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Green’s Theorem
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Question 1
Use Green’s Theorem on the plane to evaluateleartegral

ydx + x(2+1y) dy ,

whereC is a circle of radiug, centre at the origi®, traced anticlockwise.

Question 2
Use Green’s Theorem on the plane to evaluaterleditegral

(2x- y)dx (2 % dy,

where C is the path around the ellipse with equati)o2rr+4y2=4, taken in an
anticlockwise direction.
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Question 3
Use Green’s Theorem on the plane to evaluateledntegral

y(x+1) e dx + >(e?‘+]) dy,

whereC is a circle of radiug, centre at the origi®, traced anticlockwise.
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Question 4
The functionsF and G are defined as

(1) =Ry and G(y=(x o

The anticlockwise path along the perimeter of tiengle whose vertices are located
at (0,0), (1,0) and(0,1), is denoted byC-.

Use Green’s Theorem on the plane to evaluatertleditegral

(Fdx+Gdy).

C
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Question 5

The contourC is the boundary of a triangle with vertices at ploents with Cartesian
coordinateq0,0), (1,0) and(1,2), traced in an anticlockwise direction.

Verify Green’s Theorem on the plane for the linegral

(3x+4y) dx+(5x- 2y) dy.

, |both sides yield|.
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Question 6

The functionsP(x, y) andQ(x, y) have continuous first order partial derivatives.

a) State formally Green’s theorem in the plane, wéterence toP andQ.

The contourC is the boundary of a triangle with vertices at ploents with Cartesian
coordinateq0,0), (1,0) and(1,2).

b) Verify Green’s Theorem on the plane for the linegral

(xyz) dx+(x2- yz) dy.

C

both sides yield 15
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Question 7
The functionsP(x, y) andQ(x, y) have continuous first order partial derivatives.

a) State formally Green’s theorem in the plane, wéference to the functions,
P andQ.

b) Evaluate the integral

1 1
o (xz- 7y2) dy d».
- X

c) By considering a line integral over a suitable contC, use Green’s theorem
in the plane to independently verify the answepdd (b).

=

15
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Question 8
The closed curv&€ bounds the finite regioR in the x-y plane defined as

R(xy)={x+y*0C x § 0C % §51}.

Evaluate the line integral

(xydx + X d)),

C

whereC is traced anticlockwise.
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Question 9
An ellipse has Cartesian equation

2 2
a“ b

wherea andb positive constants.

Use Green’s theorem in the plane, to show thaatea of the ellipse igab.

proof
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Question 10
It is given that the vector functiof satisfies

F :(sinx3- xy)i+ ()& y°’sin ;)j .

Evaluate the line integral

F dr,

where C is the ellipse with cartesian equation

2x% +3y? = 2y.
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Question 11
It is given that the vector functiof satisfies

F =[xcos¥i+ 15y+ Ir( T+ f) j.
Evaluate the line integral

F dr,

where C is the curve
{(x,y):y:3,-2£ XEZ} {(X,Q:y: - 1L 2 & }Z

traced in an anticlockwise direction.

| |, [224
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Gauss’ Theorem

also known as the Divergence Theorem
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Question 1
A(xy,2° (2% y 2i+ ( X9 )zj+ ((xy2 ¥.
Evaluate the integral

A dS,

where S is theclosedsurface enclosing the finite regidh, defined by

-1E x£ 2, -2£ yE 2, 1£z£3.
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Question 2
The surfaceS is the sphere with Cartesian equation

X2 +y*+ =1

Use the Divergence Theorem to evaluate

(x2 +y+ z) ds.
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Question 3
F(xy,2)° 22i+( V- >€)j+ ( % 2)k :
Evaluate the integral

F dS,

where S is the surface of a cylinder of radiiswhose axis is the axis, between
z=0andz=6.

360]
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Question 4
F(xy,2)° xy+ j+ & .

Evaluate the integral

F dS,

where S is theclosedsurface enclosing the finite regidh, defined by

x>+y?£9, x30, y30, Of£zE£A4.
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Question 5
The vector fieldF exists inside and around the finite regidn defined by the
inequalities

OE£XE3, OEy£4 and O£ z£ 2.

UseV to verify the Divergence Theorem of Gauss, givethier that

F(xy,2° Xi+ B+ Y.

both sides yield 1
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Question 6
Fx%.2° (% B)i+ (2% xi+(32 x) .
Evaluate the integral

F dS,

where S is the surface with Cartesian equation

A2+ 4y? + 47° = 1,
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Question 7

A smooth vector fieldA , exists in and on the boundary of a smooth clesefaceS,
andn is an outward unit vector t8.

a) Show that
NUA ndS=0
S
You may find the Divergence Theorem useful in {Fast.

b) Prove the validity of the result of p4#) if
A =Xxyi + y2j + 24K
S: ¥+ '+ Z=1, z=0.

proof
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Question 8
A vector field, F, exists inside and around the finite reg\n defined by

x*+y?=4, x30, y30, 0£z£3.
UseV to verify the Divergence Theorem of Gauss, givetthier that

F(xy,2)° Xi+j+ k.

both sides yield 8+ 1
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Question 9
Fx%.2° (¢ ydie( §2 fi+( 2 xk

Use the Divergence Theorem of Gauss to find thetfiwough theopen surface with
Cartesian equation

x?+y?=1, O£ z£ 4.
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Question 10
A vector field, F, exists inside and around the sph&rewith Cartesian equation

X + y2+ 7 =1.

Evaluate the surface integral

F dS,

whereF(x,y,2) =3Xi+ yj + Xk .
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Question 11

a) State Gauss’ Divergence Theorem for closed surfdodlg defining all the
guantities involved.

b) Verify Gauss’ Divergence Theorem for closed surddoe the vector field
F=x2 +2Vj +( xyz+4 y+6)k
for thefinite region defined as

X2 +y*+47°=4, 23 0.

both sides yield B
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Question 12
The regionV defined as

X2+ y? +(z+4)? £25, 23 0.
a) Use cylindrical polar coordinatgs,g,z) to find the volume of this region.

b) Use Gauss’ Divergence Theorem for closed surfasith, an appropriate
vector field, to verify the answer obtained in pat

p
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Question 13

a) State Gauss’ Divergence Theorem for closed surfdodlg defining all the
guantities involved.

b) Hence show that for a smooth scalar figlgf (x,y, 2,
N/ dv = J/ ndS,
where S is a closed surface enclosing a voluvheandn is an outward unit

normal field toS.

c) Evaluate

(x2y+ V2 + z)n ds,

where S is the paraboloid with equation

z=1- ¥- y2 z3 0.

(+6&)

12

Created by T. Madas



Created by T. Madas

Question 14

a) State Gauss’ Divergence Theorem for closed surfdodlg defining all the
guantities involved.

The vector fieldE s given as

.3
2

E:(x2+y2+zz) (%+y+k).

b) Show that Gauss’ Divergence Theorem for closedasad “fails” forE and
the surface with Cartesian equation

X2 + y2+ 7 =a% a>0.
c) Explain carefully why the theorem “fails”.

proof
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Question 15
The surfaceS is the sphere with Cartesian equation

X2 +y*+ =4

a) By using Spherical Polar coordinateés,q,j ) evaluate by direct integration
the following surface integral

| = (x4 + xy2 + z) ds<.

b) Verify the answer of paka) by using the Divergence Theorem.

2560
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Question 16
The surfaceW is the sphere with Cartesian equation

(x- 1% (v )% (z 1% 1
Use the Divergence Theorem to evaluate

(x+y)i+(x2+x>)j + %4 ds,

w

wheredS is a unit surface element oi.

w5
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Question 17

The vector fieldu is given in spherical polar coordinatesg,/ ) by
u(r,q,j)z(rzco§' )F+(r 2 co8 )f .
a) Find the flux ofu through a spherical surface of radigg.

b) Verify the answer to pafga) by calculating an appropriate volume integral.

You may assume that in spherical polar coordinates

N (A’Aq’ g ) :rizﬂ_ﬂr( r2'A")Jrrsilnq‘ﬂlq( @sinq) +r silnqﬂ_ﬁ( 6)
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Question 18

a) State Gauss’ Divergence Theorem for closed surfdodlg defining all the
guantities involved.

b) Hence show that for a smooth vector fidld=A (x, y, 2), with N A =0,

AdV = rA n ds,

where S is a closed surface enclosing a voluvher =x +y +k , andn is
an outward unit normal field t&.

c) Verify the validity of the result of pafb) if A=3 andS is the sphere with
equation

X2 + y2+ Z=1.

both sides yield 4|
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Stokes Theorem
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Question 1

If F is a smooth vector fieldS is a smooth closed surface, amds an outward unit
vector to S, show that

NUF ndS=0

S

You may find Stokes’ Theorem or the Divergence Theouseful in this question.

proof
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Question 2

a) State Stokes’ Integral Theorem for open surfacefly fdefining all the
guantities involved.

b) Show that a smooth scalar field and a constant vectak
NO(/A)=§ UA.
The open smooth surfac® has boundarg and unit normal fielch.
c) Use part (a) and (b) to prove

~

J dr= nuN dS.

c S

proof
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Question 3
Evaluate the line integral

X dx+( x- 2'y2 dy( X+ )z dz,

where C is the intersection of the surfaces with respecartesian equations

x2+y2+22:1, z3 0 and x2+y2:x, z3 0.

NGRS

Created by T. Madas



Created by T. Madas

Question 4

It is given that the vector fiel& satisfies
F=y2i+22j + %K .

Evaluate the line integral

F dr,

where C is the intersection of the surfaces with respecfartesian equations

x2+y2+22:1, z3 0 and x2+y2:x, z3 0.

INGRS
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Question 5

(339

The figure above shows the finite regigndefined by the intersection of the planes
X+y+z=7,x=3,y=3, x=0, y=0andz=0.
The open surfac& encloses/ except the plane face with equating 0.
The vector field,F(x,y, 2)© %+ Xj+ Xz, exists on and aroun§.
Evaluate the surface integral
NUF ds,
s

wheredS = ndS, wheren is an outward unit normal vector ®.
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Question 6

a) State Stokes’ Integral Theorem for open two sidathses, fully defining all
the quantities involved.

The vector field
v =yzk
exists around the open surfaBe with closed boundarg .
The equation ofS is
z=1- ¥- y*, x30,y30, z3 0.

b) Usev andS to verify the validity of Stokes’ Theorem.

both sides yie|dli5
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Question 7
The vector field

F=zi +xy] + xk
exists around the open two sided surf&ewith closed boundarg .
S is defined as
x+y+z=1, x30,y30, z30.
x=0, z£1- y,y30, z3 0.
z=0, y£1- x, x3 0, y2 0.

Show that

F dr NUF n dS

wheren is an outward unit normal t8.

both sides yield%
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Question 8
It is given that the vector fiel& satisfies

F=8zi+4x + ¥k .

Evaluate the line integral

F dr,

where C is the intersection of the surfaces with respec@artesian equations
x2+y2+22:1, z3 0 and x2+y2:y, z3 0.

You may find Stokes’ Theorem useful in this queastio
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The surfaceS has Cartesian equation

(z-1)%= %+ y?, 0£2z£3.

a) Sketch the graph o%.

b) Evaluate

i
Al
ix
2%

ik
R
v 1z
Xy yZ

c) Given thatF = 2% + x2j + y¥< , evaluate the integral

F dS.

S
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Question 10
The vector fieldF exists around the open surfaSe with closed boundarg .

The open surface consists of the following threesa

The cylindrical surfacex? + y2 =4, y30 and O£ z£ 3.
The plane facex® + y2:4, y3 0 and z=0.

The plane facex? + y2 =4, y3 0 and z=3.
Use S andC to verify Stokes’ Theorem, given further that

F(xy,2° yr+ xp *.

both sides yield
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Question 11
It is given that the vector fiel& satisfies

F=8zi+4x + ¥k .

Evaluate the line integral

F dr,

where C is the intersection of the surfaces with respec@artesian equations
x2+y2+22:1, z3 0 and x2+y2:x, z3 0.

You may find Stokes’ Theorem useful in this queastio

Created by T. Madas



Created by T. Madas
Question 12

The vector fieldF exists around the open surfaBe with closed boundar¢ , whose
equation satisfies

X2 + y2+ =4, 23 0.
Use S andC to verify Stokes’ Theorem, given further that

F(xy,2° 4y+ xj+ *.

both sides yield 18|
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Question 13
The vector fieldA exists around the open surfaBe with closed boundarg .

A:(xzy)i +( xy+ Xy3j +( Xy >&)<

a) State Stokes’ Integral Theorem for open surfacefly fdefining all the
guantities involved.

The Cartesian equation & is
X2 + y2+ ZZ=2a, a>0, z30.

b) Use A andS to verify the validity of Stokes’ Theorem.

both sides yield le,oa4
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Question 14

The smooth vector fieléF exists around the open, two sided, surf&ewith closed
boundaryC.

a) State Stokes’ Integral Theorem for open surfacefly fdefining all the
guantities involved.

b) Hence show, that if a smooth vector field defined everywhere, &hds
any path between two fixed points, then

N/ dr,

is independent of the path ¢ .

c) Given further thatr =xi +yj + k evaluate

r )
—+xi dr,

whereC is the straight line segment frof@,1,2) to (6,3,2).

340
[ 15

21
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Question 15
The smooth vector fieléF exists around the open, two sided, surf&ewith closed
boundaryC.

a) State Stokes’ Integral Theorem for open surfacefly fdefining all the
guantities involved.

b) Hence show that

nONj dS= / d,
S C

where/ is a smooth scalar function andis unit vector field toS.

The Cartesian equation & is
2= + y2 zE1L.

c) Usej (xy,2) =y andS to verify the result of parb).

both sides yielgi
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Question 16
The vector fieldF exists around the open surfaSe with closed boundarg .

a) State Stokes’ Integral Theorem for open surfacefly fdefining all the
guantities involved.

b) Hence show that

noN/ ds= / d,
S C

where/ is a smooth scalar function andis unit vector field toS.

The Cartesian equation & is
2= + y2 ZzE4.

c) Usej (x,v,2) = x andS to verify the result of parb).

|both sides yield 4j|
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Question 17
A, B andC are vector fields.

a) Prove the validity of the vector identity
AU(BUC)°B(AC) (AB)A.

b) Given further that is a constant vector andl a smooth vector field, find a
simplified expression for

NU(cUA).
An open two sided surfac® has boundary.

c) Use Stokes’ Integral Theorem and the result obteingart(b) to show that

(dSUN)UA = dr A,

wheredS = ndS with n a unit vector field tcS, anddr =i dx+j dy+k dz.

~

NU(cUA)=c(N A)- (cN)A
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Question 18
A open two sided surfac® has boundarg .

It is further given that is a constant vector and=xi +yj + K .

Show that
a) 2an dS = aur d.
s C
b) 2n dS = rud.
s C

wheredS = ndS with n a unit vector field toS, anddr =i dx+j dy+k dz

proof
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Question 19
A=2-j+(4y- 3k .
The vector fieldA exist around the surfacg with Cartesian equation
X + y2+ 7 =1, z3 0.

a) Determine the flux ofA through S, where the normal unit field t& is
denoted byn, such thank 3 0.

b) Obtain the answer of pai) by using the Divergence Theorem.

c) Use Stokes’ Theorem to get an expression for tne df A throughS, as a
line integral, and hence verify the answer of fa)t

| |, [flux = -3p|
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