i i^{2}+4(i-2 i)(1+2 i)\right.}}{2(1-2 i)}=\frac{-6 i \pm \sqrt{36+4 \times 5}}{2(i-2 i)}=\frac{-6 i+\sqrt{-6 i}}{2(1-2 i)}$
$=\frac{-6 i \pm 4 i}{2(1-2 i)}=\frac{(-3 \pm 2) i}{1-2 i}=\left\langle\frac{-i}{i-2 i}=\frac{i(4+2 i)}{-5 i}=\frac{1}{1+4}(2-i)\right.$
$f(z)$ his suple pous it $z=2-i$ a $\frac{1}{5}(2-i)$

- $\lim _{z \rightarrow 2-i}\left[(z-2+i) \times \frac{4}{z^{2}(1-2 i)+6 i z-(1+2 i)}\right]=\frac{0}{0}=\cdots B y L^{2}+\operatorname{tasp}(t a L \ldots$
$=\lim _{z \rightarrow 2-i}\left[\frac{4}{2 z(1-2 i)+6 i}\right]=\frac{4}{2(2-i)(1-2 i)+6 i}=\frac{2}{(2-i)(-2 i)+3 i}$
$=\frac{2}{2-4 i-i-2+3 i}=\frac{2}{-2 i}=-\frac{1}{i}=i$
$\lim _{z \rightarrow \frac{1}{5}(2 i)}\left[\left[z-\frac{1}{5}(z-i)\right] \times \frac{4}{z^{2}(1-2 i)+5 i z-(1+2 i)}\right]=\frac{0}{0}=\ldots \operatorname{By} L^{2}$ Hospirat
$=\lim _{z \rightarrow \frac{1}{5}(2-i)}\left[\frac{4}{2 z(1-2 i)+6 i}\right]=\frac{4}{2 \times \frac{1}{5}(2-i)(1-2 i)+6 i}=\frac{10}{(2-i)(1-2 i)+15 i}$ $=\frac{10}{2-4 i-i z x+15 i}=\frac{10}{10 i}=\frac{1}{i}=-i$

Question 15

$$
f(z) \equiv \frac{z \mathrm{e}^{k z}}{z^{4}+1}, z \in \mathbb{C}, k \in \mathbb{R}, k>0
$$

Show that the sum of the residues of the four poles of $f(z)$, is
\square , proof

LAURENT SERIES

Created by T. Madas

Question 1
Determine a Laurent series for

$$
f(z)=\frac{1}{z}
$$

which is valid in the infinite annulus $|z-1|>1$.

Question 2
Determine a Laurent series for

$$
f(z)=\frac{\mathrm{e}^{2 z}}{(z-1)^{3}}
$$

Created by T. Madas

Question 3
Determine a Laurent series for

Question 4
Determine a Laurent series for

$$
f(z)=\frac{1}{z^{2}-1}
$$

which is valid in the punctured disc $0<|z-1|<2$.

Created by T. Madas

Question 5
Determine a Laurent series for

Created by T. Madas

Question 6
Determine a Laurent series for

$$
f(z)=\frac{5 z+3 \mathrm{i}}{z(z+\mathrm{i})}
$$

which is valid in the annulus $1<|z-\mathrm{i}|<2$.

$$
\frac{5 z+3 \mathrm{i}}{z(z+\mathrm{i})}=\sum_{r=0}^{\infty}\left[\frac{3(-\mathrm{i})^{r}}{(z-\mathrm{i})^{r+1}}\right]-\mathrm{i} \sum_{r=0}^{\infty}\left[\frac{(z-\mathrm{i})^{r}}{(-2 \mathrm{i})^{r}}\right]
$$

Question 7
Determine a Laurent series for

$$
f(z)=\frac{1}{(z-1)(z+2)}
$$

which is valid in ...
a) ... the annulus $1<|z-2|<4$.
b) \ldots in the region for which $|z-2|>4$.

$$
f(z)=\frac{1}{3} \sum_{r=1}^{\infty}\left[(-1)^{r+1}(z-2)^{-r}\right]-\frac{1}{12} \sum_{r=0}^{\infty}\left[(-1)^{r}\left(\frac{z-2}{4}\right)^{r}\right]
$$

$$
f(z)=\sum_{r=0}^{\infty} \frac{(-1)^{r}-(-4)^{r}}{3(z-2)^{r+1}}
$$

VARIOUS

Question 1
The complex number $z=c+a \cos \theta+\mathrm{i} b \sin \theta, 0 \leq \theta<2 \pi$, traces a closed contour C, where a, b and c are positive real numbers with $a>c$.

By considering
show that

$$
\int_{0}^{2 \pi} \frac{a+c \cos \theta}{(c+a \cos \theta)^{2}+(b \sin \theta)^{2}} d \theta=\frac{2 \pi}{b}
$$

