BESSEL EQUATION

BESSEL FUNCTIONS

Summary of Bessel Functions
Bessel's Equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0
$$

If n is an integer, the two independent solutions of Bessel's Equation are - $J_{n}(x)$, Bessel function of the first kind,

$$
J_{n}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(n+p)!p!}\left(\frac{x}{2}\right)^{2 p+n}\right]
$$

Generating function for $J_{n}(x)$

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right]
$$

- $Y_{n}(x)$, Bessel function of the second kind

$$
\begin{aligned}
Y_{n}(x) & =\frac{2}{\pi} \ln \left(\frac{1}{2} x\right) J_{n}(x)-\frac{1}{\pi}\left(\frac{1}{2} x\right)^{-n} \sum_{p=0}^{n-1}\left[\frac{(n-1-p)!}{p!}\left(\frac{1}{2} x\right)^{2 p}\right] \\
& +\frac{1}{\pi}\left(\frac{1}{2} x\right)^{n} \sum_{p=0}^{n-1}\left[\frac{(-1)^{p}}{(p+n)!p!}\left(\frac{1}{2} x\right)^{2 p}\left[2 \gamma-\sum_{m=1}^{p}\left(\frac{1}{m}\right)-\sum_{m=1}^{p+n}\left(\frac{1}{m}\right)\right]\right]
\end{aligned}
$$

Created by T. Madas

Other relations for $J_{n}(x), n \in \mathbb{Z}$.

- $J_{-n}(x)=(-1)^{n} J_{n}(x)$.
- $J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]$
- $\quad J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]$
- $J_{n}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(n+p)!p!}\left(\frac{x}{2}\right)^{2 p+n}\right]$
- $J_{0}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(p!)^{2}}\left(\frac{x}{2}\right)^{2 p}\right]=1-\frac{x^{2}}{2^{2}(1!)^{2}}+\frac{x^{4}}{2^{4}(2!)^{2}}-\frac{x^{6}}{2^{6}(3!)^{2}}+\ldots$
- $J_{1}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(p+1)!p!}\left(\frac{x}{2}\right)^{2 p+1}\right]=\frac{x}{2^{1} 0!1!}-\frac{x^{3}}{2^{3} 1!2!}+\frac{x^{5}}{2^{5} 2!3!}-\frac{x^{7}}{2^{7} 3!4!}+\ldots$

Created by T. Madas

Question 1

$$
x \frac{d^{2} y}{d x^{2}}+(1-2 n) \frac{d y}{d x}+x y=0, \quad x \neq 0 .
$$

Show that $x^{n} J_{n}(x)$ is a solution of the above differential equation.

Question 2
Starting from the generating function of the Bessel function of the first kind

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$ $\left\{e^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=1}^{\infty}\left[t^{n} J_{n}(x)\right]\right\}$

\qquad $\Rightarrow e^{\frac{1}{2} x(-4+T)}=\sum_{u=-\infty}^{\infty}\left[\left(-\frac{1}{T}\right)^{4} J_{1}(x)\right]$
$\Rightarrow e^{\frac{1}{2} x\left(T-\frac{1}{T}\right)}=\sum_{h=-\infty}^{\infty}\left[(-1)^{2} T^{-4} T_{4}(x)\right]$
 $\rightarrow\left\{\begin{array}{l}e^{\frac{1}{2} x\left(t-\frac{t}{t}\right)}=\sum_{n=-\infty}(-1)^{n} t^{-4} J_{4}(x) \\ e^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum^{\infty} t^{4} J_{1}(x)\end{array}\right\}$ $\Rightarrow \sum_{h=-\infty}^{\infty} t^{n} J_{4}(x)=\sum_{n=-\infty}^{\infty}(-1)^{n} t^{-h} J_{1}(x)$
(8) Couplite Powise of t, sty $\left[t^{n}\right]$, so on the R.H.S "-h" auts $t^{-(-4)}=t^{4}$
$\Rightarrow \quad I_{y}(x)=(-1)^{-n} J_{-\rightarrow}(x)$
$\Rightarrow J_{1}(a)=(-1)^{\prime} J_{1}(2)$

Created by T. Madas

Question 3
Starting from the series definition of the Bessel function of the first kind

Created by T. Madas

Question 4
Starting from the generating function of the Bessel function of the first kind

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}
\end{array}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}, \\
& J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]
\end{aligned}
$$

Created by T. Madas

Question 5
Starting from the generating function of the Bessel function of the first kind

$$
\begin{aligned}
& \mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}, \\
& \frac{2 n}{x} J_{n}(x)=J_{n-1}(x)+J_{n+1}(x)
\end{aligned}
$$

Question 6
The generating function of the Bessel function of the first kind is

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

a) By differentiating the generating function relation with respect to x, show that

$$
\frac{1}{2} J_{n-1}(x)-\frac{1}{2} J_{n+1}(x)=J_{n}^{\prime}(x)
$$

b) By differentiating the generating function relation with respect to t, show that

$$
J_{n}(x)=\frac{x}{2 n}\left[J_{n-1}(x)+J_{n+1}(x)\right]
$$

c) Hence find a simplified expression for

$$
\frac{d}{d x}\left[\left(x^{n}+x^{-n}\right) J_{n}(x)\right]
$$

$$
\frac{d}{d x}\left[\left(x^{n}+x^{-n}\right) J_{n}(x)\right]=x^{n} J_{n-1}(x)-x^{-n} J_{n+1}(x)
$$

Question 7
Starting from the generating function of the Bessel function of the first kind

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

determine the series expansion of $J_{n}(x)$, and hence show that

- $J_{0}(x)=1-\frac{x^{2}}{2^{2}(1!)^{2}}+\frac{x^{4}}{2^{4}(2!)^{2}}-\frac{x^{6}}{2^{6}(3!)^{2}}+\ldots$
- $J_{1}(x)=\frac{x}{2^{1} 0!1!}-\frac{x^{3}}{2^{3} 1!2!}+\frac{x^{5}}{2^{5} 2!3!}-\frac{x^{7}}{2^{7} 3!4!}+\ldots$

$$
J_{n}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(n+p)!p!}\left(\frac{x}{2}\right)^{2 p+n}\right]
$$

Question 8
The generating function of the Bessel function of the first kind is

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

Use the generating function relation, to show that for $n \geq 0$
a) $J_{-n}(x)=(-1)^{n} J_{n}(x)$
b) $J_{n-1}(x)-J_{n+1}(x)=2 J_{n}^{\prime}(x)$.
c) $J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)$.

Use parts (b) and (c) to find simplified expressions for
d) $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]$.
e) $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]$

$$
\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x), \frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)
$$

f) Use parts (d) and (e) to show that the positive zeros of $J_{n}(x)$ interlace with those of $J_{n+1}(x)$.

Created by T. Madas
d) $\frac{d}{d x}\left[x^{4} J_{n}(x)\right]$... Pbrout Put $=n x^{n-1} J_{1}(x)+x^{4} J_{n}^{\prime}(x)$ usuce (b) a (c) to smanufy
$=n x^{n-1}\left[\frac{x}{2 n}\left(J_{k j}(x)+J_{n, k}(x)\right)\right]+x^{n} \times \frac{1}{2}\left[J_{n}(x)-J_{n n}(x)\right]$ $=\frac{1}{2} x^{4}\left[J_{n+1}(x)+J_{n+1}(x)\right]+\frac{1}{2} x^{n}\left[J_{n+1}(x)-J_{n+1}(x)\right]$ $=\frac{1}{2} x^{4}\left[J_{4-(x)}+I_{4}(x)+I_{41}(x)-I_{4+1}(x)\right]$
$=x^{4} J_{4-1}(x)$
e) $\frac{d}{d x}\left[x^{-4} J_{4}(x)\right]=\ldots$ Prouct Rouce $\ldots .-n x^{-4-1} J_{n}(x)+x^{-4} J_{n}^{\prime}(x)$ ramic (b) a cl to surecy
$=-n x^{-n-1} \times \frac{x}{2 n}\left[J_{n}(x)+J_{n+1}(x)\right]+x^{-n} \times \frac{1}{2}\left[J_{1}(x)-J_{n+1}(x)\right]$

 $=-x^{-n} J_{4 n}(x)$
\square
-
$\frac{d}{d x}\left(x^{4} J_{n}(x)\right)=x^{4} J_{n-1}(x) \quad \Longrightarrow \int x^{4} J_{1-1}(x) d x=x^{4} J_{1}(x)+c(J)$ $\left.\frac{d}{d x}\left(x^{-4} J_{4}(x)\right)=-x^{-4} J_{x_{1}+1}(x)\right\} \Rightarrow-\int x^{-4} J_{4+1}(x) d x=x^{4 n} J_{n}(x)+D(I)$
 $J_{1}(x)=0$, whit $x_{2}>x_{1}$ THAN By (I) \qquad
 By (II) $x^{-4} J_{n}(x)+D=-\int x^{-4} J_{n+1}(x) d x$ $x^{-n-1} J_{n-1}(x)+D=-\int x^{+-1} J_{1}(x) d x$ $\left[x^{-(x+1)} J_{4-1}(x)\right]_{X_{1}}^{X_{2}}=-\int_{X_{1}}^{X_{2}} x^{-(4+1)} J_{4}(x) d x$
\qquad
 1.E Che ithe zmo $x \Rightarrow x_{1}<X_{1}<x_{1}<X_{2}<x_{2}$

Question 9
The Bessel function of the first kind is defined by the series

$$
J_{n}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(n+r)!r!}\left(\frac{x}{2}\right)^{2 r+n}\right], n \in \mathbb{Z}
$$

Use the above definition to show

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], \quad n \in \mathbb{Z}
$$

Question 10
The generating function of the Bessel function of the first kind is

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

Question 11
The Bessel function of the first kind is defined by the series

$$
J_{n}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(n+r)!r!}\left(\frac{x}{2}\right)^{2 r+n}\right], n \in \mathbb{Z}
$$

Use the above definition to show
\square , proof

$$
\lim _{x \rightarrow 0}\left[\frac{J_{n}(x)}{x^{n}}\right]=\frac{1}{2^{n} n!}, n \in \mathbb{Z}
$$

Created by T. Madas

Question 12

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\left(x^{2}+n^{2}\right) y=0
$$

The above differential equation is known as modified Bessel's Equation.

Use the Frobenius method to show that the general solution of this differential equation, for $n=\frac{1}{2}$, is

$$
y=x^{-\frac{1}{2}}[A \cosh x+B \sinh x] .
$$

Question 13
Find the two independent solutions of Bessel's equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-v^{2}\right) y=0, v \notin \mathbb{Z}
$$

Give the answer as exact simplified summations.

$$
\begin{array}{r}
y=A x^{\nu} \sum_{r=0}^{\infty}\left[\frac{(-1)^{r} v!}{r!(v+r)!}\left(\frac{1}{2} x\right)^{2 r}\right] \text { or } J_{v}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{r!(v+r)!}\left(\frac{1}{2} x\right)^{2 r+v}\right] \\
y=B x^{-v} \sum_{r=0}^{\infty}\left[\frac{(-1)^{r}(-v)!}{r!(r-v)!}\left(\frac{1}{2} x\right)^{2 r}\right] \text { or } J_{-v}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{r!(r-v)!}\left(\frac{1}{2} x\right)^{2 r-v}\right]
\end{array}
$$

(29)

Created by T. Madas

Created by T. Madas

Question 14

Find the two independent solutions of Bessel's equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0, n \in \mathbb{Z}
$$

Give the answer as exact simplified summations.

$$
y=A x^{n} \sum_{r=0}^{\infty}\left[\frac{(-1)^{r} n!}{r!(n+r)!}\left(\frac{1}{2} x\right)^{2 r}\right] \text { or } J_{n}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{r!(n+r)!}\left(\frac{1}{2} x\right)^{2 r+n}\right]
$$

$\frac{y=B(\ln x) x^{n} \sum_{r=0}^{\infty}\left[\frac{(-1)^{r} n!}{r!(n+r)!}\left(\frac{1}{2} x\right)^{2 r}\right]+B x^{n} \sum_{r=1}^{\infty}\left[\frac{(-1)^{r} n!}{r!(n+r)!}\left(\frac{1}{2} x\right)^{2 r}\left[\frac{1}{2} \sum_{m=1}^{r} \frac{1}{m}+\frac{1}{2} \sum_{m=1}^{r} \frac{1}{m+n}\right]\right]}{}$

Created by T. Madas

Question 15

Find the two independent solutions of Bessel's equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0, n=0
$$

Give the answer as exact simplified summations.

$$
\begin{gathered}
y=A \sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(r!)^{2}}\left(\frac{1}{2} x\right)^{2 r}\right] \text { or } J_{0}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(r!)^{2}}\left(\frac{1}{2} x\right)^{2 r}\right] \\
y=B(\ln x) \sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(r!)^{2}}\left(\frac{1}{2} x\right)^{2 r}\right]+B \sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(r!)^{2}}\left(\frac{1}{2} x\right)^{2 r} \sum_{m=1}^{r} \frac{1}{m}\right]
\end{gathered}
$$

Question 16
The generating function of the Bessel function of the first kind is

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

a) Use the generating function, to show that for $n \geq 0$
i. $\quad J_{-n}(x)=(-1)^{n} J_{n}(x)$
ii. $J_{n-1}(x)-J_{n+1}(x)=2 J_{n}^{\prime}(x)$.
iii. $J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)$.
b) Use part (a) deduce that
i. $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$.
ii. $\frac{d}{d x}\left[x^{1-n} J_{n-1}(x)\right]=-x^{1-n} J_{n}(x)$
c) Use part (b) to show further that

$$
x^{2} J_{n}^{\prime \prime}(x)+x J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) J_{n}(x)=0
$$

\square

\square
$\rightarrow \frac{d}{d 2}\left(x^{4} T_{4}(x)\right)=\frac{x}{2} x^{4 n}\left(2 T_{41}(x)\right)$

II) $\frac{d}{d x}\left[x^{1-4} J_{4-1}(x)\right]=(1-n) x^{-n} J_{n-x}(x)+x^{1-n} J_{n-1}^{\prime}(x)$
$a_{I} \rightarrow 2 J_{1}^{\prime}(x)=J_{12}(x)-J_{1}(x)$

$\Rightarrow-\frac{2}{x} \frac{d}{d x}\left[x^{2+1} J_{5-1}(x)\right]=\overrightarrow{2}^{-1}\left[J_{4}(x)+J_{4}(x)\right]-x_{2}\left[J_{1,2}(a)-J_{4}(t)\right]$ $\left.\Rightarrow-\frac{3}{x} \frac{d}{x}\left[x^{1-1} J_{1+1}(a)\right]=a^{-1}\left[2 T_{1}, u\right)\right]$

$\Rightarrow \frac{\partial}{d x}\left[x^{14} J_{47}(x)\right]=-x^{1-4} J_{4}(x)$
As Requere
\square

Question 17

$$
t \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+t y, t>0
$$

The Bessel function of order zero, $J_{0}(t)$, is a solution of the above differential equation.

It is further given that $\lim _{t \rightarrow 0}\left[J_{0}(t)\right]=1$.

By taking the Laplace transform of the above differential equation, show that

$$
\mathcal{L}\left[J_{0}(t)\right]=\frac{1}{\sqrt{s^{2}+1}}
$$

\square

Question 18
It can be shown that for $n \in \mathbb{N}$

$$
\int_{-1}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \mathrm{e}^{\mathrm{i} x t} d t=\sum_{m=0}^{\infty}\left[\frac{(-1)^{m} \Gamma\left(m+\frac{1}{2}\right) \Gamma\left(n+\frac{1}{2}\right)}{(2 m)!\Gamma(m+n+1)}\right]
$$

Use Legendre's duplication formula for the Gamma Function to show

$$
J_{n}(x)=\frac{x^{n}}{2^{n-1} \sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \cos (x t) d t
$$

\square , proof

Question 19
Legendre's duplication formula for the Gamma Function states

$$
\Gamma\left(n+\frac{1}{2}\right) \equiv \frac{\Gamma(2 n) \sqrt{\pi}}{2^{2 n-1} \Gamma(n)}, n \in \mathbb{N} .
$$

a) Prove the validity of the above formula.
b) Hence show that

$$
J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x .
$$

c) Determine an exact simplified expression for

$$
\left[J_{-\frac{1}{2}}(x)\right]^{2}+\left[J_{\frac{1}{2}}(x)\right]^{2}
$$

\square
C) In Analugs is mate (b)
$J_{n}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(5+1)!r!}\left(\frac{x}{2}\right)^{2 x+n}=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{\Gamma(n+++1) \Gamma!}\left(\frac{x}{2}\right)^{r+n}$
$J_{\frac{1}{2}}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{\Gamma\left(\Gamma+\frac{2}{2}\right)^{\Gamma}}\left(\frac{x}{2}\right)^{2 r+\frac{1}{2}}=\left(\frac{x}{2}\right)^{\frac{1}{2}} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{\pi\left(r+\frac{3}{2}\right)!!\left(\frac{x}{2}\right)^{r+1}}$
$=\sqrt{\frac{2}{x}} \sum_{1=0}^{\infty} \frac{(-1)^{r} x^{2 r+1}}{\Gamma\left(r+\frac{1}{2}\right) \Gamma!\times 2^{2 r+1}}$

- TGou PAET (a) 2aferanc. r witat $T+1$
$\Gamma\left(r+\frac{1}{2}\right)=\frac{\Gamma(2 r)}{2^{x-1} \Gamma(r)}$
$\Gamma\left(r+\frac{3}{2}\right)=\Gamma(2 r+2) \sqrt{\pi}$
$\Gamma\left(\Gamma+\frac{3}{2}\right)=\frac{\Gamma(2 \Gamma+2) \sqrt{\pi}}{2^{2 N+1} \Gamma(\Gamma+1)}$

$=\sqrt{\frac{2}{\pi \lambda}} \sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r+1}}{\Gamma(x+2)}$
$\therefore=\sqrt{\frac{2}{\pi a}}\left(\sum_{1=0}^{\infty} \frac{\left.(-1)^{n}\right)^{2 n+1}}{(x+1)!}-\sin x\right.$
$=\sqrt{\frac{2}{\pi}} \sin x$
 $=\frac{2}{\pi} \sin ^{2} x+\frac{2}{\pi \pi^{2}} \cos ^{2} x$ $=\frac{2}{\pi a}$

Question 20
a) By using techniques involving the Beta function and the Gamma function, show that

$$
\int_{0}^{\frac{\pi}{2}}(\cos \theta)^{2 k+1} d \theta=\frac{(k!)^{2} 2^{2 k}}{(2 k+1)!}
$$

The series definition of the Bessel function of the first kind

$$
J_{n}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(n+r)!r!}\left(\frac{x}{2}\right)^{2 r+n}\right], n \in \mathbb{Z}
$$

b) Use the above definition and the result of part (a), to show that

$$
\int_{0}^{\frac{\pi}{2}} J_{1}(x \cos \theta) d \theta=\frac{1-\cos \theta}{x}
$$

Question 21
The Bessel function $J_{n}(\alpha x)$ satisfies the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(\alpha^{2} x^{2}-n^{2}\right) y=0, n \in \mathbb{Z}
$$

where α is a non zero constant.

If $J_{n}\left(\alpha_{1} x\right)$ and $J_{n}\left(\alpha_{2} x\right)$ satisfy $J_{n}\left(\alpha_{1}\right)=J_{n}\left(\alpha_{2}\right)=0$, with $\alpha_{1} \neq \alpha_{2}$, show that

$$
\int_{0}^{1} x J_{n}\left(\alpha_{1} x\right) J_{n}\left(\alpha_{2} x\right) d x=0
$$

Question 22
The series definition of the Bessel function of the first kind

$$
J_{n}(x)=\sum_{r=0}^{\infty}\left[\frac{(-1)^{r}}{(n+r)!r!}\left(\frac{x}{2}\right)^{2 r+n}\right], n \in \mathbb{Z}
$$

Use the above definition to show that

$$
J_{n}(x)=\frac{2 I}{(n-m-1)!}\left(\frac{x}{2}\right)^{n-m}
$$

where $I=\int_{0}^{1}(1-t)^{n-m-1} t^{m+1} J_{m}(x t) d t, \quad n>m>-1$.

Question 23

$$
I=\int_{-1}^{1}\left(1-t^{2}\right)^{n-\frac{1}{2}} \mathrm{e}^{\mathrm{i} x t} d t
$$

a) By using the series definition of the exponential function and converting the integrand into a Beta function, show that

$$
I=\sum_{m=0}^{\infty}\left[\frac{(-1)^{m} x^{2 m}}{(2 m)!} \frac{\Gamma\left(n+\frac{1}{2}\right) \Gamma\left(m+\frac{1}{2}\right)}{\Gamma(n+m+1)}\right]
$$

Legendre's duplication formula for the Gamma Function states

$$
\Gamma\left(m+\frac{1}{2}\right) \equiv \frac{\Gamma(2 m) \sqrt{\pi}}{2^{2 m-1} \Gamma(m)}, m \in \mathbb{N}
$$

b) Use the above formula and the result of part (a) to show further

Question 24
The Bessel function of the first kind $J_{n}(x)$, satisfies

$$
J_{n}(x)=\sum_{p=0}^{\infty}\left[\frac{(-1)^{p}}{(n+p)!p!}\left(\frac{x}{2}\right)^{2 p+n}\right]
$$

Show that

$$
J_{n}(x)=\frac{I}{\sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{n}
$$

\square
$\Rightarrow I=\frac{\sqrt{T} \Gamma(n+1) 2}{n!}\left[1-\frac{\frac{1}{2} a^{2}}{2!(n+4)}+\frac{\frac{3}{2} \times \frac{1}{2} x^{4}}{4!(n+2)(n+1)}-\frac{\frac{5}{2} \times \frac{3}{2} \times \frac{1}{2} x^{6}}{6!(n+3)(n+2)(n+1)}\right.$ $\Rightarrow I=\frac{\sqrt{\pi}\left(\left(r_{n+\frac{1}{2}}\right)\right.}{n!}\left[1-\frac{a^{2}}{2^{\prime} 2!(n+1)}+\frac{3 \times 1 x^{2}}{2^{2} \times 4!(n+1)(4+2)}-\frac{5 \times 3 \times 1 \times x^{6}}{\left.z^{2}!((n+1))(n+2)(n+1)\right)^{t}}\right.$
$\left.\Rightarrow I=\frac{\sqrt{T} \Gamma((u+t)}{n!}\left[1-\frac{2^{2}}{4(n+1)}+\frac{x^{t}}{4 \times 8 \times(n+1)(n+2)}-\frac{x^{6}}{4 \times 8 \times 2(n+1)(n+2)(n+3)}\right]\right]$
$\rightarrow I=\frac{\sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right)}{n!}\left[1-\left(\frac{x^{2}}{4}\right)^{\prime} \frac{1}{1!(n+1)}+\left(\frac{x^{2}}{4}\right)^{2} \frac{1}{2!(n-1)(n+2)}-\left(\frac{x^{2}}{4}\right)^{3} \frac{1}{3!(n+4)(n+2)(n+3))^{2}}+\right.$
$\Rightarrow I=\sqrt{\pi} \Gamma\left((n+2)\left[\frac{1}{n!}-\frac{1}{(n+1)!!}\left(\frac{x^{2}}{2^{2}}\right)^{1}+\frac{1}{(n+2)!2!}\left(\frac{x^{2}}{2^{2}}\right)^{2}-\frac{1}{(n+5), 3!!}\left(\frac{x^{2}}{2^{2}}\right]^{3}\right]\right.$ $\Rightarrow J=\sqrt{\pi^{4} \Gamma \Gamma\left(n+\frac{1}{2}\right)}\left[\frac{1}{n!}-\frac{1}{(n+1!!!!}\left(\frac{2}{2}\right)^{2}+\frac{1}{(n+2)!2!}\left(\frac{x}{2}\right)^{4}-\frac{1}{(n+3)!3!}\left(\frac{(x)}{2}\right)^{6}+\cdots\right]$ Q mutipy By $\left(\frac{y}{2}\right)^{n}$ $\Rightarrow\left(\frac{x}{2}\right)^{n} I=\pi \pi\left(n+\frac{1}{2}\right)\left[\frac{1}{n!}\left(\frac{x}{2}\right)^{n}-\frac{1}{(n+1)!!!}!\left(\frac{x}{2}\right)^{2+n}+\frac{1}{(n+2)!2!}\left(\frac{2}{2}\right)^{4+1}-\cdots\right]$ $J_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{2}}{(n+t)!\left[\left(\frac{x}{2}\right)^{2 x+n}\right.}$
$\Rightarrow\left(\frac{x}{2}\right)^{4} I=\sqrt{\pi} \Gamma\left(n+\frac{1}{2}\right) J_{4}(x)$
$\Rightarrow J_{h}(x)=\frac{I}{\sqrt{T \Gamma\left(n+\frac{1}{2}\right)}}\left(\frac{x}{2}\right)^{n}$ $\Rightarrow I_{h}(x)=\frac{I}{\sqrt{\pi} \Gamma\left(x+\frac{t}{2}\right)}\left(\frac{x}{2}\right)^{n} \int_{0}^{\pi} \cos (2 \sin \theta) \cos ^{2} \theta d \theta$
\square

Question 25
The generating function of the Bessel function of the first kind is

$$
\mathrm{e}^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty}\left[t^{n} J_{n}(x)\right], n \in \mathbb{Z}
$$

a) Use the generating function, to show that for $n \geq 0$
i. $\quad J_{-n}(x)=(-1)^{n} J_{n}(x)$
ii. $J_{n-1}(x)-J_{n+1}(x)=2 J_{n}^{\prime}(x)$.
iii. $J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)$.
b) Given that $y=J_{n}(\lambda x)$ satisfies the differential equation

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(\lambda^{2} x^{2}-n^{2}\right) y=0, n=0,1,2,3, \ldots \\
& \text { verify that } \\
& \frac{d}{d x}\left[x^{2}\left(\frac{d y}{d x}\right)^{2}\right]+\left(\lambda^{2} x^{2}-n^{2}\right) \frac{d}{d x}\left(y^{2}\right)=0
\end{aligned}
$$

and hence show that if λ_{i} is a non zero root of $J_{n}(\lambda)=0$

$$
2 \int_{0}^{1} x\left[J_{n}\left(\lambda_{i} x\right)\right]^{2} d x=\left[J_{n-1}\left(\lambda_{i}\right)\right]^{2}=\left[J_{n+1}\left(\lambda_{i}\right)\right]^{2}
$$

Created by T. Madas
$\begin{aligned} & \text { Now iosegerate IHG O.D.E with respect to } x \text {, } \\ & \text { From } x=0 \text { is } x=1\end{aligned}$
$\rightarrow \int_{0}^{4} x^{2} \frac{d y^{2}}{d x^{2}}+x \frac{d y}{d x}+\left(a^{2} x^{2}-x^{2}\right) y d x=\int_{0}^{1} 0 d x$
$\Rightarrow \int_{0}^{1} \frac{d}{d x}\left[x^{2}\left(\frac{d x}{d x}\right)^{2}\right]+\left(x^{2} x^{2}-x^{2}\right) \frac{d}{d x}\left[y^{2}\right] d x=0$
$\left.\Rightarrow \int_{0}^{1} \frac{d}{d x}\left[x^{2} \frac{d y x^{2}}{d x}\right]-h^{2} \frac{d}{d x}-y^{2}\right]+x^{2} x^{2} \frac{d}{d e}\left[y^{2}\right] d x=0$
$\Rightarrow\left[x^{2}\left(\frac{d}{d x}\right)^{2}\right]_{0}^{1}-n^{2}\left[y^{2}\right]_{0}^{1}+\lambda^{2} \underbrace{\int_{0}^{1} x^{2} \frac{d}{d x}\left(y^{2}\right) d x}_{0=2}=0$
$\left.\Rightarrow\left(\frac{d y}{d x}\right)^{2}\right|_{x-1}-n^{2}\left[y^{2}\right]_{0}^{1}+\lambda^{2}\left\{\left[x^{2} y^{2}\right]_{0}^{1}-2 \int_{0}^{1} x y^{2} d x\right\}=0$
$\left.\Rightarrow\left(\frac{d y}{d x}\right)^{2}\right|_{y=1}-h^{2}\left[y^{2}\right]_{0}^{1}+\left.\lambda^{2} y^{2}\right|_{x=1}-2 \lambda^{2} \int_{0}^{1} x y^{2} d x=0$
$\Rightarrow 2 x^{2} \int_{0}^{1} x y^{2} d x=\left.\lambda^{2} y^{2}\right|_{x=1}+\left(\left.\frac{d y y^{2}}{d x}\right|_{\mid x=1}-\eta^{2}\left[y^{2}\right]_{x=0}^{1}\right.$
at $y=J_{n}(\lambda x)$
$\frac{d u}{d x}=\lambda J_{4}^{\prime}(\lambda, 2)$
$J_{i}\left(a_{i}\right)=0 \quad J_{1}\left(a_{i}\right)=0$
$2 \int_{0}^{1} J_{1}^{2}\left(a_{i} x\right) d x=\left[J_{1}^{\prime}\left(a_{i}\right)\right]^{2}$
$\left.\left.\begin{array}{l}J_{h}(x)=J_{h}^{\prime}(x)+\frac{n}{x} J_{1}(x) \\ J_{n(t)}(\hat{y})=\frac{n}{x_{2}} J_{1}(x)-J_{n}^{\prime}(x)\end{array}\right\} \Rightarrow \begin{array}{l}J_{(x)}^{\prime}(x)=J_{n}(x)-\frac{n}{x} J_{n}(x) \\ J_{n}^{\prime}(x)=\frac{n}{x} J_{n}(x)-J_{n+1}(x)\end{array}\right\} \Rightarrow$
$\left.\begin{array}{l}J_{4}^{\prime}\left(\lambda_{i}\right)=J_{n-1}\left(\lambda_{i}-\frac{n}{\lambda_{i}} J_{n}\left(\lambda_{i}\right)\right. \\ J_{n}^{\prime}\left(\lambda_{i}\right)=\frac{n}{\lambda_{1}} J_{4}\left(\lambda_{i}\right)-J_{4+1}\left(\lambda_{i}\right)\end{array}\right\} \Rightarrow \begin{aligned} & J_{4}^{\prime}\left(a_{i}\right)=J_{4-1}\left(\lambda_{i}\right) \\ & J_{n}^{\prime}\left(\lambda_{i}\right)=-J_{n+1}\left(\lambda_{i}\right)\end{aligned}$
rarong to tate kAn fner
$=\int_{0}^{1}\left[J_{1}\left(\lambda_{i}\right)\right]^{2} d d=\left[J_{m}\left(\lambda_{i}\right)\right]^{2}=\left[J_{w+1}\left(x_{i}\right)\right]^{2}$

