INTEGA THEOREM. ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

Creen's Theo. Halfshalls Cont 1.4 C.B. Halfstalls Cont 1.4 C.B. Halfshalls Cont 1.4 C.B. Halfsh TASTRAILS COM I. Y. C.P. MARASTRAILS COM

Question 1

Use Green's Theorem on the plane to evaluate the line integral

 $\oint \left[y \, dx \, + \, x(2+y) \, dy \right] \, ,$

where C is a circle of radius 1, centre at the origin O, traced anticlockwise.

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Old Divertia) at A country
(2+9)-(1)] dxdy = ((y+1, dxdy)
3300))
" (х ² ң ² з ^с т)
$= \iint_{\mathbf{p}} 1 d\mathbf{x} d\mathbf{y}$
- ARH OF R
= "T × 1 ² "
=1
· · · ·

 π

Question 2

Use Green's Theorem on the plane to evaluate the line integral

 $\oint (2x-y)dx + (2y+x) dy,$

where C is the path around the ellipse with equation $x^2 + 4y^2 = 4$, taken in an anticlockwise direction.

 4π

of (22-g) de + (23+2) dy = we exercise Theseen
$\int_{C} L dx + M dy = \iint \left(\frac{\partial M}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$
$= \iint_{\mathcal{S}} \frac{g_{2}}{\mathcal{S}}(\mathcal{S}(x) - \frac{g_{3}}{\mathcal{S}}(x, y) dx dy = \iint_{\mathcal{S}} (-(-i) dx dy = \iint_{\mathcal{S}} S dx dy$
$= 2 \times A6rA \circ F THE Equarse = 8 \times 30 T = 8 T = 4 T = 4 T = $
La Tre

Question 3

Use Green's Theorem on the plane to evaluate the line integral

 $\oint_C y(x+1)e^x dx + x(e^x+1) dy,$

where C is a circle of radius 1, centre at the origin O, traced anticlockwise.

12dasn.

Y.C.P.

Smaths,

'smaths

I.F.G.B.

$\int_{c} y(\alpha + 1)e^{\alpha} d\alpha + a(e^{\alpha} + 1) dy$	$\left(\begin{array}{c} \vdots & \hat{a}^{+} y^{2} = 1 \end{array}\right)$
$\left(\int_{c} P dx + Q dy = \iint_{R} \left(\frac{2Q}{\partial x} - \frac{2P}{\partial y} \right) dx$	edy }
$\int_{\mathcal{L}} \underbrace{(\underline{y}(\mathbf{x}+t)]_{\mathbf{q}}^{\mathbf{q}}}_{\mathbf{q}} d\mathbf{x} + \underbrace{(\underline{x}_{\mathbf{q}}^{\mathbf{q}}+t)}_{\mathbf{q}} d\mathbf{y}$ $\iint_{\mathbf{q}} \underbrace{(\underline{x}_{\mathbf{q}}^{\mathbf{q}} + \underline{x}_{\mathbf{q}}^{\mathbf{q}}(t)) - (\underline{x}_{\mathbf{q}}^{\mathbf{q}} + \underline{e}^{\mathbf{q}})}_{\mathbf{q}} d\mathbf{y}$	$\frac{\partial \sigma}{\partial \theta} = 1 \left(e_{x}^{x} \right) + 1 \left(e_{x}^{x} \right)$
H gettet +1 - te - et dady	$\frac{\partial h}{\partial b} = (xH)e_x$
∯ I dady *	
- TT-	

nadasm.

200

21/15

I.F.G.B.

Ths.com

 π

nadasma

COM

Inadasn

in.

Created by T. Madas

COM

Question 4

The functions F and G are defined as

 $F(x, y) = x^{2}y$ and $G(x, y) = (x + y)^{2}$

The anticlockwise path along the perimeter of the triangle whose vertices are located at (0,0), (1,0) and (0,1), is denoted by C.

(F dx + G dy).

Use Green's Theorem on the plane to evaluate the line integral

 $F(x_{ij}) = x_{ij}^{2}$ $F(x_{ij}) = x_{ij}^{2}$ $F(x_{ij}) = (x_{ij})^{2}$ $F(x_{ij}) = (x_{ij})^{2$

 $\frac{7}{12}$

Question 5

C.p.

K.C.

The contour C is the boundary of a triangle with vertices at the points with Cartesian coordinates (0,0), (1,0) and (1,2), traced in an anticlockwise direction.

Verify Green's Theorem on the plane for the line integral

 $\oint (3x+4y)dx+(5x-2y)dy.$

[(0-4)-0] - [5-0] L=O. U BINS RUM NEXT GREEN'S THEOREM STATES $Pdx + Qdy = \left(\left(\frac{2Q}{2x} - \frac{2P}{2y} \right) dxdy \right)$ $\iint \left[\frac{\partial}{\partial x}(Sz-2y) - \frac{\partial}{\partial y}(3z+4y)\right] dzdy$ [32+4(22)]dx+[S2-2(22)](2-2) (5-4) dyda $dx + \int_{-\infty}^{\infty} s - 2y dy$ da du $-\int ^{1}$ Ba da + $\int_{a}^{2} 5 - 2y dy$ = {5-2y dy -102 dz THE TRANSLE $= \left[Sy - y^2\right]_{p}^{2} - \left[Sx^2\right]_{p}^{1}$ ND THE TEHROLEAN IL

both sides yield 1

Question 6

The functions P(x, y) and Q(x, y) have continuous first order partial derivatives.

a) State formally Green's theorem in the plane, with reference to P and Q.

The contour C is the boundary of a triangle with vertices at the points with Cartesian coordinates (0,0), (1,0) and (1,2).

 $\left(xy^3\right)dx + \left(x^2 - y^2\right)dy\,.$

b) Verify Green's Theorem on the plane for the line integral

 $\begin{bmatrix} 4\\ 3\\ 2\\ 3\\ 2\\ -\frac{9}{5} - \frac{9}{5} \times \begin{bmatrix} 1\\ 3\\ 2\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ 2\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\ 3\\ -\frac{9}{5} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1\\$

Question 7

- The functions P(x, y) and Q(x, y) have continuous first order partial derivatives.
 - a) State formally Green's theorem in the plane, with reference to the functions, P and Q.
 - **b**) Evaluate the integral

 $\int_{-1}^{1} \int_{x^2}^{1} \left(x^2 - 7 y^2 \right) dy \, dx \, .$

c) By considering a line integral over a suitable contour C, use Green's theorem in the plane to independently verify the answer to part (b).

64	
a)	If Play) & Qlay) the astronous field ease thank secondary W A BOON R W THE any RANK AND N THE acces socially retain aways R , Thin R &
	$\oint P dx + O dy = \iint \left(\frac{\partial u}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$ where is in the holocations:
Ы	START WITH A SKETCH SHOWING THE REGION OF INTHRAATTON
	$ \int_{1}^{1} \left(\frac{1}{2} \frac{1}{2}, \frac{1}{2} \frac{1}{2} \right)_{2,4}^{2,4} = \varphi $
2	$\int_{-1}^{1} x^{2} - \frac{2}{3} - (x^{2} - \frac{2}{3}x^{6}) dx$
11	$\int_{-1}^{1} \frac{\frac{1}{3}x^{2} - x^{4} + x^{5} - \frac{3}{3}}{4x} d\lambda = 2 \int_{0}^{1} \frac{1}{3}x^{4} - 2x^{4} + 2x^{2} - \frac{14}{3}}{4x} d\lambda$
U	$\begin{bmatrix} \frac{1}{2}\chi^2 - \frac{1}{2}\chi^2 + \frac{1}{2}\chi^2 - \frac{1}{2}\end{bmatrix}_0^0 = \frac{1}{2} + \frac{1}{2} $
) !	NOW WE ALL TO OLFANDE THE WITHERN IN 4 "WHIL FREN"
	$4eT - \frac{\partial P}{\partial g} = x^2 - 7g^2$
	$\begin{array}{l} \frac{2\mathfrak{P}}{2\mathfrak{G}} = \mathfrak{G}^2 - \mathfrak{x}^2 \\ \mathfrak{H}_{\mathcal{G}(\mathfrak{g})} = \hspace{0.1cm} \frac{2}{3}\mathfrak{Y}^4 - \mathfrak{X}_3 + \hspace{0.1cm} F(\mathfrak{z}) \end{array}$

 $\frac{56}{15}$

Question 8

ŀ.G.B.

I.F.G.B.

The closed curve C bounds the finite region R in the x-y plane defined as

$$R(x, y) = \{x + y \ge 0 \ \cap \ x - y \le 0 \ \cap \ x^2 + y^2 \le 1\}$$

Evaluate the line integral

 $\oint (xy\,dx\,+\,x^2\,dy),$

where C is traced anticlockwise.

K.C.B.

0

3

Question 9

I.G.p

I.F.G.B.

An ellipse has Cartesian equation

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$

where a and b positive constants.

Use Green's theorem in the plane, to show that the area of the ellipse is πab .

Checks Therefore on the Prace where $P = P(Q_{1}) = Q_{1} = Q_{2} = Q_{1}$ $\begin{cases} P d_{2} + Q d_{3} = \int_{R} \int_{R} \frac{2Q_{1}}{2Q_{2}} \frac{2Q_{2}}{2Q_{3}} \int_{R} \frac{Q_{2}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \frac{Q_{3}}{2Q_{3}} \int_{R} \frac{Q_{3}}{2Q_{3}} \int_$

.Y.C.P.

proof

F.C.S.

Question 10

64

KR

It is given that the vector function \mathbf{F} satisfies

$$\mathbf{F} = \left(\sin x^3 - xy\right)\mathbf{i} + \left(x + y^3 \sin y\right)\mathbf{j}$$

Evaluate the line integral

where C is the ellipse with cartesian equation

 $2x^2 + 3y^2 = 2y \,.$

Princeels As Poulaus	
$ \oint \underline{f} \cdot d\underline{r} = \oint (an\underline{x}^{t} - \underline{x}_{0}, \underline{y}^{t}siny + \underline{x}) (d\underline{x}_{0}d\underline{y}) $	
= f (smai-zy)da +(yishy+2)	dy
WW GREAS'S THEOREM ON THE NAME ASSERS THAT	
$\oint P d\mathbf{a} + P d\mathbf{y} = \oint_{R} \left(\frac{\Im Q}{\Im a} - \frac{2P}{\Im y} \right) d$	bidy
APRYING IT HERE YIGLDS	
$\cdots = \bigoplus_{n=1}^{n} \left[\frac{\Im [n]_{2}nn_{n+1}}{\Im [n]_{2}nn_{n+1}} - \frac{\Im [2nn_{n+1}}{\Im [n]_{2}} \right]$	-२५]] क हंग
$= \iint_{\mathbf{R}} [-x] dx dy$	$\begin{array}{c} \begin{array}{c} & & \\ P: 2t^{2} + 3y^{2} = 2y \\ & & \\ 2t^{2} + 3y^{2} - 2y = 0 \end{array}$
NOOL LOCIONS AT THE REGION R junction is the ELLARE ANALYSED ORRIGHT WE ANDE	322 + y2 + 2y =0
$= \oint_{\mathbf{R}} \int d\mathbf{x} d\mathbf{y}$	$\frac{3}{3}x^{2} + (\underline{y}, \underline{z})^{2} = \frac{1}{9}$ $6x^{2} + 9(\underline{y}, \underline{z})^{2} = 1$
the set is the also thread in t shoutbland bouthe in se	a. + (4-2) = 1
= 1× 484 OF THE ECLIPSE	
$= \frac{1 \times \pi \times \frac{1}{3} \times \frac{1}{12}}{3 \alpha}$	
- 347	

 $\frac{\pi}{3\sqrt{6}}$

Question 11

It is given that the vector function \mathbf{F} satisfies

$$\mathbf{F} = \left[x\cos x\right]\mathbf{i} + \left[15xy + \ln\left(1+y^3\right)\right]\mathbf{j}$$

Evaluate the line integral

I.G.B.

9- (x4-2x2+1) da

 $B + 2x^2 - x^4$ do

 $120 + 30a^2 - 15a^4$ da

 $\left[120x + 10x^3 - 3x^5\right]_0^2$ (240 + 80 - 96) - (0) 100

madas,

224

FG.B.

かっ

where C is the curve

F.G.B.

I.G.p.

the curve

$$\{(x, y): y = 3, -2 \le x \le 2\} \cup \{(x, y): y = x^2 - 1, -2 \le x \le 2\},$$

traced in an anticlockwise direction.

asmaths.com

asiliatils.com

1.1.6.

2023112113

Gauss Iso known a I.Y.C.B ASIRALISCORT I. Y. G.B. MARASIRALISCORT I. Y. G.B. MARASIN ńØ Theorem

Question 1

V.G.B. Mal

I.C.p

$$\mathbf{A}(x, y, z) \equiv (2x + y - z)\mathbf{i} + (xy^2z)\mathbf{j} + (xy - 2yz)\mathbf{k}.$$

al
$$\mathbf{A} \cdot \mathbf{dS},$$

Evaluate the integral

where S is the closed surface enclosing the finite region V, defined by

 $-1 \le x \le 2$ $-2 \le y \le 2,$ $1 \le z \le 3$.

2017

48

2017

mada

F.G.B.

. G.D.

2

Question 2

nanas,

maths.co

I.V.G.B

The surface S is the sphere with Cartesian equation

 $x^2 + y^2 + z^2 = 1$

 $\bigoplus \left(x^2 + y + z\right) dS \, .$

Use the Divergence Theorem to evaluate

	ST 11.		
A start here and here	-0 P2	ACTIONAL THIS IS NOT A FUX INTERAL , IT ON SE MANIF	WATER
		As follows, since the subpace is about the Diver	REFERE
~ C / D .		THEOREM CAN BE USED	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f and the C	
		$\iint_{S} a^{2} + y + z ds = \iint_{S} (x_{1}, y) \cdot (x_{1}y_{1}z) ds$	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		× ×	
- C.D.		Now we take since the subarus a sphere	
	· · · · · · · · · · · · · · · · · · ·	$\lesssim : \hat{\alpha}_{+}^{2} + \hat{\alpha}_{-}^{2} + \hat{z}_{-}^{2}$	
		$-\frac{1}{2}(3,U_1;2) = 3^{2}+4^{2}+2^{2}-1$	
		$\nabla f = (2x_1, 2y_1, 2z_1)$	
· · · · · · · · · · · · · · · · · · ·	3.	$\underline{N} = (3, \underline{u}, \underline{z})$	
		$\begin{array}{l} \nabla \mathcal{J}_{k}^{\prime} = \left( 2\epsilon_{k}, 2\epsilon_{k}, 2\epsilon_{k} \right) \\ \underline{\mathcal{M}} = \left( 2\epsilon_{k}, 2\epsilon_{k} \right) \\ \underline{\mathcal{M}} = \left( 2\epsilon_{k}, 2\epsilon_{k} \right) \\ \underline{\mathcal{M}}_{k} = \sqrt{2}\epsilon_{k} \frac{2}{2}\epsilon_{k} + 2\epsilon^{2} = 1 \end{array}$	
	- A		
	1 I S	$\therefore  \boxed{\underline{v}} = C^{A} \hat{n}^{A} \hat{r}^{A}$	
1 h	10	RETORNING TO THE INTEGRAL, WE NOW THAT	
<b>Y</b> . <b>I S</b>		ſ, ĸ	
	10 M Y	$\dots = \iint_{S} (x_{i},i_{1}) \cdot \underline{\hat{\mathcal{U}}} dS = \iint_{S} \underline{F} \cdot \underline{\hat{\mathcal{U}}} dg$	
		\$ \$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BY THE DUNNOFACE THEOREM	
		$= \iint_{V} \underline{\nabla} \cdot \underline{F}  dv = \iint_{V} \left( \frac{\partial}{\partial x_{l}} \cdot \frac{\partial}{\partial y_{l}} \cdot \frac{\partial}{\partial x_{l}} \right) \cdot \left( 2\eta_{l} \cdot 1 \right)$	dv
~~ <i>K</i>			
		1.00	
			1
		- C.D	
	<u></u>	Sel 1	
	9	° ( / ~	
70. 4		and the second s	
G MAL	00	Sec. 6 1	
	100	- U.D.	
	The second se		
and the second			1.
· · · · / / /		· · · · · · · · · · · · · · · · · · ·	۰,
- C / D _	1		6
		/ · · · · ·	1
	C.I.	7Y	28
~ / / / ·			1
- C.A.			
		"0 / 1	
	2		
	· · · · · · · · · · · · · · · · · · ·	Car .	
Y		- <i>'</i> / <i>n</i>	
<u>)</u>			
	- <b>4</b> . 15		
J. K.	- 19 Jr _		
- W. # 3			1.



200

Kaj.

the COL

.G.5.

1.1.

Madasn

The Com

 $\frac{4}{3}\pi$ 

aths com

I.V.C.B.

Created by T. Madas

N.C.

Question 3

F.G.B.

I.G.B.

$$\mathbf{F}(x, y, z) \equiv z^{2}\mathbf{i} + (y^{2} - x^{2})\mathbf{j} + (x^{2} + z^{2})\mathbf{k}$$

Evaluate the integral



where S is the surface of a cylinder of radius 1, whose axis is the z axis, between z=0 and z=6.

191	2
$\underbrace{\left[ \underbrace{F}_{i} = \left( \widehat{x}_{i}^{2} \widehat{y}_{i}^{2} \widehat{x}_{i}^{2}, \widehat{y}_{i}^{2}, \widehat{z}^{2} \right) \right]}_{i}$	42
FUX = $\int \underline{f} \cdot d\underline{\beta} = \int \underline{\nabla} \cdot \underline{f}  dV$ (BY THE INVECTIONCE THEOREM)	a states
$= \int_{V} \left( \frac{\partial_{z_1}}{\partial z_1} \frac{\partial_{z_1}}{\partial z_1} \frac{\partial_{z_2}}{\partial z_2} \right) \cdot \left( z_1^2 y_1^2 - y_1^2 z_1^2 + z_2^2 \right) dV$	
$= \int_{V} (0 + 2j + 2z) dv$ $(\text{Casic outputteries} + 4 \times 4 \times 5)$ $= \int_{-1}^{\infty} \int_{-1}^{-6} (2 (\text{Case} + 3z) (r drdbdz))$	
$= \int_{0}^{2\pi0} \int_{0}^{2\pi0} \int_{0}^{2\pi0} \left( \sum_{i=1}^{2\pi0} \int_{0}^{2\pi0} \int_{0}^{2\pi$	
$= \int_{\frac{2}{2}\pi_0}^{6} \int_{0}^{1} \int_{$	
$= \int_{2\pi0}^{6} \int_{0\pi0}^{2\pi} z d\theta dz$	
$= 3\pi \int_{2\infty}^{6} Z dz$ $= 3\pi \left[ + 2^{2} \right]^{6}$	

E.P.

36*π* 

3

6

Question 4

2017

I.V.C.P.

I.G.B.

$$\mathbf{F}(x, y, z) \equiv xy\mathbf{i} + y\mathbf{j} + 4\mathbf{k} \, .$$

Evaluate the integral



where S is the **closed** surface enclosing the finite region V, defined by

 $x^2 + y^2 \le 9 \,, \quad x \ge 0 \,,$  $0 \le z \le 4 \, .$  $y \ge 0$ ,



I.V.G.B.

2017

I.G.S.

4.4

.

nn

 $= b \frac{\mathbb{E}}{\alpha = \theta} \left[ \frac{\theta - p}{2} + \theta \cos P^{-} \right]$ 

### Created by T. Madas

2017

### Question 5

The vector field  $\mathbf{F}$  exists inside and around the finite region V, defined by the inequalities

 $0 \le x \le 3$ ,  $0 \le y \le 4$  and  $0 \le z \le 2$ .

Use V to verify the Divergence Theorem of Gauss, given further that

 $\mathbf{F}(x, y, z) \equiv x^2 \mathbf{i} + z \mathbf{j} + y z \mathbf{k} \,.$ 

both sides yield 120

 $\underline{\nabla} \cdot \underline{F} dv = \int \underline{F} \cdot d\underline{d}$ # 전-트에 = # 트·징 야 F= (212, 92)  $\int_{\frac{1}{2}}^{1}\int_{0}^{1}\left(\frac{\partial}{\partial x}_{1}\frac{\partial}{\partial y}_{1},\frac{\partial}{\partial z}_{2}\right)*\left(2t_{1}^{2}z_{1}y_{2}\right) dxdydz = \int_{0}^{2}\int_{0}^{1}\int_{0}^{1}\left(2t_{1}+y\right) dxdydz$  $\int_{0}^{2} \int_{0}^{4} \left( 2^{2} + yz \right)_{2z0}^{3} dy de = \int_{0}^{2} \int_{0}^{4} 9 + 3y dy de = \int_{0}^{2} \left( 9y + \frac{2}{3}y^{2} \right)_{0}^{4} de$  $36 + 24 d_2 = \int_{0}^{2} 60 d_2 = (box]_{0}^{2} = (20)$  $\int \underbrace{\begin{pmatrix} g_{1},g_{2},g_{3}, \\ g_{1},g_{2},g_{3}, \\ g_{1},g_{2},g_{3}, \\ g_{2},g_{3}, \\ g_{3},g_{3}, \\ g_{3},g_{$  $+ \int_{\mathcal{S}} (\lambda^2_{1} z_{1} o) \cdot (o_{1} - i_{1} o) dx dx + \int_{\mathcal{S}} (\lambda^2_{1} z_{1} z_{2}) \cdot (o_{1} - i_{1}) dx dy + \int_{\mathcal{S}} (\lambda^2_{1} c_{2} o) \cdot (\overline{a_{0}} - i_{1}) dx dy$  $= \int_{\partial \sigma}^2 \int_{\partial \sigma}^q dg \, dg + \int_{\partial \sigma}^2 \int_{\partial \sigma}^3 dz \, dg + \int_{\partial \sigma}^2 \int_{\partial \sigma}^3 dz \, dg + \int_{\partial \sigma}^2 \int_{\partial \sigma}^3 dz \, dg + \int_{\partial \sigma}^4 \int_{\partial \sigma}^3 2g \, dz \, dg$  $= \int_{0}^{z} \left[ q_{ij} \right]_{0}^{4} dz + \int_{0}^{4} \left[ 2u_{ij} \right]_{x,v_{0}}^{3} dy = \int_{0}^{2} 3\zeta dz + \int_{0}^{4} \underline{G}_{ij} dy$  $= \left[3k_{2}\right]_{0}^{2} + \left[3g_{-}^{2}\right]_{0}^{4} = (72-0) + (48-0) = (20)$ 

Question 6

Y.C.B. Madas

I.C.B.

 $\mathbf{F}(x, y, z) \equiv (x + y^2)\mathbf{i} + (2y + xz)\mathbf{j} + (3z + xyz)\mathbf{k}.$ 

Evaluate the integral



where S is the surface with Cartesian equation

 $4x^2 + 4y^2 + 4z^2 = 1.$ 

Af. ds = Q f. h de C 6+ zy du nosme) (12500 dideda) p [rsmo] dreb dd

COM

17.21/2.S.

 $\pi$ 

nn

mada

F.G.B.

. (.)

= 6× ± T(±)

### **Question 7**

0

A smooth vector field  $\mathbf{A}$ , exists in and on the boundary of a smooth closed surface S, and  $\hat{\mathbf{n}}$  is an outward unit vector to S.

a) Show that

 $\nabla \wedge \mathbf{A} \cdot \hat{\mathbf{n}} \, dS = 0$ 

You may find the Divergence Theorem useful in this part.

**b**) Prove the validity of the result of part (**a**) if

•  $\mathbf{A} = xy\mathbf{i} + y^2\mathbf{j} + zx^2\mathbf{k}$ 

•  $S: x^2 + y^2 + z^2 = 1, \ z \ge 0.$ 

<i>a</i> )	BY THE DUKRPENCE THEREAN
	$\iint_V \underline{\mathbb{Y}} \cdot \underline{\mathbb{F}} \cdot dV = \underset{j \neq v}{\bigoplus} \underline{\mathbb{F}} \cdot d\underline{\mathbb{Z}}  \text{where solver a currence solveral} \\ \underbrace{\mathbb{Y}}_{j \neq v} \underline{\mathbb{Y}} \cdot \underline{\mathbb{F}} \cdot dv = \underset{j \neq v}{\bigoplus} \underline{\mathbb{F}} \cdot d\underline{\mathbb{Z}}  \text{where solveral} $
	THUS LET F = V, A FOR SOME WEEDE FITTE A
	So $\iiint \overline{Y} \cdot (\overline{Y}, \underline{A}) dv = \bigoplus_{\underline{A}} \overline{Y} \cdot \underline{A} \cdot \underline{A} d\underline{A}$
	BAT ∑. (∑, A)=0 , internet
	$\therefore \oint \underline{\nabla} \underline{\nabla} \underline{\nabla} \underline{\nabla} \underline{\nabla} \underline{\nabla} \underline{\nabla} \underline{\nabla}$
Ŋ.	$4 = (ay_1, y_1^2, ax_2)$
	$ \begin{array}{c} \sum_{A} \frac{1}{2} = \left  \begin{array}{c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{2\pi}{2} & \frac{2\pi}{2} \\ \frac{2\pi}{2} \\ \frac{2\pi}{2} & 2\pi$
	The subtree is a dominance with three lines of the subtract $\psi(x_1,y_2,y_3,y_4) = \frac{1}{2} 1$
	$\overline{\mu} = (\chi_{1}g_{1}z_{1})$ $ \underline{\mu}  = \sqrt{\chi_{1}g_{1}^{2}z_{2}^{2}} = \sqrt{1} = 1$ $\sum_{i=1}^{n} \chi_{1}g_{i}z_{2} = \sqrt{1}$
	$\overline{y} = (\alpha^{(2)})$

THE QUELY SUBACE SI, JA . A. B ds  $x^{2} = (x^{1} - x) \cdot (x^{1} \overline{a}^{1} \overline{s}) q_{\overline{a}}^{2}$  $\frac{\partial y}{\partial x} - \frac{\partial x}{\partial x} \frac{\partial y}{\partial x} \frac{\partial y}{\partial y} = \int_{x}^{x}$ SPHERE & a).(0,0,-1) d\$ = y = c Q V.A.ds

proof

### Question 8

5.

Y.G.B.

A vector field,  $\mathbf{F}$ , exists inside and around the finite region V, defined by

 $x^2 + y^2 = 4$ ,  $x \ge 0$ ,  $y \ge 0$ ,  $0 \le z \le 3$ .

Use V to verify the Divergence Theorem of Gauss, given further that

 $\mathbf{F}(x, y, z) \equiv x^2 \mathbf{i} + \mathbf{j} + z \mathbf{k} \ .$ 

V.Edv = E.dz P V.E du = # E.B ds 저 = (읎,,,,,,,,)=(20  $\underline{F} = (\underline{x}_{1}^{2} | z)$  $\frac{\dot{N}}{\dot{N}}=\frac{\dot{(\alpha_1\underline{\beta}\,\alpha)}}{(\alpha_1\underline{\beta}\,\alpha)}=\frac{1}{2}(\beta_1\underline{\beta}_1\alpha)$  $\underline{\nabla} \cdot \underline{\Gamma} \, dV = \ \int \left( \frac{\partial}{\partial t} (\frac{\partial}{\partial t}) \frac{\partial}{\partial t} \right) \cdot \left( \mathcal{R}_{1}^{t} (t, \overline{t}) \right) \, dV = \int \mathcal{R}_{t} (t, dv)$  $\int_{-\infty}^{2} (2r^{2}\cos\theta + r) dr d\theta da$ [= (shaber)(HBa  $\left[\frac{3}{3}t^{2}\omega\theta + \frac{1}{2}t^{2}\right]_{mm}^{mm} = \int_{0}^{3}\int_{0}^{\frac{m}{2}}\int_{0}^{\frac{m}{2}}\frac{k}{3}\omega\theta + 2 \quad d\theta \cdot dz$  $\int_{0}^{3} \left[ \frac{1}{R} \cos \theta + 2\theta \right]_{\frac{W^{2}}{2}}^{W^{2}} d\theta = \int_{0}^{3} \left( \frac{1}{R} + \pi \right) - 0 d\theta$ 

 $\frac{4}{3} + \pi dz = \left(\frac{4}{3}z + \pi z\right)^3 = (46 + 3\pi) - 0 = 3\pi + 10$ 

$$\begin{split} & \int_{\frac{1}{2}} (x_{i}^{1}, \bar{s}) \cdot (\alpha_{i}, i) \, d\beta \; + \int_{\frac{1}{2}} (\Delta_{i}^{1}, 0) \cdot (\alpha_{i}, i) \, d\beta' + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, i) \, d\beta' \\ & + \int_{\frac{1}{2}} (\omega_{i}^{1}, 1, \bar{s}) \cdot \frac{1}{2} (A_{i}, \alpha_{i}) \, d\beta \; + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, \alpha_{i}) \, d\beta' \\ & + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, \alpha_{i}) \, d\beta \; + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, \alpha_{i}) \, d\beta' + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, \alpha_{i}) \, d\beta' + \int_{\frac{1}{2}} (\omega_{i}^{1}, \alpha_{i}) \cdot (\alpha_{i}, \alpha_{i}) \, d\beta' + \int_{\frac{1}{2}} (\omega_{i}, \alpha_{i})$$

 $3 d = + \int_{\mathcal{L}} \frac{1}{2} x^2 + \frac{1}{2} y d = + \int_{\mathcal{L}} -1 d y$  $= (3 \times h_{2} + \sigma_{1} \not\leq) + \int_{\Sigma} \dot{\Sigma} \dot{Z}^{2} + \dot{\Sigma} \dot{Y} d\zeta - I \times h_{2} + \sigma_{1} \not\leq_{5}$  $= 3 \times \frac{1}{4} \times (\pi \times 2^2) + \int_{2} \frac{1}{2} (2\omega_3 \theta_1^2 + \frac{1}{2} (2\omega_3 \theta_1) (2d\theta dz)$ =  $3\sqrt{1} + \int_{-\infty}^{\infty} \int_{-\infty}^{\frac{\pi}{2}} \partial \omega d\theta + 23m \theta d\theta d\theta = 6$ * W  $\Theta_{b} = b \left( \Theta_{m2} (c + \Theta_{m2}^{c}) \right)_{\Theta_{m}}^{2} \left[ \frac{\Xi}{2} \right]_{\sigma=0}^{2} \left( + 2 - \pi c \right)_{\Theta_{m}}^{2}$ d\$=2.66dz  $= 3\eta - 6 + \int^{\frac{\pi}{2}} \left( \frac{8(\alpha S^2 + 2\beta)}{\beta} \right)^{\frac{\pi}{2}} d\theta$  $\overline{\mathcal{F}}$  24uc2+62m0 d0 = 31-6 4 + ( T 24600 ()-2470) + 62100 d0 317-6 + ( = 24609-246095189 + CSMB dQ 31-6 + 24an0-85140-6600 317-6 + [(24-8-0)-(0-0-6)] 31-6 +22

P.C.A

both sides yield  $3\pi + 16$ 

24

5

### Question 9

KGB. III.

I.C.p

## $\mathbf{F}(x, y, z) \equiv (x + yz)\mathbf{i} + (y^3z + x)\mathbf{j} + (z + xyz)\mathbf{k}$

Use the Divergence Theorem of Gauss to find the flux through the **open** surface with Cartesian equation

 $x^2 + y^2 = 1, \ 0 \le z \le 4.$ 

= (x+yz,y=+x, z+xyz)  $\overline{\bigtriangleup} \cdot \overline{L} = \left( \frac{\partial}{\partial x} , \frac{\partial}{\partial y} , \frac{\partial}{\partial z} \right) \cdot \left( x + \beta \varepsilon^{\dagger} \partial_{z} + x^{\dagger} \varepsilon + x \partial \varepsilon \right)$  $\nabla \cdot \underline{F} = 1 + 3y^2 + 1 + xy$ X.E = 2+24 + 3892 ∯ [2+ 32y2] dv AS THE 2.9.  $\left[2 + 32(rsm0)^{2}\right]\left[rdrd0d2\right] =$  $\left(2r + 32r^3u^2\theta\right) drd\theta dz$ 2r+ 32r3(1-20020) drddd 2r + 3213 dr do de  $\mathfrak{A} \int_{\frac{\pi}{2}}^{2\omega} \int_{1}^{1\omega} \mathfrak{T}_{k} + \frac{\pi}{2} \mathfrak{s}_{12} \, q_{12} \, q_{23} = \mathfrak{I}_{k} \int_{0}^{2\omega} \left[ \mathfrak{L}_{2} + \frac{\pi}{2} \mathfrak{L}_{k} \mathfrak{T}_{-1}^{1\omega} \, q_{23} \right] \, q_{24}$  $\Im u \left( \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left( i + \frac{3}{2} \mathcal{S} \right) \, d\xi \quad = \Im u \left[ -\frac{1}{2} + \frac{1}{3} \mathcal{S}_{z} \right]_{+}^{0} \Rightarrow \quad \Im u \left[ \left( \frac{1}{2} + 3 \right)^{-0} \right]$ 



ø

I.C.B.

mana

 $10\pi$ 

### **Question 10**

F.G.B.

I.C.p

A vector field,  $\mathbf{F}$ , exists inside and around the sphere S, with Cartesian equation

 $x^2 + y^2 + z^2 = 1.$ 

Evaluate the surface integral



where **F**(*x*, *y*, *z*) = 3x**i** +  $y^2$ **j** +  $z^2$ **k**.

F all the	1.45
	1.000
E E m	
	100
The second se	
the second s	
V # # #	
	14 -
18 M M	41
mm	
(F- (2x 12-22) and THE DUPCING of THE AVAN 21.2.2	N
$\left( F = \left( 3\alpha_{x} u_{1}^{2} z^{2} \right) \text{ one the subject of the shift } z^{2} u_{1}^{2} z^{2} \right)$	)
man	C
[ -	
J E. dy = J R.E dV (SWEELSHERE & QUEAD)	
( and a sheep and a constant of a constant	
$= \int \left(\frac{2}{3x}, \frac{3}{3y}, \frac{3}{2x}\right) \cdot \left(\frac{3x}{2x}, \frac{y}{2}\right)^{2x^{2}} dV = \int \frac{3+2y+2x}{2x} dV$	
= ] ( sx 1 sh , ss 1 ( 121 = ) an = ] 3+ sh + ss qn	
v V	
SUTTUY IND SAMERICAL PAULOR DAVIDATES	
(# 1 C )	
$= \int_{100}^{10} \int_{10}^{10} \left[ 3 + 2r \sin \theta \sin \phi + 2r \cos \theta \right] \left[ r^{3} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi d\phi \right] \sum_{n=0}^{\infty} \frac{1}{2} \left[ r^{2} \sin \theta dr d\theta d\phi $	my
I I I I I I I I I I I I I I I I I I I	rsimBoosch }
2 4 5	rendend ?
$= \int_{q_{res}}^{2\pi} \int_{res}^{\pi} \int_{res}^{1} 3r_{s}^{2} \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta 2 \eta \theta 2 \eta \theta + 2r_{s}^{2} a \theta + 2r_{s}^{2} a$	react S
- John Low The Hole River The A	y2+22=12 >
Minestring and the set	3
( RESPECT TO & ZENO ROM THE INTERATION)	r ² sinbdinlod4
Mail Station ID B	Sam
$= \int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} \int_{-\infty}^{1} 3f_{20} \theta  dr  d\theta  d\phi$	
John Jono Jan	
6	
$- \left[ \int_{d_{100}}^{2T} 1 d\phi \right] \left[ \int_{d_{100}}^{T} \sin\theta  d\theta \right] \left( \int_{-1}^{1} 3t^2  dt \right]$	
Have Lyers Aldride	
10 T	
$= \left[ \phi \right]_{\alpha}^{2\eta} \left[ -\omega_{2} \phi \right]_{\alpha}^{\eta} \left[ r^{3} \right]_{\alpha}^{\beta} $	MWH m
	- 2 5
= 21 × 2 × 1 / 400 / 400 / 1	3 risuldaddddy
	a the s
= 4T /	~~ (
( C OA HOUME I	
7= 3x 4π=	4TT )
that a	Land

 $4\pi$ 

Com

F.G.p.

K.C.

### Question 11

KC,

I.C.

- a) State Gauss' Divergence Theorem for closed surfaces, fully defining all the quantities involved.
- b) Verify Gauss' Divergence Theorem for closed surfaces for the vector field

 $\mathbf{F} = xz\mathbf{i} + 2y^2\mathbf{j} + (xyz + z^2 + 6)\mathbf{k}$ 

 $x^2 + y^2 + 4z^2 = 4, \ z \ge 0.$ 

for the finite region defined as

both sides yield  $3\pi$ ∭ ∑.f dv = ∯f.ds  $\left[ \begin{array}{c} 2 \\ \frac{3}{2}\Gamma \times \frac{1}{4}(4-r^2) \ dr \ d\theta \end{array} \right. = \left. \frac{3}{8} \right]_{n=0}^{2\Gamma} \left[ \begin{array}{c} 2 \\ r(4-r^2) \ dr \ d\theta \end{array} \right.$  $\Theta \in \overline{F} = (\overline{F}_1, \overline{F}_2, \overline{F}_3)_1 \implies IS \neq \underline{O}$  $\frac{3}{6} \left[ -\frac{1}{4} \left( \left( 4 - r^2 \right)^2 \right)_0^2 d\beta = -\frac{3}{32} \int_{\theta=0}^{2\pi} \left( 0 - i\epsilon \right) d\theta = -\frac{3}{22} \int_{\theta=0}^{2\pi} 1 d\theta$ NERT THE SUBFACE INTERNAL CONSISTING OF TWO SUBFICES 12+2=4 1F 2=0 9742=1 32+422=1 - 240-4 - - - - (qo-1) T297 HADHINI HAWK AFF e looking at \$  $\overline{\Delta} \cdot \overline{E} = \left( \frac{3}{24}, \frac{3}{23}, \frac{3}{25} \right) \cdot \left( 3\overline{z}, \frac{3}{29}, \frac{3}{2}, \frac{3}{29}, \frac{3}{2}, \frac{3}{29}, \frac{3}{2}, \frac{3}{29}, \frac{3}{2}, \frac{3}{29}, \frac{3}{2}, \frac{3}{29}, \frac{3}{29$  $\nabla \left( \mathfrak{X}^2 \mathfrak{t} \mathfrak{Y}^2 \mathfrak{t} \mathfrak{Y} \mathfrak{Z}^2 \mathfrak{H} \mathfrak{Z}^2 \mathfrak{H} \right) = \left( \mathfrak{Z} \mathfrak{X}_1 \mathfrak{Z} \mathfrak{Y}_1 \mathfrak{R} \mathfrak{R} \right)$ 4 + 24 + 28 = Jul + 44 + 32  $\underline{M} = (a, y, u_{\underline{n}})$  $\overline{\underline{W}} = \frac{(\alpha_1 q_1 q_2)}{\sqrt{\alpha_1^2 q_1^2 + 16\theta^2}}$ ∬ ∑.E. dadyd;  $f_{\cdot,\underline{h}} = (x_{\epsilon_1} z_{4}^2 z_{4} z_{4} z_{+\epsilon}) \cdot (x_{\epsilon_1,4} z_{+\epsilon})$  $\int_{0}^{2\pi} \int_{-\infty}^{2} \int_{-\infty}^{\frac{\pi}{2} - \frac{1}{2}(4-r)\frac{1}{2}} \left[ (\cos\theta)(5\sin\theta) + 4(\sin\theta + 3\frac{\pi}{2}) (rdrd\theta d2) \right]$ 2+4+42=4  $= \frac{x^2 x + 2y^3 + 4y y^2 + 4z^2 + 4z}{\sqrt{x^2 + y^2 + 16z^3}}$  $\int_{100}^{2} \int_{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times$  $\begin{array}{c} Te \\ \sigma = \theta b \ \theta \mu 2 \\ \end{array} \begin{array}{c} Te \\ \rho \end{array} \begin{array}{c} \sigma = \theta b \ \theta \mu 2 \ \theta 2 \\ \end{array} \begin{array}{c} \sigma = \theta b \ \theta \mu 2 \ \theta 2 \\ \end{array} \end{array}$  $\int \underline{F} \cdot ds = \int \underline{f} \cdot \underline{n} ds = \int \frac{n^2 \epsilon + 2n^2 + 4n \epsilon^2 + 2n \epsilon}{\sqrt{n^2 \epsilon + 2n \epsilon}} ds$  $\sum_{n=1}^{2} \left[ \frac{1}{2} \frac{2^n}{2} r \right]^{\frac{n}{2} - \frac{1}{2}} (4)$  $\begin{array}{c} d_{ij}^{k} = & \frac{d_{k}d_{j}}{\hat{M}\cdot\hat{E}} = & \frac{u_{0}u_{0}}{\sqrt{2^{k}g^{2}+62^{2}}} \cdot (q_{ij}_{1}) \end{array} \end{array}$ FINALLY THE SUBACE MATCHAC ALLONG SZ 42  $\vec{h} = (q_0, -1) = -\vec{k} \quad (p_N \quad p_2^1)$ This PErternis and the Relian R (area  $R:\pi^{2}+g^{2}=4)$  $\iint \underline{f} \cdot d_{\underline{S}} = \iint \underline{f} \cdot \underline{n}^{\underline{n}} d\underline{s} = \iint (2\underline{z}_1, \underline{y}_1^{\underline{s}}, a_{\underline{B}\underline{s}} + \underline{z}^2 + \varepsilon) \cdot (a_{0}c_1) dady$ 22+23+4742+623+2422 Jat+97+1622 didy [] - zyz - z2 = 6 drdy a² + 24³ + 424 = 42 + 24 de dy (94CE 2=0 ON S',) 1 -6 dadu -6 × ARAA OF 2 sunto de =0 - 290 F3 + 241 drdb [4r 1020 + 252 - 11r + 12r2] 2 de  $\oint f \cdot d \leq = \iint f \cdot d \leq + \iint f \cdot d \leq$ - 2717 - 2817 4639+8-4+19 dt 4(+++20020)+52 20 = + = [][ <u>V.f</u> dv  $=\frac{1}{4}\int_{0}^{2\pi} 54 + 2\cos 2\theta \, d\theta$ = { [S+0 + SH26] 21 = AXITX9

### Question 12

.C.

Y.C.

The region V is defined as

 $x^{2} + y^{2} + (z+4)^{2} \le 25, z \ge 0.$ 

- a) Use cylindrical polar coordinates  $(r, \theta, z)$  to find the volume of this region.
- b) Use Gauss' Divergence Theorem for closed surfaces, with an appropriate vector field, to verify the answer obtained in part (a)

e titlesetm e ∯ ∑.E du = ∯ E.d≦ Plot 4 share  $\underline{f}$  with Invariance ( (out) , SAY  $\underline{f} = (\alpha_1 \alpha_2, o)$ THE SPHARICAL CAP WITH A PLAN Si: 2²+y²+(2+4)²=21, ₹≥1 S₂: x²+y²=9 r dzdrd∂ = LET f(1== 2+y2+(2+4)2-25  $\nabla f = (2x_1 2y_1 2(3+4))$ 
$$\begin{split} |\mathcal{D}| &= \mathcal{O} \\ |\mathcal{D}| &= \mathcal{O} \\ \overline{\mathcal{D}} &=$$
 $\int_{-\frac{1}{2}}^{\frac{1}{2}} f\left(-\frac{1}{2} + \sqrt{2r-r^{2}}\right) dr d\theta = \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} -\frac{1}{2} f\left(-\frac{1}{2} + \frac{1}{2}\right)^{\frac{1}{2}} dr d\theta$  $\left[-2r^{2}-\frac{1}{3}(2z-r^{2})^{\frac{1}{2}}\right]_{r=0}^{3}d\theta = \int_{P_{r=0}}^{2\eta} \left[2r^{2}+\frac{1}{3}(z_{1}-r^{2})^{\frac{1}{2}}\right]_{3}^{0}d\theta$  $(\mu+\mathcal{F}_{1} | \mathcal{G}_{1} \mathcal{G}_{1})^{2} = \frac{1}{2} (\mathcal{G}_{1} \mathcal{G}_{1} \mathcal{G}_{1})^{2}$  $\underline{F} \cdot \underline{\hat{n}} ds = \int (x_1 \rho_1 o) \cdot \frac{1}{5} (x_1 \rho_1 z_{1+4}) ds = \int \frac{1}{5} \alpha^2 ds$  $\left[0 + \frac{1}{3}(25)^{\frac{3}{2}}\right] - \left[18 + \frac{1}{3}(16)^{\frac{3}{2}}\right] d\theta$ PROHY OND THE DU MAN , OND THE CIEWAR ELENAN &, \$+ 42 \$9 }  $\int_{\pi h} \left( \frac{3}{52} - 16 - \frac{3}{64} \right) d\theta = \int_{\pi h} \frac{3}{2} d\theta$  $\int_{\mathbb{R}} \frac{1}{2} dx^2 - \frac{dx dy}{\underline{M} \circ \underline{K}} = \int_{\mathbb{R}} \frac{1}{2} dx^2 - \frac{dx dy}{\underline{J}(x_1, y_1, z+y_1), (o_1 o_1)}$  $\int_{\Omega} \frac{1}{2} \alpha^2 \frac{dx dy}{\frac{1}{2}(2+4)} = \int_{\Omega} \frac{\alpha^2}{2+4} dx dy = \int_{\Omega} \frac{\alpha^2}{1\sqrt{2x-x^2-y^2}} dx dy$  $\frac{r_{\text{cos}\theta}^2}{(2s-r^2)^{\frac{1}{2}}}\left(r\,\text{d}r\,\text{d}\theta\right) = \int_{\theta=0}^{2T} \int_{1=0}^{3} \frac{r^3(\frac{1}{2}+\frac{1}{2}\cos\theta)}{(2s-r^2)^{\frac{1}{2}}} dr$  $\frac{1}{2}r^{3}(2s-r^{2})^{\frac{1}{2}} dr d\theta = 2\pi \int_{-\infty}^{-3} \frac{1}{2}r^{3}(2s-r^{2})^{\frac{1}{2}} dr$  $\Gamma^3 u^{-1} \left( -\frac{u}{\Gamma} du \right)$  $\left[\left(125 - \frac{125}{3}\right) - \left(100 - \frac{64}{3}\right)\right] = \frac{14}{3}$ T  $E = 2b (t, o, o) \cdot (\sigma, o, c) = 2b (\Delta \cdot \cdot T)$ ∯ldv = -14-T+O  $V = \frac{K_{\perp}}{3}T$ AS SIFFUL

 $\frac{14}{3}\pi$ 

### Question 13

- a) State Gauss' Divergence Theorem for closed surfaces, fully defining all the quantities involved.
- **b**) Hence show that for a smooth scalar field  $\varphi = \varphi(x, y, z)$ ,

$$\iiint\limits_V \nabla \varphi \, dV = \bigoplus\limits_S \varphi \hat{\mathbf{n}} \, dS \, ,$$

where S is a closed surface enclosing a volume V, and  $\hat{\mathbf{n}}$  is an outward unit normal field to S.

c) Evaluate

 $\oint (x^2y + y^2 + z) \hat{\mathbf{n}} \, dS \, ,$ 

where S is the paraboloid with equation

 $z = 1 - x^2 - y^2, \ z \ge 0.$ 





$$\begin{split} &= \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{8\pi}} \left[ \int_{0}^{8\pi/2} \int_{0}^{1} \int_{0}^{8\pi/2} \int_{0}^{$$

π

 $(\mathbf{j}+6\mathbf{k})$ 

1

### **Question 14**

a) State Gauss' Divergence Theorem for closed surfaces, fully defining all the quantities involved.

The vector field E s given as

 $\mathbf{E} = \left(x^2 + y^2 + z^2\right)^{-\frac{3}{2}} \left(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}\right).$ 

b) Show that Gauss' Divergence Theorem for closed surfaces "fails" for E and the surface with Cartesian equation

 $x^{2} + y^{2} + z^{2} = a^{2}, a > 0.$ 

proof

 $Y = (2x_1 2y_1 2z)$  $[\overline{p}] = \underbrace{(\sigma_s^{+} \partial_s^{+} F_{S_s})}_{\overline{p}} = \underbrace{(\sigma^{+} \partial_s^{+} S_s)}_{\overline{p}}$  $\hat{\underline{h}} = \underline{1}_{\alpha}(x_i y_i z)$ 

JE.1 ds = 41

JE·Éds = -417 (NAPRIMENT OF 6)

c) Explain carefully why the theorem "fails".



### **Question 15**

The surface S is the sphere with Cartesian equation

 $x^2 + y^2 + z^2 = 4$ 

a) By using Spherical Polar coordinates,  $(r, \theta, \varphi)$ , evaluate by direct integration the following surface integral

 $I = \bigoplus \left( x^4 + xy^2 + z \right) dS \, .$ 

b) Verify the answer of part (a) by using the Divergence Theorem.

f.		
2	a) $\int_{S_{2}} \Delta^{4} + \chi g^{2} + z dz^{2} = \dots$ something somethings	$\begin{aligned} & \left[ \text{SUITCH INTO BETA & GRUNA FINITION} \right] \\ & = \left[ 6t \right]^{\frac{N}{2}} 2 \left( \sin \theta \right)^{\frac{N-N}{2}} \left( \cos \theta \right)^{\frac{N-N}{2}} d\theta \left[ \int_{-\infty}^{\infty} \int_{-\infty}^{\frac{N}{2}} d\theta \right] \right] \left[ \frac{1}{2} \int_{-\infty}^{\frac{N}{2}} d\theta \left[ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\theta \right] d\theta $
	$\begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & & $	$ = \frac{1}{286} \times \frac{2}{4} \left[ \frac{1}{2} \left( \frac{1}{2} \right) \times 2 \left( \frac{1}{2} \left( \frac{1}{2} \right) \times 2 \left( \frac{1}{2} \right) \times 2 \left( \frac{1}{2} \left( \frac{1}{2} \right) \times 2 \left( \frac{1}{2} \right) \times 2 \left( $
Þ	$= \dots \int_{a}^{a} \left[ \int_{a}^{b} \left[ \int_{a}^{b} \int_{a$	b) $\int \frac{1}{x^2 + xy^2 + 2} dz$
	$= \int_{q_{0,0}}^{q_{0,0}} \int_{0,0}^{q_{0,0}} \left[ \operatorname{dist}_{q_{0,0}}^{q_{0,0}} \left\{ \frac{1}{2} \operatorname{contrast}_{q_{0,0}}^{q_{0,0}} \left\{ \frac{1}{2} \operatorname{contrast}_{q_{0,0}}^{q_$	$= \int_{x} 2(x_{1}^{3}, yx_{r}, 1) \cdot \frac{1}{2} (x_{r}, y_{1}, z) dx$ $= \int_{x} (2x_{1}^{3}, 2xy_{1}, 2) \cdot y dx$
	$\begin{array}{l} (\operatorname{construct}_{\mathcal{A}} \mathcal{A}_{\mathrm{const}} \operatorname{construct}_{\mathcal{A}} \mathcal{A}_{\mathrm{construct}} \operatorname{construct}_{\mathcal{A}} \mathcal{A}_{\mathrm{construct}} \operatorname{construct}_{\mathcal{A}} \mathcal{A}_{\mathrm{construct}} \operatorname{construct}_{\mathcal{A}} \mathcal{A}_{\mathrm{construct}} $	= j <u>F</u> . <u>b</u> dø
	$ \begin{array}{c} \left( \log_{10} \cos \theta + \frac{1}{2} \cos \theta + \frac{1}{2$	set if into A volume actively by the $\underline{D}$ $= \int_{V} \underline{\nabla} \cdot \underline{F}  dV$
	$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2$	$\simeq \int_{V} 6x^2 + 2x dv$
	121	

stop + 2rsmBusso rismBardodo r3sq20coop] drabda du= r3m0 drolodo  $\left[\frac{1}{2}r^{s}au^{2}\Theta\omega\delta^{s}u^{2}\right]^{2}$  do do  $\sin^3\theta \left(\frac{1}{2} + \frac{1}{2}\cos^2\theta\right) d\theta d\phi$  $\theta_{b} \left( \theta^{2}_{201-1} \right) \theta_{102} \int_{-\infty}^{0} \pi \frac{2P1}{2} = -\theta_{b} - \theta^{0}_{102} \theta^{0}_{2}$  $\frac{\pi}{2} \int \theta^{2} z \omega \frac{1}{2} + \theta z \omega - \int \frac{2\theta}{2} = \theta b \theta^{2} z \omega \theta u z - \theta u z$  $\frac{192}{5} \pi \left[ \left( \left( -\frac{1}{5} \right) - \left( -\frac{1}{5} \right) \right] \right] = \frac{192}{5} \times \frac{4}{5} = \frac{256}{5} \pi$ 

 $256\pi$ 5

2

 $d\theta \left[ 2 \int_{0}^{\frac{\pi}{2}} 2(\theta z d) \left( \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \left( \frac{1}{2} + \frac{1}{2} \right) \right] \right]$  $= 64 \left[ \frac{P(y)P(y)}{P(y)} \right] \times 2 \left[ \frac{P(y)P(y)}{P(y)} \right]$ 2[ 3×± 1(+) P(+)]

> 62²+2x+n

### **Question 16**

N.

K.C.

The surface  $\Omega$  is the sphere with Cartesian equation

$$(x-1)^{2} + (y-1)^{2} + (z-1)^{2} = 1$$

Use the Divergence Theorem to evaluate

 $\oint \left[ (x+y)\mathbf{i} + (x^2 + xy)\mathbf{j} + z^2\mathbf{k} \right] \cdot \mathbf{dS},$ 

where dS is a unit surface element on  $\Omega$ .

$\int_{\mathcal{R}} \frac{\mathbf{f}}{\mathbf{r}} \cdot d\mathbf{g}_{\mathbf{r}}^{\mathbf{d}} = \int_{\mathcal{R}} (\mathbf{x}_{\mathbf{r}} \mathbf{g}_{\mathbf{r}} \mathbf{x}^{\mathbf{s}} \mathbf{x} \mathbf{g}_{\mathbf{r}} \mathbf{z}^{\mathbf{s}}) \cdot \underline{\mathbf{n}}_{\mathbf{r}}^{\mathbf{d}} d\mathbf{g} = \dots,$
@ TRANSLATE THE ORIAN AT (1,1,1)
$ \begin{array}{c c} X = x_{k-1} & x_{k-1} X + l \\ Y = y_{k-1} & y_{k-2} Y + l \\ Z = y_{k-1} & z_{k-2} Z + l \end{array} \xrightarrow{\rightarrow} (y_{k-1})_{k-1}^{k} (y_{k-1})_{k-1}^{k} (y_{k-1})_{k-1}^{k} = l \\ \end{array} $
$(2)$ AND $(2+2y_1+2y_1+2^2)$
$= \left[ (\chi_{+1})_{+} (\chi_{+1})_{+} (\chi_{+1})^{2}_{+} (\chi_{+1}) (\chi_{+1})_{+} (\Xi_{+1})^{2}_{+} \right]$
$= \left[ X + Y + 2 X^{2} + 2X + 1 + XY + X + Y + 1 Z^{2} + 2Z + 1 \right]$
$= \left[ X + Y + 2 \right] X^{2} + X + 3 X + Y + 2 = \frac{1}{2^{2} + 2^{2} + 1} $
$ Dividiant = \frac{3}{3x} \left[ x_{1} x_{1} z_{1} + \frac{3}{3y} \left[ x_{1}^{2} x_{1} x_{1} + x_{1} + z_{1} + \frac{3}{32} \left[ z_{1}^{2} + 2z + 1 \right] \right] $
= 1 + (X+1) + (2Z+2)
= X+ 2Z+4
BI THE DIWREAKE THEOREM
$\int_{v} X + 3Z + 4  dV$
Switter INIO SAFERIAL POLARS, BT FIRST NOT THAT THE DOMITAL (VOLUME)
IS SYMMETRICAL IN X, IN Y AND IN Z (X2+Y2+Z=1)

### X+2Z+4 dV

 $\frac{16}{3}\pi$ 

Ĉ.

5

- \$T

### Question 17

V.C.P.

.K.C.

The vector field **u** is given in spherical polar coordinates  $(r, \theta, \varphi)$  by

 $\mathbf{u}(r,\theta,\varphi) = (r^2\cos^2\varphi)\hat{\mathbf{r}} + (r\cos^2\varphi)\hat{\mathbf{\varphi}}.$ 

**a**) Find the flux of **u** through a spherical surface of radius  $R_0$ .

**b**) Verify the answer to part (**a**) by calculating an appropriate volume integral.

You may assume that in spherical polar coordinates

 $\nabla \cdot \left(A_r, A_{\theta}, A_{\varphi}\right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r\right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(A_{\theta} \sin \theta\right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \left(A_{\varphi}\right)$ 

(12024,0, 1024) N S.P.C (1, 8, 4)  $\overline{\nabla} \cdot \underbrace{\overline{A}}_{\mathcal{H}} = \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal{H}} + \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal{H}} + \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal{H}} + \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal{H}} + \underbrace{\frac{1}{2}}_{\mathcal{H}} \underbrace{\frac{1}{2}}_{\mathcal$  $\nabla \cdot \underline{u} = \frac{1}{r^2} \frac{2}{\partial r} \left[ r^4 \omega_{\delta}^2 \varphi \right] + O + \frac{1}{r^2 \omega_{\delta}^2} \frac{2}{\sigma} \left[ r^4 \omega_{\delta}^2 \varphi \right]$  $\left[ \int \underline{\boldsymbol{u}} \cdot \boldsymbol{d}_{\underline{\boldsymbol{z}}} \right] = \iint \left( \hat{\boldsymbol{r}}_{\alpha \alpha}^2 \hat{\boldsymbol{\varphi}}_{\mu} \boldsymbol{v}_{\mu} \boldsymbol{r}_{\alpha \alpha}^2 \hat{\boldsymbol{q}} \right) \cdot \underline{\boldsymbol{\eta}}^{\alpha} \boldsymbol{d}_{\underline{\boldsymbol{x}}}$  $\frac{1}{t^2} \left( \frac{4r^3\omega S\varphi}{r} \right) + \frac{1}{rSM\theta} \left( -2r\cos\varphi S \right)$   $\frac{4r\cos\varphi}{sm\theta} = -\frac{2\cos\varphi S}{sm\theta}$ III [4rcosto - <u>2costosmb</u>] [r²siviti direla de] alpho and do do [[[{4r3m8co3q - 2r2cosetsing] drebedy  $sm\theta\left(\frac{1}{2}+\frac{1}{2}\cos 2\theta\right)$  de de  $\iiint 4t^3 \sin \theta \left(\frac{1}{2} + \frac{1}{2} \sin 2\phi\right) dr d\theta d\phi$  $= R_{0} \int_{\phi=0}^{\pi} \frac{1}{2} d\phi \int_{\phi=0}^{\pi} \frac{1}{2} d\phi$  $\left[\int_{r=0}^{R_{0}} 4r^{3} dr\right] \left[\int_{\frac{1}{2}}^{24} d\phi\right] \left[\int_{\theta=0}^{\pi} \sin\theta d\theta\right]$  $= R_0^4 \times \left[\frac{1}{2} \times 2\pi\right] \left[-\cos\theta\right]_0^{\pi}$  $= \mathbb{Q}_{0}^{4} \times \pi \times [\omega_{0} \Theta]^{\circ}$  $\left[ T^{\mu} \right]_{g^{0}}^{o} \left[ \frac{1}{2} \phi \right]_{a}^{o} \left[ -\omega_{2} \phi \right]_{a}^{o}$  $R_{*}^{4}\times \pi \times \lceil \cos\theta \rceil_{*}^{4}$ = πR°[ ι+1] 2m R."

 $2\pi R_0^4$ 

F.C.P.

### Question 18

- a) State Gauss' Divergence Theorem for closed surfaces, fully defining all the quantities involved.
- **b**) Hence show that for a smooth vector field  $\mathbf{A} = \mathbf{A}(x, y, z)$ , with  $\nabla \cdot \mathbf{A} = 0$ ,

$$\iiint_V \mathbf{A} \, dV = \bigoplus_S \mathbf{r} \mathbf{A} \cdot \hat{\mathbf{n}} \, dS \, ,$$

where S is a closed surface enclosing a volume V,  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ , and  $\hat{\mathbf{n}}$  is an outward unit normal field to S.

c) Verify the validity of the result of part (b) if A = 3i and S is the sphere with equation

 $x^2 + y^2 + z^2 = 1.$ 

both sides yield  $4\pi i$ 

∑.E dv = ∮ ±.d\$ , where bs = n ds, with n an out ARTING WITH THE DIVIDENCE THEOREM , LET  $\underline{F} = (\underline{\Gamma} \cdot \underline{C}) \underline{A}$  $\begin{array}{l} \underline{C} = (\underline{A},\underline{B},\underline{C})\\ \underline{C} = & \text{constrain Weiscop}\\ \underline{A} = & \text{Vector field sized}\\ \end{array}$  $\Longrightarrow \oint \overline{\nabla} \cdot [(\underline{v} \cdot \underline{v}) \underline{A}] dv = \oint_{\underline{v}} (\underline{v} \cdot \underline{v}) \underline{A} \cdot d\underline{s}'$  $\begin{array}{c} \underbrace{A, \nabla}_{\mathbf{A}} & \underbrace{A, \Phi, \Phi}_{\mathbf{A}} = \underbrace{A, \Phi}_{\mathbf{A}} & \underbrace{A, \Phi} & \underbrace{A, \Phi} & \underbrace{A, \Phi} &$ BUT I.C = (49.8). (G.G.G.) + Cx+C4+G  $\begin{array}{c} (\mathbf{r} \cdot \mathbf{c}) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \in (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) = \mathbf{c}_3 \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \in (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \in (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) = \mathbf{c}_3 \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \in (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) = \mathbf{c}_3 \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{c}_1 \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) = \mathbf{c}_3 \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{r} \cdot \mathbf{c}_2 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}_2) = (\mathbf{r} \cdot \mathbf{c}_3 \cdot \mathbf{c}_3) \\ \hline (\mathbf{r} \cdot \mathbf{c}_3) = \mathbf{c}_3 \\ \hline (\mathbf{r} \cdot \mathbf{c}$  $\Rightarrow \oint \underline{\cdot} \underline{\cdot} \underline{A} dt = \oint (\underline{\cdot} \underline{\cdot} \underline{\cdot}) \underline{A} \cdot d\underline{z}$ 

⇒ s. # Adv = s. f. r. A. A ZA . AI = V E A. dS

Br Fil = NP F NOW 1 = 31 a \$' 32+42+22=  $f(x_{1}y_{1}z) = x^{2}+y^{2}+z^{2}-1$ 
$$\begin{split} & \nabla f = (2i_1 2i_1 + 2^{2i}) \\ & \underline{\nabla} f = (2i_1 2i_1 + 2^{2i}) \\ & \underline{\nabla} = (2i_1 2i_1 + 2^{$$
 $\begin{array}{c} \circ \leq \oplus \leqslant \top \\ \circ \in \varphi \leq 2 \eta \end{array}$  $\underline{\hat{h}} = (x_1y_1z_1)$ \$= sme dedd  $\begin{array}{c} \circ \leqslant \theta \leqslant \pi \\ \circ \leqslant \varphi \leqslant \varphi \\ \circ \leqslant \varphi \leqslant z_{T} \end{array}$ • LHS = JAdv = J (300) dv = 31 J dv = 31 × vocume of  $= 3\underline{i} \times \frac{2}{3}\pi x \underline{i}^3 = 4\pi \underline{i}$ \$ (32,309,302) \$ = ... EWART WO SPHERICK POINTS  $= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} \partial_{\theta} \partial_{\theta}$  $= 3\underline{i} \int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} \int_{-\infty}^{\pi} sn_{i}^{3} \rho(s_{i}^{2} + s_{i}^{2}) ds d\phi$ 

 $= \underline{3}\underline{1}\left[\int_{0}^{T} \omega_{1}^{A} \Theta_{1}^{A} \Theta_{2}^{A} \left[\int_{0}^{T} \omega_{1}^{A} \Theta_{2}^{A} \Theta_{2}^{A} \right] \left[\int_{0}^{T} \omega_{1}^{A} \Theta_{2}^{A} \Theta_{2}^{A} + \int_{0}^{T} \nabla_{2}^{A} + \int_{0}^{$ 

# Stokes' Theo. Haddenade and the states of t ASTRAILS COM I. Y. C.P. MARASHANS COM I. Y. C.P. MARASH

### Question 1

.K.C.

If **F** is a smooth vector field, S is a smooth closed surface, and  $\hat{\mathbf{n}}$  is an outward unit normal vector to S, show that

 $\int_{\Omega} \nabla \wedge \mathbf{F} \cdot \hat{\mathbf{n}} \, dS = 0$ 

You may find Stokes' Theorem or the Divergence Theorem useful in this question.



proof

11

### Question 2

1.

Y.C.

- a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.
- **b**) Show that for a smooth scalar field  $\varphi$  and a constant vector **A**

 $\nabla_{\wedge}(\varphi \mathbf{A}) = \nabla \varphi_{\wedge} \mathbf{A}.$ 

The open smooth surface S has boundary c and unit normal field  $\hat{\mathbf{n}}$ .

c) Use part (a) and (b) to prove

 $\oint \varphi \, d\mathbf{r} = \int \hat{\mathbf{n}} \wedge \nabla \varphi \, dS \, .$ 

V, (φA)= ) PMOT (6)

<u>A. 11, 74</u> f \$A.dr = J Idr A.h ds b to the and the approximation of the test A. f & dr = A. ∬ A. Ve ds

proof

### **Question 3**

Evaluate the line integral

I.C.p

I.V.C.

N.C.B. Madasm

aths com

I.F.G.B.

 $\oint_C \left[ x \, dx + (x - 2yz) \, dy + (x^2 + z) \, dz \right],$ 

where C is the intersection of the surfaces with respective Cartesian equations

 $x^2 + y^2 + z^2 = 1, \quad z \ge 0$  $x^2 + y^2 = x \,, \quad z \ge 0 \,.$ and



ths.com

 $\frac{\pi}{4}$ 

2017

Madası

I.F.G.B.

1.65

14

### Question 4

I.C.B.

I.V.G.P.

It is given that the vector field  $\mathbf{F}$  satisfies

$$\mathbf{F} = y^2 \,\mathbf{i} + z^2 \,\mathbf{j} + x^2 \,\mathbf{k} \;.$$

Evaluate the line integral

# ∮ F.dr,

I.C.

 $\frac{\pi}{4}$ 

F.G.P.

1.G.S.

4

Madası

where C is the intersection of the surfaces with respective Cartesian equations

 $x^{2} + y^{2} + z^{2} = 1$ ,  $z \ge 0$  and  $x^{2} + y^{2} = x$ ,  $z \ge 0$ 



### Created by T. Madas

10



The figure above shows the finite region V defined by the intersection of the planes

x + y + z = 7, x = 3, y = 3, x = 0, y = 0 and z = 0.

The open surface S encloses V except the plane face with equation z = 0.

The vector field,  $\mathbf{F}(x, y, z) \equiv x\mathbf{i} + xy\mathbf{j} + xz\mathbf{k}$ , exists on and around S.

Evaluate the surface integral

 $\nabla_{\wedge} \mathbf{F} \cdot \mathbf{dS}$ ,

where  $\mathbf{dS} = \hat{\mathbf{n}} dS$ , where  $\hat{\mathbf{n}}$  is an outward unit normal vector to S.





#### Question 6

a) State Stokes' Integral Theorem for open two sided surfaces, fully defining all the quantities involved.

The vector field

#### $\mathbf{v} = yz \, \mathbf{k}$

exists around the open surface S, with closed boundary C.

The equation of S is

 $z = 1 - x^2 - y^2, x \ge 0, y \ge 0, z \ge 0.$ 

**b**) Use **v** and *S* to verify the validity of Stokes' Theorem.



 $= \begin{bmatrix} \frac{3}{2} - \frac{3}{2} + \frac{3}{2} + \frac{1}{2} \end{bmatrix}_{0}^{-1} = \begin{pmatrix} \frac{3}{2} - \frac{3}{2} \\ -\frac{3}{2} - \frac{3}{2} + \frac{3}{2} \end{bmatrix}_{0}^{-1} = \begin{pmatrix} \frac{3}{2} - \frac{3}{2} \\ -\frac{3}{2} \\$ 

$$\begin{split} & \overset{\circ}{\mathfrak{Y}} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{\circ}{\mathfrak{Y}} \times \mathfrak{A}^* + \mathfrak{A}^* = \int_{\mathbb{R}} (\mathfrak{S}^0(\sigma) \cdot \mathfrak{Y}, \, \mathfrak{A}^*) = \int_{\mathbb{R}} (\mathfrak{S}^0(\sigma) \cdot \frac{\mathfrak{A}^*}{(2\pi^2 \mathfrak{I}^2)^1}) \\ & \overset{\circ}{\mathfrak{Y}} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{\circ}{\mathfrak{Y} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{\circ}{\mathfrak{Y}} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{\circ}{\mathfrak{Y} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{}{\mathfrak{Y} = \frac{1}{(2\pi^2 \mathfrak{I}^2)^1} \\ & \overset{}{\mathfrak{Y} = \frac{1$$

 $\int \frac{1}{\sqrt{5-2}} dS = \dots \text{ Planet outo the sy flat, it also the costs of a start of the system is a start of the system of the s$ 



both sides yield  $\frac{4}{15}$ 

#### Question 7

The vector field

$$\mathbf{F} = z \, \mathbf{i} + x y \, \mathbf{j} + x z \, \mathbf{k}$$

exists around the open two sided surface S, with closed boundary C.

S is defined as

- $x + y + z = 1, x \ge 0, y \ge 0, z \ge 0.$
- $x=0, z \le 1-y, y \ge 0, z \ge 0.$

$$z=0, y \le 1-x, x \ge 0, y \ge 0.$$

Show that

$$\oint_C \mathbf{F} \cdot \mathbf{dr} = \int_S \nabla_{\wedge} \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$$

where  $\hat{\mathbf{n}}$  is an outward unit normal to S.

 $\oint \mathbf{F} \cdot \mathbf{A} \mathbf{c} = \oint (\mathbf{a}, \mathbf{a})(\mathbf{a} \mathbf{c}) \cdot (\mathbf{d} \mathbf{a} \mathbf{d} \mathbf{a}, \mathbf{b}) - \oint_{\mathbf{c}} \mathbf{e} \cdot \mathbf{d} \mathbf{a} + \mathbf{a} \mathbf{a} \mathbf{d} \mathbf{a} + \mathbf{a} \mathbf{c} \cdot \mathbf{d} \mathbf{a}$ = ] 2 dx + 24 dy + 32 dz + ] 2 da + 24 dy + 22 dz + [ 2 dx + 24 dy + 32 dz  $= \int_{C} z \, dx + zx \, dz = \int_{0}^{0} z (-dz) + \overline{z}(-z) \, dz$  $= \int_{-2+2}^{2} dz = \int_{-2}^{2} dz$  $= \left[\frac{2}{5}s_{3}\right]_{i}^{o} = \frac{2}{7}$ 

PROCEED WITH THE SURFACE INTRODUCINENT					
$\sum^{V} \overline{U} = \begin{vmatrix} s & s \\ s & s$					
TRINGULAR SURFICE WHITE 2000 (BUX IN THE PRIVICE DATEONAL)					
$ \begin{aligned} & \int_{\mathcal{R}_{h}} \nabla_{\mathbf{x}} E \cdot \hat{\mathbf{y}} d\mathbf{x} = \int_{\mathcal{A}} \left( c_{\mathbf{x}}   \mathbf{x}_{\mathbf{y}}   \mathbf{y} \cdot (\mathbf{x}_{\mathbf{y}} - 1) \right) \\ & = \int_{\mathcal{A}_{h}} d\mathbf{x} d\mathbf{y} = \int_{\mathcal{A}} \left( \int_{\mathcal{A}} d\mathbf{y} \cdot \mathbf{y} \right) \\ & = \int_{\mathcal{A}_{h}} d\mathbf{x} d\mathbf{y} \\ & = \int_{\mathcal{A}} (\mathbf{y}_{\mathbf{y}} - 1) d\mathbf{y} d\mathbf{y} d\mathbf{y} \end{aligned} $					
$= \int_0^1 \left[-\frac{1}{2} \int_0^2 \right]_0^{\frac{1}{2} - \frac{1}{2}} d_k  =  \int_0^1 -\frac{1}{2} (D - \lambda)^2 \ d_k  = \left[\frac{1}{4} (D - \lambda)^2 \right]_0^1  =  0 - \frac{1}{6} \ .$					
=-10					
TRUMATIONAL SURFACE WHERE I = O (GREED IN TREMOUS DIAGODAN)					
Joz ZAE-B 44 . J(G1-2,4). (-1,0,0) 43 40 - 0					
TRANSLORD SUBJECT WITH GRUATION SCH UTTER I GREWON IN THE REGIOUS ANAGENY					
$\begin{split} &\sum_{k=1}^{N} \sum_{i} \xi_{i} \cdot \frac{1}{2}  d_{k}^{i} &= \int_{\beta_{k}} (\omega_{i} \cdot a_{i} \cdot y) \cdot \frac{1}{2}  d_{k}^{i} & \dots \text{ TRUE TO AD- } \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$					
$= \int_{A}^{A} (o_{1} - e_{1} \underline{y}), \ \underline{\hat{y}} \cdot \frac{d_{n} dy_{1}}{\underline{\hat{y}} \cdot \underline{\hat{y}}} = \int_{A}^{A} (o_{1} - e_{1} \underline{y}), \ \underline{\hat{y}} \cdot \frac{d_{n} dx_{n}}{\underline{\hat{y}} \cdot \underline{\hat{y}}}$					
$= \int_{\Omega} (o_i \cdot e_i) \cdot \underline{h} \frac{dx  dy}{\underline{\mu}_i} = \int_{\Omega} (o_i \cdot e_i) \cdot \underline{h} \cdot \underline{\underline{h}} \cdot \underline{h} \cdot$					



both sides yield  $\frac{1}{3}$ 

#### **Question 8**

It is given that the vector field  $\mathbf{F}$  satisfies

 $\mathbf{F} = 8z\,\mathbf{i} + 4x\,\mathbf{j} + y\,\mathbf{k} \; .$ 

Evaluate the line integral

# ∮ F.dr,

and  $x^2 + y^2 = y$ ,  $z \ge 0$ .

where C is the intersection of the surfaces with respective Cartesian equations

You may find Stokes' Theorem useful in this question.

 $z = y^2 + x^2$ 



NIO PLANE POLIARS (6(rsmb)-4) (r dr do) ((lersmo - 4r) dr do  $\left[\frac{16}{3}r^3 \sin \theta - 2r^2\right]^{1/2} d\theta$ 16 anto - 25190 do  $\int_{0}^{\pi} \frac{16}{3} \left( \frac{1}{2} - \frac{1}{2} (\cos 2\theta)^{2} - 2 \left( \frac{1}{2} - \frac{1}{2} (\cos 2\theta) \right) d\theta$ [" - 1 - 26520 + 26520] - 1 - 6520 do  $\frac{\kappa}{3} \left[ \frac{1}{4} - \frac{1}{2} \cos 2\theta + \frac{1}{4} \left( \frac{1}{2} + \frac{1}{2} \cos 3\theta \right) - 1 - \cos 2\theta \ d\theta$  $\frac{11}{3} - \frac{8}{3}\cos 2\theta + \frac{2}{3} + \frac{2}{3}\cos 4\theta - 1 - \cos 2\theta d\theta$ IT I - Yearso & zearlo do

#### **Question 9**

The surface S has Cartesian equation

$$(z-1)^2 = x^2 + y^2, \quad 1 \le z \le 3.$$

C.p.

**a**) Sketch the graph of S.

**b**) Evaluate 
$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ zx^2 & xy^2 & yz^2 \end{vmatrix}$$

c) Given that  $\mathbf{F} = z^2 \mathbf{i} + x^2 \mathbf{j} + y^2 \mathbf{k}$ , evaluate the integral

F·dS.



 $\int \left( \frac{2}{r_1^2} \chi_1^2 y_1^2 \right) \cdot \left( \chi_1 y_1 \left( -2 \right) - \frac{dx dy}{1 - 2} = \int_{\mathcal{D}} \frac{3 z^2}{1 - 2} + \frac{3 y_1}{1 - 2} + y^2 dx dy$ 

1. ODD (N

<u>(в и сао)</u> <u>(х и сано)(хи сао)</u> (в и сао) <u>(</u>х и сао) ODD IN I IN

 $3(2\alpha\beta)^{2}(-2\alpha\eta\theta\phi) + (2\alpha\theta)(2\alpha\eta\theta)^{2}(2\alpha\beta\phi\phi) + 0$ [-260385m8 + 160305070] do " K(++±0528)(+-±0528) d8  ${}^{\text{T}} \mathsf{l} \left( \left( \frac{1}{2} - \frac{1}{4} \cos^2 2\theta \right) d\theta = \int_{-1}^{21} 4 - 4 \left( \frac{1}{2} + \frac{1}{2} \cos^4 \theta \right) d\theta$ 

THE LINE MARGRAL ON (

I.G.B.

3

5

Madasm.

 $4\pi$ 

WITH THE INHERAND GRAPHY SIMPLIFIED, SWITCH INTO PLANE POCHES, OUTE 2	
$\int_{S} \mathbf{E} \cdot \mathbf{d}_{S} = \dots \int_{S} \mathbf{d}_{S}^{2} \mathbf{d}_{X} \mathbf{d}_{Y} = \int_{B_{m}}^{S} \int_{B_{m}}^{2} (\operatorname{rsm})^{2} (\operatorname{rd}_{Y} \mathbf{d}_{0})$	
$= \int_{0}^{2\pi} \int_{0}^{\pi} r^{3} \sin^{2}\theta  dr d\theta = \int_{0}^{2\pi} \left[ \frac{1}{2} r^{4} \sin^{2}\theta \right]_{res}^{2} d\theta$	
$= \int_{0}^{2\pi} 4 \Re^{2} \theta \ d\theta = \int_{0}^{2\pi} 4 \left( \frac{1}{2} - \frac{1}{2} (62\theta) \right) d\theta$	
= $\int_{0}^{2\pi} 2 - 2 4 \omega (35) db$ No calibilition of the trade trade	
= 2 × m	
= 4m	

Created by T. Madas

<u>n.</u> = 1-2

#### **Question 10**

The vector field  $\mathbf{F}$  exists around the open surface S, with closed boundary C.

The open surface consists of the following three faces.

- The cylindrical surface  $x^2 + y^2 = 4$ ,  $y \ge 0$  and  $0 \le z \le 3$ .
- The plane face  $x^2 + y^2 = 4$ ,  $y \ge 0$  and z = 0.
- The plane face  $x^2 + y^2 = 4$ ,  $y \ge 0$  and z = 3.

Use S and C to verify Stokes' Theorem, given further that

 $\mathbf{F}(x, y, z) \equiv yz\mathbf{i} + xy\mathbf{j} + xz\mathbf{k} \ .$ 

J. V. E. ds = } E. ds  $(x_{3,2}) = x^2 + t^2 - 4$ V우 = (號)発,왕) = (24,34,0)  $\frac{1}{10}$  =  $(\overline{x^{1}\overline{\beta}^{1}0})$  =  $\frac{1}{10}(\overline{x})$ 1 018 1 012  $\int_{\Omega} \nabla_{\mathbf{x}} \mathbf{f} \cdot \hat{\mathbf{n}} \, d\mathbf{s} = \int_{\Omega} (\mathbf{q}_{1} \mathbf{y} \cdot \mathbf{z}_{1} \mathbf{y} \cdot \mathbf{z}) \cdot \frac{1}{2} (\mathbf{q}_{1} \mathbf{y}_{1} \mathbf{q}) \, d\mathbf{s} =$ 0029+05me - 02 ] = 06 Gme - 92  $(G_T - g) - (g) = G_T -$ 

 $\int_{\underline{x}} (o_1 \underline{y} \cdot \underline{z}_1 \underline{y} \cdot \underline{z}) \cdot (o_1 o_1) d\underline{x} = \int_{\underline{x}_1} \underline{y} \cdot \underline{z} d\underline{x} = \int_{\underline{x}_1} \underline{y} \cdot \underline{z} d\underline{x}$  $\int_{1}^{\infty} \int_{1}^{\infty} (r_{2}wf\theta - 3) r dr d\theta = \int_{0}^{T} \int_{1}^{\infty} r^{2}x_{1}\theta - 3r dr d\theta$  $\int_{0}^{T} \left[ \frac{1}{3} r^{3} \sin \theta - \frac{3}{2} r^{2} \right]_{0}^{2} d\theta = \int_{0}^{T} \left[ \frac{\theta}{3} \sin \theta - \zeta \right] d\theta$  $\left[-\frac{g}{2}\cos\theta-6\theta\right]_{\overline{q}}^{\sigma} = \left[\frac{g}{2}\cos\theta+6\theta\right]_{\overline{q}}^{\pi} = \left(\frac{g}{2}+\sigma\right)-\left(-\frac{g}{2}+6\pi\right)$ (0, 9-2, y-2). (0,0,-1) d\$ = j z-y d\$ = j-y d\$  $\int_{-\infty}^{2} (r \sin \theta) r dr d\theta = \int_{0}^{1} \int_{0}^{2} -r^{2} \sin \theta dr d\theta$  $\left[-\frac{1}{3}r^{3}\sin\theta\right]_{0}^{2}d\theta = \int_{0}^{0}$  $-\frac{8}{3}\sin\theta d\theta = \left[\frac{9}{3}\cos^2\right]_{0}^{T}$  $\int_{A} \nabla_{A} \underline{\Gamma} \cdot d\underline{S} = (G\pi - \pi) + (\frac{\pi}{3} - G\pi) - \frac{\pi}{3} = -18$ 

 $\underline{F} \cdot dt = \int (g_{z_1} x_{u_1} x_{z_2}) \cdot (dx_1 dy_1 dz) = \int g_{z_2} dx + xy_2 dy + z_3 dz$  $=\int_{20r_{2}}^{7} \frac{1}{22r_{2}} + \int_{2\pi0}^{3} -22r_{2} d2 + \int_{2\pi0}^{2} \frac{1}{22r_{2}} d2 + \int_{2\pi0}^{2} \frac{1}{22r_{2}} d2$  $=\int_{0}^{3}-2\mathfrak{E} d\mathfrak{E} +\int_{0}^{3}-\mathfrak{E} d\mathfrak{E} =\int_{0}^{3}-\mathfrak{E} d\mathfrak{E}$  $= \left[-3s_{5}\right]_{2}^{o} = -\frac{1}{28}$ 

both sides yield -18

#### Question 11

It is given that the vector field  $\mathbf{F}$  satisfies

 $\mathbf{F} = 8z\,\mathbf{i} + 4x\,\mathbf{j} + y\,\mathbf{k} \; .$ 

Evaluate the line integral

# ∲ F.dr,

and  $x^2 + y^2 = x$ ,  $z \ge 0$ .

where C is the intersection of the surfaces with respective Cartesian equations

You may find Stokes' Theorem useful in this question.

 $z = x^2 + y^2$ 





 $3\pi$ 

#### $= \frac{1}{4} \left[ \Gamma(\frac{1}{2}) \tilde{\Gamma}(\frac{1}{2}) - \Gamma(\frac{1}{2}) \Gamma(\frac{1}{2}) \right] = \frac{1}{4} \pi - \pi = -\frac{3}{4} \pi$

#### Question 12

.K.C.

The vector field  $\mathbf{F}$  exists around the open surface S, with closed boundary C, whose equation satisfies

 $x^2 + y^2 + z^2 = 4, \ z \ge 0.$ 

Use S and C to verify Stokes' Theorem, given further that

## $\mathbf{F}(x, y, z) \equiv 4y\mathbf{i} + xy\mathbf{j} + xz\mathbf{k} \ .$



1+

#### Question 13

The vector field  $\mathbf{A}$  exists around the open surface S, with closed boundary C.

$$\mathbf{A} = (x^2 y)\mathbf{i} + (xy + xyz)\mathbf{j} + (xy + xz^2)\mathbf{k}$$

a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.

 $x^2 + y^2 + z^2 = a^2$ , a > 0,  $z \ge 0$ .

both sides yield  $-\frac{1}{4}\pi a^4$ 

The Cartesian equation of S is

**b**) Use **A** and *S* to verify the validity of Stokes' Theorem.

2	20	0.0	00
à	$\iint_{\underline{s}} \nabla_{A} \cdot d\underline{s} = \int_{\underline{s}} \underline{A} \cdot d\underline{s}$	$= \int_{2\pi}^{\infty} d^{4} \left( c_{2} s \theta_{2} s m \theta \right)^{2} d\theta = \int_{2\pi}^{\infty} d^{4} \left( \frac{1}{2} s m \theta \theta \right)^{2} d\theta = \int_{2\pi}^{\infty} \frac{1}{4} d^{4} s m^{2} \theta \theta$	$= \int \frac{x^2 - y^2}{(a^2 - x^2)a^2} - x^2 dx dy$
	THE ABOLT BELOT GLUES GLUES DE HAN HERE FILD I WITH COTTOLOGY FRAT RELIES (MET DOED REMAINS) WHERE SI IS A UNIT DOED REMAINS IN HERE $\frac{1}{2} \leq \frac{1}{2} - \frac$	$= \int_{\frac{2\pi}{2}}^{\infty} \frac{1}{4} d^{4} \left( \frac{1}{2} - \frac{1}{2} \cos(\theta) + d\theta \right) = \int_{\frac{2\pi}{2}}^{\infty} \frac{1}{2} d^{4} d^{4} \left( \frac{1}{2} - \frac{1}{2} \cos(\theta) + d\theta \right) = \int_{\frac{2\pi}{2}}^{\infty} \frac{1}{2} d^{4} d^{4} d^{4} \left( \frac{1}{2} - \frac{1}{2} \cos(\theta) + d\theta \right) = \int_{\frac{2\pi}{2}}^{\infty} \frac{1}{2} d^{4} d^{4$	$\begin{cases} P(Able,Fo(Able),a) = P(able,b) \\ P(Able,Fo(Able),a) = P(able,able) \\ d_{able} = P(able,able) $
b)	So that $\hat{y} = \eta + \hat{y} = 2\eta + 2\hat{y} = 2\eta + 2\hat{z}$ $\frac{\nabla_{i}}{2} = \begin{pmatrix} 1 & j & k \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} &$	The suffice instant (set) $\int_{S} \overline{\Sigma}_{A} \frac{E}{r} dS = \int_{S} (\overline{2}r z z_{1}^{2} + z_{1}^{2} + z_{2}^{2} + z_{1}^{2} + z_{1}^$	$\begin{aligned} \partial_{\mu} b h & T \left[ \partial_{\mu} \omega^{2} - \frac{\partial \beta_{\mu} c^{2} - \partial_{\mu} \omega^{2} - \partial_{\mu}$
×	$\begin{array}{c} \text{Mort} \\ & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	$= \frac{1}{2} \left\{ \begin{array}{l} \frac{1}{2_{\mu}} - \frac{1}{2_{\mu}^{2}} - \frac{1}{2_{\mu}^{2}} - \frac{1}{2_{\mu}^{2}} + \frac{1}{2_{\mu}^{2}} - \frac{1}{2_{\mu}^{2}} + \frac{1}{2_{\mu}^{2}} - \frac{1}{2_{\mu}^{2}} + \frac{1}{2_{\mu}^{2}} - \frac{1}{2_{\mu}^{2}} + \frac{1}{2_{\mu}^{2}$	$ \begin{array}{l} & \begin{array}{c} & & \\ & & \\ \end{array} & = & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\lambda} d^{\alpha} d\theta \int_{0}^{0,\alpha} d\theta = & \int_{0}^{0} \int_{0}^{\alpha} \frac{1}{\lambda} d^{\beta} d\theta d\theta \\ & = & -\frac{1}{\lambda} d^{\alpha} \int_{0}^{\infty} \frac{1}{\lambda} + \frac{1}{\lambda} d\cos \theta d\theta \\ & = & -\frac{1}{\lambda} d^{\alpha} \times \frac{1}{\lambda} \times 2\pi \end{array} $
الا ال	$\begin{array}{c} \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$	$= \int_{R} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{i=0}^{\infty} \sum_{i=0}^$	$2b \cdot \Delta \stackrel{1}{\underline{1}} = \frac{1}{2} b \cdot d_{x} \nabla_{\underline{y}}  \Rightarrow$
= 1 2	-a costesme + a costesme de		

#### **Question 14**

The smooth vector field  $\mathbf{F}$  exists around the open, two sided, surface S, with closed boundary C.

- a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.
- b) Hence show, that if  $\varphi$  is a smooth scalar field defined everywhere, and C is any path between two fixed points, then

 $\nabla \varphi \cdot \mathbf{dr}$ ,

is independent of the path of C.

c) Given further that  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$  evaluate



where C is the straight line segment from (2,1,2) to (6,3,2).

9)	STOKES' THEREAU ASSERTS, THEFT					
	∬ Z,E·Êds = ∮ F·dr					
	Willee					
	· \$ 15 th OPEN TWO SUBED SUBFACE WITH I WORKD BOUNDARY C					
	· F is a succent wearse field					
	. IS IS A WAIT NOUMAL TO IS, SO THAT THE DREATED OF C & D ROUM A RIGHT HAD SET					
	raem 4 ident finalszer • dr = (dajdyjdz)					
	• 02 • (-1+3(+-)					
6)	USING STOKES THERE WITH I = VA					
1.						
-	$ = \iint \nabla_{x} \mathbf{f} \cdot \mathbf{h}  d\mathbf{s} = \oint \mathbf{f} \cdot d\mathbf{r} $					
11	≈∬[∑,∑¢].jids = ∮ ∑¢. dr					
	\$ 4 4 FOR 1					
	BEIND AR THE IS A STRUCTURE WEBER COMMUNE INFLORY					
-	→ 0 = 9 \$6. dr					
-	$= \int \nabla \phi \cdot d\mathbf{r} + \int \nabla \phi \cdot d\mathbf{r} = 0 \qquad C = C + C$					
	(4 m. 8) (8 m. 4)					
-	$P \int_{C_{1}} \nabla \phi \cdot dc = - \int_{C_{1}} \nabla \phi \cdot dc$					
	$(4 \otimes B)$ $(4 \otimes B)$					
	I.E. INDREJUGE OF THE FITH FOM A & B					



 $\frac{340}{21}$ 

#### **Question 15**

The smooth vector field  $\mathbf{F}$  exists around the open, two sided, surface S, with closed boundary C.

- a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.
- **b**) Hence show that

$$\hat{\mathbf{n}}_{\wedge}\nabla\varphi\,dS\,=\,\oint_{C}\,\varphi\,d\mathbf{r}\,,$$

where  $\varphi$  is a smooth scalar function and  $\hat{\mathbf{n}}$  is a unit normal vector to S.

The Cartesian equation of S is

 $z = x^2 + y^2, \quad z \le 1.$ 

c) Use  $\varphi(x, y, z) = y$  and S to verify the result of part (b).



#### **Question 16**

The vector field  $\mathbf{F}$  exists around the open surface S, with closed boundary C.

- a) State Stokes' Integral Theorem for open surfaces, fully defining all the quantities involved.
- **b**) Hence show that

 $\hat{\mathbf{n}}_{\wedge}\nabla\varphi\,dS\,=\oint_{C}\,\varphi\,d\mathbf{r}\,,$ 

where  $\varphi$  is a smooth scalar function and  $\hat{\mathbf{n}}$  is unit normal vector to S.

The Cartesian equation of S is

 $z = x^2 + y^2, \quad z \le 4.$ 

both sides yield  $-4\pi \mathbf{j}$ 

c) Use  $\varphi(x, y, z) = x$  and S to verify the result of part (b).

T.E.Ads = 1/124) da dy = ... switch 1000 Print Fourier  $\int_{\mathbb{R}} (o_{i} i_{1} 2 r_{2} i_{1} \theta) (r dr d\theta) = \int_{0}^{2\pi} \int_{0}^{2} (o_{i} i_{1} 2 r_{2}^{2} m \theta) dr d\theta$ h = (21,2 -rj drd0  $\hat{\underline{M}} = \frac{(2a_1 \cdot 2y_1 - 1)}{\sqrt{4b_1^2 + 4y_1^2 + 1}}$  $\phi(a_{i,k,k}) = 0$  $\nabla \phi = (1, 0, 0)$ ∬∑,E·ńd\$ = ∮ E·dr E = \$ , mine \$ \$=\$(ayz) \$ = a + another unce ĥ, Ve :  $\nabla_{A} = \frac{1}{2} \frac{1}$ ¢ d∑ = (dx_dy_de) = (Exust)[xunt_izust_io] dt  $\frac{3x}{(4l_3+6l_3\mu)/2} \quad \frac{5^2}{(4l_3+6l_3\mu)/2} \quad \frac{(4l_3+6l_3\mu)/2}{(4l_3+6l_3\mu)/2}$ Vorse of de = of de . de  $[0_1 - \frac{1}{(4t^2 + 4t^2 + 1)^{\frac{1}{2}}}) - \frac{2y}{(4t^2 + 4t^2 + 1)^{\frac{1}{2}}}]$ Now  $Y_{\Phi,c} \cdot \hat{\eta} = (-1) \leq \sqrt{Y_{\Phi}} \cdot \hat{\eta} = (-1) \hat{\eta}_{\Lambda} Y_{\Phi} \cdot c$ ( A, Z¢ d\$ = .... CUENT THERE AT (-210,4) & TRACKS QUODINGLE BE 0 & E & 217 26.24 J= \$ 2.(\$ X\$)]]  $\int_{t=0}^{2\pi} (-4suttost, -4so^2t, o) dt = \int_{t=0}^{2\pi} -4so^2t dt$ ∬ c. (n, N) ds= € c. p. dr  $= \int_{0}^{2\pi} -4\left(\frac{1}{2} + \frac{1}{2}\log 2t\right) dt = -2\int_{0}^{2\pi} 1 dt = -2\frac{1}{2} \times 2\pi$ ⇒ s. J h, Zød\$ = s. & ø ø  $= \int\limits_{R} \left[ \left[ o_{i} - \frac{1}{[\underline{b}]} - \frac{2\underline{a}}{[\underline{b}]} \right] \frac{dxd\underline{a}}{\underline{b}\underline{a}} \right] = \int\limits_{R} \left[ o_{i} - \frac{1}{[\underline{b}]} - \frac{2\underline{a}}{[\underline{b}]} \right] \frac{|\underline{b}| dxd\underline{a}}{\underline{b} \cdot (\underline{a}, \underline{a})}$  $= \int_{R} (Q_{1}-1_{1}-2g) \frac{dxdy}{(21_{1}2y_{1}-1)(Q_{1}Q_{1})} = \int_{R} (Q_{1}-1_{1}-2g) \frac{dxdy}{1}$ AS BRODE ∬ A. V. dx = d d

#### Question 17

- **A**, **B** and **C** are vector fields.
  - a) Prove the validity of the vector identity

$$\mathbf{A} \wedge (\mathbf{B} \wedge \mathbf{C}) \equiv \mathbf{B} (\mathbf{A} \cdot \mathbf{C}) - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$$

b) Given further that c is a constant vector and A a smooth vector field, find a simplified expression for

$$\nabla_{\wedge}(\mathbf{c}\wedge\mathbf{A}).$$

An open two sided surface S has boundary C.

c) Use Stokes' Integral Theorem and the result obtained in part (b) to show that

$$\int_{S} (\mathbf{dS} \wedge \nabla) \wedge \mathbf{A} = \oint_{C} d\mathbf{r} \wedge \mathbf{A},$$

where  $\mathbf{dS} = \hat{\mathbf{n}} dS$  with  $\hat{\mathbf{n}}$  a unit normal vector to S, and  $\mathbf{dr} = \mathbf{i} dx + \mathbf{j} dy + \mathbf{k} dz$ .

<u> </u>	1	
<b>(a)</b> $A_{\mathbf{A}}(\underline{B}_{\mathbf{A}}\underline{G}) = (A_{11}A_{23}A_{3})_{\mathbf{A}} \begin{vmatrix} \underline{i} & \underline{i} & \underline{k} \\ \underline{B}_{1} & \underline{B}_{2} & \underline{B}_{3} \\ \underline{G}_{1} & \underline{G}_{2} & \underline{G}_{3} \end{vmatrix}$		$A_{A}(B_{A}\subseteq) = \underline{B}(A \cdot \subseteq) - (\underline{A} \cdot \underline{B}) \subseteq$
$= (A_{k_1}, k_2, h_3) \Big( \begin{array}{c} B_2 C_3 - C_2 B_3, \\ B_3 C_1 - B_1 C_3, \\ B_1 C_2 - C_1 B_2 \end{array} \Big)$		$\begin{cases} \text{Let } \underline{A} \in \underline{\nabla}^* \\ \underline{B} = \underline{c} \end{cases} \xrightarrow{\nabla} (\underline{c} A) = \underline{c} (\underline{\nabla} \underline{A}) - (\underline{\nabla} \underline{c}) \underline{A}$
$= \begin{array}{cccc} 1 & -\frac{1}{2} & -\frac{1}{2} \\ A_1 & A_2 & A_3 \\ \frac{8_1^2 - 5^2 \sqrt{5}}{3} & \frac{8_2 - 6_1 - 8_1 - 3}{3} & \frac{8_1 - 6_2}{3} \\ \end{array}$		$ \begin{array}{c} \overbrace{ \begin{array}{c} c \end{array}} = \overbrace{ \left( A \right) }^{n} & \overbrace{ \begin{array}{c} c \end{array}} & \overbrace{ \left( A \right) }^{n} & \overbrace{ \begin{array}{c} c \end{array}} & \overbrace{ \left( A \right) }^{n} & \overbrace{ \begin{array}{c} c \end{array}} & \overbrace{ \left( A \right) }^{n} & \overbrace{ \left( C \right) }^{n} & $
$=\left[ \left( \dot{A}_2 B_1 C_2 - \dot{A}_2 C_1 B_2 - \dot{A}_3 B_3 C_1 + \dot{A}_3 B_1 C_3 \right] \right] \underline{\hat{1}}$		() BY STOKES THEOREM
$= \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 \\ \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 & 2 \\ 2 & 3 & 2 & 2 \\ \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & $		$\int_{S} \nabla_{A} \vec{f} \cdot d\vec{s} = \oint_{a} \vec{f} \cdot d\vec{f}$
$\left[A_{1}B_{3}C_{1} - A_{1}B_{1}C_{3} - A_{2}B_{3}C_{3} + A_{2}C_{2}B_{3}\right] \not\equiv$		LET F= C,A
REGIOUP TERMS		
$= \begin{cases} \left(A_{2}B_{1}C_{2} + A_{3}B_{1}C_{3}\right)\underline{i} \\ \left(A_{2}B_{2}C_{3} + A_{1}C_{3}B_{2}\right)\underline{i} \\ \left(A_{2}B_{2}C_{3} + A_{1}C_{3}B_{2}\right)\underline{i} \end{cases} - \begin{cases} \left(A_{2}B_{3}C_{1} + A_{3}B_{3}C_{1}\right)\underline{i} \\ \left(A_{3}B_{3}C_{3} + A_{1}B_{3}C_{3}\right)\underline{i} \\ \left(A_{3}B_{3}C_{3} + A_{3}B_{3}C_{3}\right)\underline{i} \end{cases}$		$2b \cdot \underline{A}_{a} = \frac{1}{2} = \frac{1}{2} b \cdot (\underline{A}_{a}) \cdot \underline{A}_{a}$
$\left( \left( A_{1}B_{2}C_{1} + A_{2}C_{2}B_{3} \right) \in \right) = \left( \left( A_{1}B_{1}C_{3} + A_{2}B_{3}C_{3} \right) \right) \in \left[ \left( A_{1}B_{1}C_{3} + A_{2}B_{3}C_{3} \right) \right]$		$\int_{a}^{b} = (\underline{c} \cdot \underline{A}) \cdot d\underline{A} = (\underline{c} \cdot \underline{\nabla}) \underline{A} \cdot d\underline{A} = (\underline{c} \cdot \underline{\nabla}) \underline{A} \cdot d\underline{A} = (\underline{c} \cdot \underline{\nabla}) \underline{A} \cdot \underline{A} = (\underline{c} \cdot \underline{\nabla}) = (\underline{c} \cdot \underline{\nabla}) \underline{A} = (\underline{c} \cdot \underline{\nabla}) = (\underline{c} \cdot \underline{\nabla}$
$= \begin{bmatrix} (\dot{A}_{L}C_{2} + A_{3}C_{3})B_{1}, \dot{L} \\ (\dot{A}_{3}G_{3} + A_{3}C_{3})B_{2}, \dot{L} \\ (\dot{A}_{3}C_{3} + A_{4}C_{3})B_{3}, \dot{k} \end{bmatrix} - \begin{bmatrix} (\dot{A}_{L}B_{2} + \dot{A}_{3}B_{3})C_{1}, \dot{L} \\ (\dot{A}_{3}B_{3} + \dot{A}_{3}B_{3})C_{3}, \dot{L} \\ (\dot{A}_{4}B_{4} + A_{3}B_{3})C_{3}, \dot{L} \end{bmatrix}$		$\int_{a}^{b} (\underline{c} \cdot d\underline{s}) (\underline{\nabla} \cdot \underline{A}) - (\underline{c} \cdot \underline{\nabla}) (\underline{A} \cdot d\underline{s}) = - \oint_{a}^{b} c \cdot d\underline{s}_{\underline{A}} \underline{A}$
$\left(\begin{array}{c} A_{1}C_{1}+A_{2}C_{2}+A_{3}C_{3}\right)B_{1}\dot{1}\\ \end{array}\right)\left(\left(\begin{array}{c} A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}\right)C_{1}\underline{1}\\ \end{array}\right)$	7	$\underline{A} \cdot \underline{1} \underbrace{b}_{2} \underbrace{\cdot}_{2} \underbrace{-}_{2} \underbrace{c}_{4} \underbrace{(\underline{b} \cdot \underline{b})}_{2} \underbrace{-}_{4} \underbrace{(\underline{b} \cdot \underline{c})}_{2} \underbrace{\underline{b}}_{2} \underbrace{(\underline{b} \cdot \underline{c})}_{2} \underbrace{\underline{b}}_{2} \underbrace{(\underline{b} \cdot \underline{c})}_{2} \underbrace{\underline{b}}_{2} \underbrace{(\underline{b} \cdot \underline{c})}_{2} \underbrace{(\underline{c} \cdot \underline{c})}_{2$
$= \begin{bmatrix} A_{1}c_{1} + A_{2}c_{2} + A_{3}c_{3} \\ A_{1}c_{1} + A_{2}c_{2} + A_{3}c_{3} \end{bmatrix} b_{3} \pm \begin{bmatrix} A_{1}B_{1} + A_{2}B_{1} + A_{3}B_{3} \\ A_{4}B_{1} + A_{2}B_{1} + A_{3}B_{3} \end{bmatrix} c_{3} \pm b_{3} + b_$		$\underline{M}_{n} \underline{J} \mathbf{b} = \begin{pmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{pmatrix}$
$= \left[ (\underline{A} \cdot \underline{c}) B_1 \dot{\underline{i}} + (\underline{A} \cdot \underline{c}) B_2 \underline{k} + (\underline{A} \cdot \underline{c}) B_3 \underline{k} \right] - \left[ (\underline{A} \cdot \underline{B}) C_1 \dot{\underline{i}} + (\underline{A} \cdot \underline{B}) C_{22} \right]$	1. +(4·B)C.3k	
$= (\underline{A} \cdot \underline{\varphi}) \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} - \begin{bmatrix} \underline{A} \cdot \underline{B} \end{bmatrix} \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{bmatrix}$		$-\int_{\varsigma} (d_{\varsigma_{A}} \nabla)_{A} \Delta = -\int_{c} d_{\varsigma_{A}} \Delta$
$= (\underline{A} \cdot \underline{C}) \underline{B} - (\underline{A} \cdot \underline{B}) \underline{C}$		$\underline{A}_{\text{A}} \underline{b} = \underline{A}_{\text{A}} ( \underline{\nabla}_{\text{A}} \underline{e} \underline{b} ) \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
AS REPORTED		>

 $\nabla \wedge (\mathbf{c} \wedge \mathbf{A}) = \mathbf{c} (\nabla \cdot \mathbf{A}) - (\mathbf{c} \cdot \nabla) \mathbf{A}$ 

#### Question 18

An open two sided surface S has boundary C.

It is further given that **a** is a constant vector and  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ .

Show that

**a**) 
$$\int_{S} 2\mathbf{a} \cdot \hat{\mathbf{n}} \, dS = \oint_{C} \mathbf{a} \wedge \mathbf{r} \cdot d\mathbf{r}$$

**b**) 
$$\int_{S} 2\hat{\mathbf{n}} dS = \bigoplus_{C} \mathbf{r} \wedge d\mathbf{r}$$
.

where  $\hat{\mathbf{n}}$  a unit normal vector to S, and  $\mathbf{dr} = \mathbf{i} \, dx + \mathbf{j} \, dy + \mathbf{k} \, dz$ .

BY STOLES THEOREM 9 E.dr = J V.E.nds  $\operatorname{Ver} = \underline{\mathbf{I}}_{A} \underline{\mathbf{f}}$  $\frac{1}{2} \left( \frac{1}{2} \cdot (2 \sqrt{2}) \cdot \sqrt{2} \right) = \frac{1}{2} \cdot \frac{$  $\boxed{\left[\left(\widehat{t}\cdot\widehat{\Delta}\right)\widehat{\sigma}=\left[\left(\widehat{a}^{i}\widehat{m}^{i}\widehat{s}\right)\cdot\left(\widehat{g}^{i}\widehat{s}^{i}\widehat{s}^{i}\widehat{g}^{i}\widehat{s}^{j}\widehat{s}^{i}\right)\right]\left[\left(\widehat{a}^{i}\widehat{a}^{i}\widehat{b}^{i}\right)=\left(\widehat{\sigma}\widehat{g}^{i}\widehat{s}+\widehat{n}\widehat{g}^{i}\widehat{s}+\widehat{s}\widehat{g}^{i}\widehat{s}\right)\left(\widehat{a}^{i}\widehat{a}^{i}\widehat{a}^{i}\widehat{a}^{j}\right)\right]}$ = [2發明],+5營),2發明過+5第1,2發明時一,2發  $\underbrace{\left(\underline{a},\underline{V}\right)}_{\mathbf{f}} = \underbrace{\left[\left(\underline{a}_{1},\underline{a}_{2},\underline{a}_{3}\right),\left(\underline{b}_{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)}_{\mathbf{h}}\right]}_{\mathbf{h}} \left(\left(\underline{a},\underline{b}_{1},\underline{b}_{2},\underline{b}_{3},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}$  $= \left[ a_{1} \frac{\partial x_{1}}{\partial x} + a_{2} \frac{\partial x_{1}}{\partial x} + a_{3} \frac{\partial x_{1}}{\partial x} + a_{3} \frac{\partial x_{1}}{\partial x} + a_{4} \frac{\partial x_{1}}{\partial x} +$  $= (a_1, a_2, a_3) = \underline{a}$  $\oint (\underline{a}_{n} \underline{e}) \cdot d\underline{e} = \iint (\underline{a}_{n} - \underline{a}) \cdot \underline{h} d\underline{g}$  $\Rightarrow \oint (a_{\text{M}}) \cdot d\mathbf{r} = \iint 2\mathbf{a} \cdot \mathbf{\hat{h}} d\mathbf{\hat{s}}$ ≕) વ•ર્ન દ*વર = વ•∏ ૩૫ વરે

proof

Question 19

 $\mathbf{A} = 2\mathbf{i} - \mathbf{j} + (4y - 3)\mathbf{k} \, .$ 

The vector field  $\mathbf{A}$  exist around the surface S with Cartesian equation

 $x^2 + y^2 + z^2 = 1, \ z \ge 0.$ 

- a) Determine the flux of A through S, where the normal unit field to S is denoted by  $\hat{\mathbf{n}}$ , such that  $\hat{\mathbf{n}} \cdot \mathbf{k} \ge 0$ .
- b) Obtain the answer of part (a) by using the Divergence Theorem.
- c) Use Stokes' Theorem to get an expression for the flux of A through S, as a line integral, and hence verify the answer of part (a).



STRATISCORT F.Y.G.B. TRACESTRATISCORT F.Y.G.B. TRACESTRATIS

T. T. C.B. IN2023 IN2018 COM I. Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST