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Question 1 

Use Green’s Theorem on the plane to evaluate the line integral 

( )2

C

y dx x y dy+ +  � , 

where C  is a circle of radius 1, centre at the origin O , traced anticlockwise. 

π  

 

 

Question 2 

Use Green’s Theorem on the plane to evaluate the line integral 

( ) ( )2 2

C

x y dx y x dy− + +� , 

where C  is the path around the ellipse with equation 2 24 4x y+ = , taken in an 

anticlockwise direction. 

4π  
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Question 3 

Use Green’s Theorem on the plane to evaluate the line integral 

( ) ( )1 e e 1x x

C

y x dx x dy+ + +� , 

where C  is a circle of radius 1, centre at the origin O , traced anticlockwise. 

π  
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Question 4 

The functions F  and  G  are defined as 

( ) 2,F x y x y=     and    ( ) ( )2
,G x y x y= +   

The anticlockwise path along the perimeter of the triangle whose vertices are located 

at ( )0,0 , ( )1,0  and ( )0,1 , is denoted by C . 

Use Green’s Theorem on the plane to evaluate the line integral 

( )

C

F dx G dy+ . 

7
12
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Question 5 

The contour C  is the boundary of a triangle with vertices at the points with Cartesian 

coordinates ( )0,0 , ( )1,0  and ( )1,2 , traced in an anticlockwise direction. 

Verify Green’s Theorem on the plane for the line integral 

( ) ( )3 4 5 2

C

x y dx x y dy+ + −� . 

MM2-B , both sides yield 1  

 

 

 

 

 

 

 

 

 

 



Created by T. Madas 

Created by T. Madas 
 

Question 6 

The functions ( ),P x y  and ( ),Q x y  have continuous first order partial derivatives. 

a) State formally Green’s theorem in the plane, with reference to P  and Q . 

The contour C  is the boundary of a triangle with vertices at the points with Cartesian 

coordinates ( )0,0 , ( )1,0  and ( )1,2 . 

b) Verify Green’s Theorem on the plane for the line integral 

( ) ( )3 2 2

C

xy dx x y dy+ − . 

4both sides yield 
15

−  
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Question 7 

The functions ( ),P x y  and ( ),Q x y  have continuous first order partial derivatives. 

a) State formally Green’s theorem in the plane, with reference to the functions, 

P  and Q . 

b) Evaluate the integral 

( )
2

1 1
2 2

1

7
x

x y dy dx
−

−  . 

c) By considering a line integral over a suitable contour C , use Green’s theorem 

in the plane to independently verify the answer to part (b). 

MM2D , 
56

15
−  
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Question 8 

The closed curve C  bounds the finite region R  in the -x y  plane defined as 

( ) { }2 2, 0 0 1R x y x y x y x y= + ≥ ∩ − ≤ ∩ + ≤ . 

 Evaluate the line integral 

( )2

C

xy dx x dy+� , 

where C  is traced anticlockwise. 

0  
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Question 9 

An ellipse has Cartesian equation 

2 2

2 2
1

x y

a b
+ = , 

where a  and b  positive constants. 

Use Green’s theorem in the plane, to show that the area of the ellipse is abπ . 

proof  
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Question 10 

It is given that the vector function F  satisfies 

( ) ( )3 3sin sinx xy x y y= − + +F i j . 

Evaluate the line integral 

C

 F dri� , 

where  C  is the ellipse with cartesian equation 

2 22 3 2x y y+ = . 

MM2E , 
3 6

π
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Question 11 

It is given that the vector function F  satisfies 

[ ] ( )3cos 15 ln 1x x xy y = + + +
 

F i j . 

Evaluate the line integral 

C

 F dri� , 

where  C  is the curve 

( ){ } ( ){ }2, : 3, 2 2 , : 1, 2 2x y y x x y y x x= − ≤ ≤ = − − ≤ ≤∪ , 

traced in an anticlockwise direction. 

MM2A , 224  
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Gauss’ Theorem 
also known as the Divergence Theorem 
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Question 1 

( ) ( ) ( ) ( )2, , 2 2x y z x y z xy z xy yz≡ + − + + −A i j k . 

Evaluate the integral  

S

 A dSi� , 

where S  is the closed surface enclosing the finite region V , defined by  

1 2x− ≤ ≤ ,    2 2y− ≤ ≤ ,    1 3z≤ ≤ . 

48  
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Question 2 

The surface S  is the sphere with Cartesian equation 

2 2 2 1x y z+ + =  

Use the Divergence Theorem to evaluate  

( )2

S

x y z dS+ +� . 

MM2-B , 4
3

π  

 

 

 

 

 

 

 

 

 



Created by T. Madas 

Created by T. Madas 
 

Question 3 

( ) ( ) ( )2 2 2 2 2, ,x y z z y x x z≡ + − + +F i j k . 

Evaluate the integral  

S

 F dSi� , 

where S  is the surface of a cylinder of radius 1, whose axis is the z  axis, between 

0z =  and 6z = . 

36π  
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Question 4 

( ), , 4x y z xy y≡ + +F i j k . 

Evaluate the integral  

S

 F dSi� , 

where S  is the closed surface enclosing the finite region V , defined by  

2 2 9x y+ ≤ ,   0x ≥ ,    0y ≥ ,    0 4z≤ ≤ . 

9 36π +  
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Question 5 

The vector field F  exists inside and around the finite region V , defined by the 

inequalities 

0 3x≤ ≤ ,  0 4y≤ ≤   and   0 2z≤ ≤ . 

Use V  to verify the Divergence Theorem of Gauss, given further that 

( ) 2, ,x y z x z yz≡ + +F i j k . 

both sides yield 120  
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Question 6 

( ) ( ) ( ) ( )2, , 2 3x y z x y y xz z xyz≡ + + + + +F i j k . 

Evaluate the integral  

S

 F dSi� , 

where S  is the surface with Cartesian equation  

2 2 24 4 4 1x y z+ + = . 

π  
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Question 7 

A smooth vector field A , exists in and on the boundary of a smooth closed surface S , 

and �n  is an outward unit vector to S . 

a) Show that 

� 0

S

dS∇ =∧ A ni  

You may find the Divergence Theorem useful in this part. 

b) Prove the validity of the result of part (a)  if  

•••• 2 2
xy y zx= + +A i j k   

•••• 2 2 2: 1S x y z+ + = , 0z ≥ . 

proof  
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Question 8 

A vector field, F , exists inside and around the finite region V , defined by  

2 2 4x y+ = ,   0x ≥ ,  0y ≥ ,  0 3z≤ ≤ . 

Use V  to verify the Divergence Theorem of Gauss, given further that 

( ) 2, ,x y z x z≡ + +F i j k . 

both sides yield 3 16π +  
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Question 9 

( ) ( ) ( ) ( )3, ,x y z x yz y z x z xyz≡ + + + + +F i j k  

Use the Divergence Theorem of Gauss to find the flux through the open surface with 

Cartesian equation 

2 2 1x y+ = ,  0 4z≤ ≤ . 

10π  
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Question 10 

A vector field, F , exists inside and around the sphere S , with Cartesian equation  

2 2 2 1x y z+ + = . 

Evaluate the surface integral 

S

F dSi , 

where ( ) 2 2, , 3x y z x y z= + +F i j k . 

4π  
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Question 11 

a) State Gauss’ Divergence Theorem for closed surfaces, fully defining all the 

quantities involved. 

b) Verify Gauss’ Divergence Theorem for closed surfaces for the vector field  

( )2 22 6xz y xyz z= + + + +F i j k  

for the finite region defined as  

2 2 24 4x y z+ + = , 0z ≥ . 

both sides yield 3π  
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Question 12    

The region V  is defined as 

( )22 2 4 25x y z+ + + ≤ , 0z ≥ . 

a) Use cylindrical polar coordinates ( ), ,r zθ  to find the volume of this region.  

b) Use Gauss’ Divergence Theorem for closed surfaces, with an appropriate 

vector field, to verify the answer obtained in part (a) 

14
3

π  
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Question 13 

a) State Gauss’ Divergence Theorem for closed surfaces, fully defining all the 

quantities involved. 

b) Hence show that for a smooth scalar field ( ), ,x y zϕ ϕ= , 

�

V S

dV dSϕ ϕ∇ =  n� , 

where S  is a closed surface enclosing a volume V , and �n  is an outward unit 

normal field to S . 

c) Evaluate  

( ) �2 2

S

x y y z dS+ + n� , 

where S  is the paraboloid with equation 

2 21z x y= − − , 0z ≥ . 

( )6
12

π
+j k  
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Question 14 

a) State Gauss’ Divergence Theorem for closed surfaces, fully defining all the 

quantities involved.  

The vector field E   s given as 

( ) ( )
3
22 2 2

x y z x y z
−

= + + + +E i j k . 

b) Show that Gauss’ Divergence Theorem for closed surfaces “fails” for E  and 

the surface with Cartesian equation 

2 2 2 2
x y z a+ + = , 0a > . 

c) Explain carefully why the theorem “fails”. 

proof  
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Question 15 

The surface S  is the sphere with Cartesian equation 

2 2 2 4x y z+ + =  

a) By using Spherical Polar coordinates, ( ), ,r θ ϕ , evaluate by direct integration 

the following surface integral 

( )4 2

S

I x xy z dS= + +� . 

b) Verify the answer of part (a) by using the Divergence Theorem. 

256

5

π
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Question 16 

The surface Ω  is the sphere with Cartesian equation 

( ) ( ) ( )2 2 2
1 1 1 1x y z− + − + − =  

Use the Divergence Theorem to evaluate  

( ) ( )2 2
x y x xy z

Ω

 + + + +
  i j k dSi� , 

where dS  is a unit surface element on Ω . 

16
3

π  
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Question 17 

The vector field u  is given in spherical polar coordinates ( ), ,r θ ϕ  by 

( ) ( ) ( )2 2 2ˆ, , cos cosr r rθ ϕ ϕ ϕ= +u r ϕ̂ϕϕϕ . 

a) Find the flux of u  through a spherical surface of radius 0R . 

b) Verify the answer to part (a) by calculating an appropriate volume integral. 

You may assume that in spherical polar coordinates 

( ) ( ) ( ) ( )2

2

1 1 1
, , sin

sin sin
r rA A A r A A A

r r rr
θ ϕ θ ϕθ

θ θ θ ϕ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
i  

4
02 Rπ  
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Question 18 

a) State Gauss’ Divergence Theorem for closed surfaces, fully defining all the 

quantities involved. 

b) Hence show that for a smooth vector field ( ), ,x y z=A A , with 0∇ =Ai , 

�

V S

dV dS= A r A ni� , 

where S  is a closed surface enclosing a volume V , x y z= + +r i j k , and �n  is 

an outward unit normal field to S . 

c) Verify the validity of the result of part (b) if 3=A i  and S  is the sphere with 

equation 

2 2 2 1x y z+ + = . 

both sides yield 4π i  
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Stokes’ Theorem 
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Question 1 

If F  is a smooth vector field, S  is a smooth closed surface, and �n  is an outward unit 

normal vector to  S , show that 

� 0

S

dS∇ =∧ F ni  

You may find Stokes’ Theorem or the Divergence Theorem useful in this question. 

proof  

 

 

 

 

 

 

 

 

 

 

 

 

 



Created by T. Madas 

Created by T. Madas 
 

Question 2 

a) State Stokes’ Integral Theorem for open surfaces, fully defining all the 

quantities involved. 

b) Show that for a smooth scalar field ϕ  and a constant vector A  

( )ϕ ϕ∇ = ∇∧ ∧A A . 

The open smooth surface S  has boundary c  and unit normal field �n . 

c) Use part (a) and (b) to prove 

�

c S

d dSϕ ϕ= ∇∧ r n� . 

proof  
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Question 3 

Evaluate the line integral 

( ) ( )22

C

x dx x yz dy x z dz + − + +
 � , 

where  C  is the intersection of the surfaces with respective Cartesian equations 

2 2 2 1x y z+ + = ,   0z ≥         and     2 2
x y x+ = ,   0z ≥ . 

4

π
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Question 4 

It is given that the vector field F  satisfies 

2 2 2
y z x= + +F i j k . 

Evaluate the line integral 

C

 F dri� , 

where  C  is the intersection of the surfaces with respective Cartesian equations 

2 2 2 1x y z+ + = ,   0z ≥         and     2 2
x y x+ = ,   0z ≥ . 

4

π
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Question 5 

 

 

 

 

 

 

 

 

The figure above shows the finite region V  defined by the intersection of the planes 

7x y z+ + = , 3x = , 3y = , 0x = , 0y =  and 0z = . 

The open surface S  encloses V  except the plane face with equation 0z = . 

The vector field, ( ), ,x y z x xy xz≡ + +F i j k , exists on and around S . 

Evaluate the surface integral 

S

∇ ∧ F dSi , 

where � dS=dS n , where �n  is an outward unit normal vector to S . 

27

2
S

∇ =∧ F dSi  

 

( )3,3,0

z

yx

( )3,0,0 ( )0,3,0

( )0,3,4
( )3,0,4

( )0,0,7

( )3,3,1
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Question 6 

a) State Stokes’ Integral Theorem for open two sided surfaces, fully defining all 

the quantities involved. 

The vector field  

yz=v k  

exists around the open surface S , with closed boundary C . 

The equation of S  is 

2 21z x y= − − , 0x ≥ , 0y ≥ , 0z ≥ . 

b) Use v  and S  to verify the validity of Stokes’ Theorem. 

4both sides yield 
15
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Question 7 

The vector field  

z xy xz= + +F i j k  

exists around the open two sided surface S , with closed boundary C . 

S  is defined as  

•••• 1x y z+ + = , 0x ≥ , 0y ≥ , 0z ≥ . 

•••• 0x = , 1z y≤ − , 0y ≥ , 0z ≥ . 

•••• 0z = , 1y x≤ − , 0x ≥ , 0y ≥ . 

Show that 

�

C S

dS= ∇ ∧ F dr F ni i�  

where �n  is an outward unit normal to S . 

MM2H , 1both sides yield 
3
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Question 8 

It is given that the vector field F  satisfies 

8 4z x y= + +F i j k . 

Evaluate the line integral 

C

 F dri� , 

where  C  is the intersection of the surfaces with respective Cartesian equations 

2 2
z y x= +         and     2 2

x y y+ = ,   0z ≥ . 

You may find Stokes’ Theorem useful in this question. 

π  
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Question 9   

The surface S  has Cartesian equation 

( )2 2 21z x y− = + ,   1 3z≤ ≤ . 

a) Sketch the graph of S . 

b) Evaluate  

2 2 2

x y z

zx xy yz

∂ ∂ ∂

∂ ∂ ∂

i j k

. 

c) Given that 2 2 2
z x y= + +F i j k , evaluate the integral 

S

F dSi . 

MM2A , 4π  
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Question 10 

The vector field F  exists around the open surface S , with closed boundary C . 

The open surface consists of the following three faces. 

• The cylindrical surface  2 2 4x y+ = ,  0y ≥   and   0 3z≤ ≤ . 

• The plane face  2 2 4x y+ = ,  0y ≥   and   0z = . 

• The plane face  2 2 4x y+ = ,  0y ≥   and   3z = . 

Use S  and C  to verify Stokes’ Theorem, given further that 

( ), ,x y z yz xy xz≡ + +F i j k . 

both sides yield 18−  
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Question 11 

It is given that the vector field F  satisfies 

8 4z x y= + +F i j k . 

Evaluate the line integral 

C

 F dri� , 

where  C  is the intersection of the surfaces with respective Cartesian equations 

2 2
z x y= +         and     2 2

x y x+ = ,   0z ≥ . 

You may find Stokes’ Theorem useful in this question. 

3

4

π
−  
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Question 12 

The vector field F  exists around the open surface S , with closed boundary C , whose 

equation satisfies 

2 2 2 4x y z+ + = , 0z ≥ . 

Use S  and C  to verify Stokes’ Theorem, given further that 

( ), , 4x y z y xy xz≡ + +F i j k . 

both sides yield 16π−  
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Question 13 

The vector field A  exists around the open surface S , with closed boundary C . 

( ) ( ) ( )2 2
x y xy xyz xy xz= + + + +A i j k  

a) State Stokes’ Integral Theorem for open surfaces, fully defining all the 

quantities involved. 

The Cartesian equation of S  is 

2 2 2 2
x y z a+ + = ,    0a > ,   0z ≥ . 

b) Use A   and S  to verify the validity of Stokes’ Theorem. 

41both sides yield 
4

aπ−  
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Question 14 

The smooth vector field F  exists around the open, two sided, surface S , with closed 

boundary C . 

a) State Stokes’ Integral Theorem for open surfaces, fully defining all the 

quantities involved. 

b) Hence show, that if ϕ  is a smooth scalar field defined everywhere, and C  is 

any path between two fixed points, then 

C

ϕ∇ dri , 

is independent of the path of  C . 

c) Given further that  x y z= + +r i j k   evaluate 

3

C

x
 
 +
   r

i dr
r

i , 

where C  is the straight line segment from ( )2,1,2  to ( )6,3,2 . 

MM2D , 
340

21
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Question 15 

The smooth vector field F  exists around the open, two sided, surface S , with closed 

boundary C . 

a) State Stokes’ Integral Theorem for open surfaces, fully defining all the 

quantities involved. 

b) Hence show that  

�

S C

dS dϕ ϕ∇ =∧ n r� , 

where ϕ  is a smooth scalar function and �n  is a unit normal vector to S . 

The Cartesian equation of S  is 

2 2
z x y= + ,   1z ≤ . 

c) Use ( ), ,x y z yϕ =   and S  to verify the result of part (b). 

both sides yield π i  
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Question 16 

The vector field F  exists around the open surface S , with closed boundary C . 

a) State Stokes’ Integral Theorem for open surfaces, fully defining all the 

quantities involved. 

b) Hence show that  

�

S C

dS dϕ ϕ∇ =∧ n r� , 

where ϕ  is a smooth scalar function and �n  is unit normal vector to S . 

The Cartesian equation of S  is 

2 2
z x y= + ,   4z ≤ . 

c) Use ( ), ,x y z xϕ =   and S  to verify the result of part (b). 

both sides yield 4π− j  
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Question 17 

A , B  and C  are vector fields. 

a) Prove the validity of the vector identity 

( ) ( ) ( )≡ −∧ ∧A B C B A C A B Ci i . 

b) Given further that c  is a constant vector and A  a smooth vector field, find a 

simplified expression for  

( )∇ ∧ ∧c A . 

An open two sided surface S  has boundary C . 

c) Use Stokes’ Integral Theorem and the result obtained in part (b) to show that 

( )

S C

d∇ =∧ ∧ ∧ dS A r A� , 

where � dS=dS n  with �n  a unit normal vector to S , and dx dy dz= + +dr i j k . 

( ) ( ) ( )∇ = ∇ − ∇∧ ∧c A c A c Ai i  
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Question 18 

An open two sided surface S  has boundary C . 

It is further given that a  is a constant vector and x y z= + +r i j k . 

Show that 

a) �2

S C

dS d= ∧ a n a r ri i� . 

b) �2

S C

dS d= ∧ n r r� . 

where �n  a unit normal vector to S , and dx dy dz= + +dr i j k . 

proof  
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Question 19 

( )2 4 3y= − + −A i j k . 

The vector field A  exist around the surface S  with Cartesian equation 

2 2 2 1x y z+ + = , 0z ≥ . 

a) Determine the flux of A  through S , where the normal unit field to S  is 

denoted by  �n , such that � 0≥n ki . 

b) Obtain the answer of part (a) by using the Divergence Theorem. 

c) Use Stokes’ Theorem to get an expression for the flux of A  through S , as a 

line integral, and hence verify the answer of part (a). 

MM2C , flux 3π= −  
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