RESI. ASTRACTOR ASTR

CALCULATIONS OF RESIDUES Vasnaths.com 1. V. G.B. Madasmaths.com 1. V. G.B. Manasm

Question 1

$$f(z) \equiv \frac{\sin z}{z^2}, \ z \in \mathbb{C}$$

Find the residue of the pole of f(z).

Question 2

$$f(z) \equiv e^z z^{-5}, z \in \mathbb{C}$$
.

Find the residue of the pole of f(z).

$$res(z=0) = \frac{1}{24}$$

Created by T. Madas

Question 3

$$f(z) \equiv \frac{z^2 + 2z + 1}{z^2 - 2z + 1}, z \in \mathbb{C}.$$

Find the residue of the pole of f(z).

Question 4

$$f(z) \equiv \frac{2z+1}{z^2-z-2}, \ z \in \mathbb{C}$$

Find the residue of each of the two poles of f(z).

$$res(z=2)=\frac{5}{3}$$
, $res(z=-1)=\frac{1}{3}$

$$\begin{aligned} & \text{STRUT BY FACIDIZENC THE ... INCLUMINATIVE} \\ & \mathcal{L}(\mathfrak{B}) = \frac{28 + 1}{2^{2} + 2 - 2}, & \frac{28 + 1}{(2 + 1)(2 - 2)} \\ & \mathcal{L}(\mathfrak{B}) = \frac{28 + 1}{2^{2} + 2 - 2}, & \mathcal{L}(\mathfrak{B}) = \frac{28 + 1}{(2 + 1)} \\ & \mathcal{L}(\mathfrak{A}; \mathfrak{A}) = \lim_{n \to \infty} \left[\frac{2 + n}{(2 + 1)} \mathcal{L}(\mathfrak{B}) \right] & = \lim_{n \to \infty} \left[\frac{2 + n}{(2 + 1)(2 + 2)} \right] \\ & = \frac{2(2 + 1)}{(2 + 1)} = \frac{-1}{3}, & = \frac{1}{3} \end{aligned}$$

$$& \mathcal{L}(\mathfrak{A}; \mathfrak{A}) = \lim_{n \to \infty} \left[\frac{2 + n}{(2 + 1)(2 + 1)} \right] = \lim_{n \to \infty} \left[\frac{2(2 + 1)}{(2 + 1)(2 + 1)} \right] = \frac{2(2 + 1)}{2 + 1} = \frac{1}{3}$$

Question 5

$$f(z) \equiv \frac{z}{2z^2 - 5z + 2}, \ z \in \mathbb{C}.$$

Find the residue of each of the two poles of f(z).

$$res(z=\frac{1}{2})=-\frac{1}{6}$$
, $res(z=2)=\frac{2}{3}$

Question 6

$$f(z) \equiv \frac{1 - e^{iz}}{z^3}, \ z \in \mathbb{C}.$$

- a) Find the first four terms in the Laurent expansion of f(z) and hence state the residue of the pole of f(z).
- **b**) Determine the residue of the pole of f(z) by an alternative method

$$res(z=0) = \frac{1}{2}$$

Question 7

$$f(z) \equiv \frac{z^2 + 4}{z^3 + 2z^2 + 2z}, z \in \mathbb{C}$$

Find the residue of each of the three poles of f(z).

$$res(z=0)=2$$
, $res(z=-1+i)=\frac{1}{2}(-1+3i)$, $res(z=-1-i)=-\frac{1}{2}(1+3i)$

Question 8

$$f(z) \equiv \frac{\tan 3z}{z^4}, z \in \mathbb{C}.$$

Find the residue of the pole of f(z).

$$\boxed{\text{BL}}, \text{ } res(z=0)=9$$

Question 9

$$f(z) \equiv \frac{z^2 - 2z}{\left(z^2 + 4\right)\left(z + 1\right)^2}, \ z \in \mathbb{C}$$

Find the residue of each of the three poles of f(z).

$$res(z=2i) = \frac{1}{25}(7+i)$$
, $res(z=-2i) = \frac{1}{25}(7-i)$, $res(z=-1) = -\frac{14}{25}$

Question 10

$$f(z) \equiv \frac{1}{e^z - 1}, z \in \mathbb{C}.$$

Find the residue of the pole of f(z), at the origin.

$$res(z=0)=1$$

$$\begin{split} & \frac{1}{\sqrt{2}} (2) = \frac{1}{e^{\frac{3}{2} - 1}} = \frac{1}{(1 + 2 + \frac{23}{2} + \frac{23}{4} + \cdots - 1)} = \frac{1}{2 + \frac{23}{2} + \frac{23}{3} + \cdots} \\ & = \frac{1}{2 \left[(1 + \frac{33}{2} + O(2)) \right]} = \frac{1}{2} \left[(1 + \frac{1}{2} + O(2)) \right]^{-1} \\ & = \frac{1}{2} \left[(1 - \frac{1}{2} + O(2)) \right] = \frac{1}{2} \left[(1 + \frac{1}{2} + O(2)) \right] \\ & \leq \frac{1}{2} \left[(1 + \frac{1}{2} + O(2)) \right] = \frac{1}{2} \left[(1 + \frac{1}{2} + O(2)) \right] \end{aligned}$$

$$\therefore \text{ Residue } 1$$

Question 11

$$f(z) \equiv \frac{z}{\left(3z^2 - 10iz - 3\right)^2}, \ z \in \mathbb{C}.$$

Find the residue of each of the two poles of f(z).

$$res(z=3i) = \frac{5}{256}$$
, $res(z=\frac{1}{3}i) = -\frac{5}{256}$

Question 12

$$f(z) \equiv \frac{\cot z \coth z}{z^3}, z \in \mathbb{C}.$$

Find the residue of the pole of f(z) at z = 0.

$$res(z=0) = -\frac{7}{45}$$

Question 13

$$f(z) \equiv \frac{z^6 + 1}{2z^5 - 5z^4 + 2z^3}, \ z \in \mathbb{C}.$$

Find the residue of each of the three poles of f(z).

$$res(z=\frac{1}{2})=-\frac{65}{24}$$
, $res(z=2)=\frac{65}{24}$, $res(z=0)=\frac{21}{8}$

Question 14

$$f(z) \equiv \frac{4}{z^2(1-2i)+6zi-(1+2i)}, z \in \mathbb{C}.$$

Find the residue of each of the two poles of f(z).

$$res(z=2-i)=i$$
, $res(z=\frac{1}{5}(2-i))=-i$

$$\begin{cases} \begin{cases} Q(z) = \frac{4-1}{2^2(z-z)} + 6(z-(z+2z)) \\ \text{if } \text{ The quantity to Granus} \end{cases} & = \frac{61}{2} \frac{1}{4 - 2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \text{ So } = -\frac{61}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{$$

Question 15

$$f(z) \equiv \frac{z e^{kz}}{z^4 + 1}, \ z \in \mathbb{C}, \ k \in \mathbb{R}, \ k > 0.$$

Show that the sum of the residues of the four poles of f(z), is

$$\sin\left(\frac{k}{\sqrt{2}}\right) \sinh\left(\frac{k}{\sqrt{2}}\right).$$

, proof

REAL THE ANTEGRALS ON THE BOTTON ON THE BOTT Masmaths.com L. V. G.B. Madasmaths.com L. V. G.B. Manasma

UNIT CIRCA CONTOUR AND THE REAL PROPERTY OF THE PROPERTY OF TH Vasnaths.com 1. V.C.B. Madasmaths.com 1. V.C.B. Manasmaths.com 1. V.C.B

Question 1

$$\int_0^{2\pi} \frac{1}{4\cos\theta - 5} \ d\theta.$$

Question 2

$$\int_0^{2\pi} \frac{1}{2 + \cos \theta} \ d\theta.$$

Question 3

$$\int_0^{2\pi} \cos^6 \theta \, \sin^6 \theta \, d\theta.$$

Question 4

By integrating a suitable complex function over an appropriate contour find the exact value of

$$\int_0^{2\pi} \frac{1}{5 + 4\sin\theta} \ d\theta.$$

Question 5

By integrating a suitable complex function over an appropriate contour find the exact value of

$$\int_0^{2\pi} \frac{\sin^2 t}{5 - 4\cos t} dt.$$

 $\frac{\pi}{4}$

Question 6

By integrating a suitable complex function over an appropriate contour find the exact value of

$$\int_0^{2\pi} \frac{1}{\left(5 - 3\sin\theta\right)^2} \ d\theta.$$

 $\frac{5\pi}{32}$

Question 7

$$I = \int_0^{2\pi} \frac{1}{3 - 2\cos x + \sin x} \, dx$$

By integrating a suitable complex function over an appropriate contour find the exact value of I.

 π

Question 8

$$I = \int_0^{2\pi} \frac{\cos 3x}{5 - 4\cos x} \ dx.$$

By integrating a suitable complex function over an appropriate contour find the exact value of I.

SEMI CIRCLE NOTOUR THATISCOM SEMI CIRCLE THATISCOM THATISCOM SEMI CIRCLE THATISCOM THATISCO EMI CIRC CONTOUR T. K.G.B. Mallasmaths.com 1. K.G.B. Mallasmaths Casmaths com 1. V.C.B. Madasmaths com 1. V.C.B. Manasm

Jordan's Lemma

Suppose that $f(z) \to 0$ uniformly, as $|z| \to \infty$, for $0 \le \arg z \le \pi$.

If
$$\alpha > 0$$
, then $\int_{\gamma_R} f(z) e^{i\alpha z} dz \to 0$ as $R \to \infty$, where $\gamma_R(\theta) = R e^{i\theta}$, for $0 \le \theta \le \pi$.

Proof

Given $\varepsilon > 0$ we may always pick R_0 , so that if $R > R_0$, $|f(z)| < \varepsilon$, $\forall z \in \gamma_R$

Thus

$$\left| \int_{\gamma_R} e^{i\alpha z} f(z) dz \right| = \left| \int_0^{\pi} e^{i\alpha R(\cos\theta + i\sin\theta)} f(Re^{i\theta}) i e^{i\theta} d\theta \right| =$$

$$\left| \int_0^{\pi} e^{i\alpha R\cos\theta} e^{-\alpha R\sin\theta} f(Re^{i\theta}) i e^{i\theta} d\theta \right| \le \int_0^{\pi} \left| e^{i\alpha R\cos\theta} e^{-\alpha R\sin\theta} f(Re^{i\theta}) i e^{i\theta} \right| d\theta =$$

$$\int_{0}^{\pi} \left| e^{i\alpha R \cos \theta} \right| \left| e^{-\alpha R \sin \theta} \right| \left| f \left(R e^{i\theta} \right) \right| |i| \left| e^{i\theta} \right| d\theta = \int_{0}^{\pi} e^{-\alpha R \sin \theta} \left| f \left(R e^{i\theta} \right) \right| d\theta \le$$

$$\mathcal{E}R \int_{0}^{\pi} e^{-\alpha R \sin \theta} d\theta = 2\mathcal{E}R \int_{0}^{\frac{\pi}{2}} e^{-\alpha R \sin \theta} d\theta \qquad \left[\text{since } \sin \theta \text{ is even about } \frac{\pi}{2} \right]$$

Now by Jordan's Inequality

$$\frac{2}{\pi} \le \frac{\sin \theta}{\theta} \le 1$$
, if $0 < \theta \le \frac{\pi}{2}$

$$\sin \theta \ge \frac{2\theta}{\pi} \implies e^{-\sin \theta} \le e^{\frac{2}{\pi}\theta}, \text{ if } 0 < \theta \le \frac{\pi}{2}$$

Hence

$$2\varepsilon R \int_{0}^{\frac{\pi}{2}} e^{-\alpha R \sin \theta} d\theta \le 2\varepsilon R \int_{0}^{\frac{\pi}{2}} e^{-\frac{2}{\pi}\alpha R \theta} d\theta = 2\varepsilon R \left[-\frac{\pi}{2\alpha R} e^{-\frac{2}{\pi}\alpha R \theta} \right]_{0}^{\frac{\pi}{2}} = \frac{\varepsilon \pi}{\alpha} \left[e^{-\frac{2}{\pi}\alpha R \theta} \right]_{\frac{\pi}{2}}^{0} = \frac{\varepsilon \pi}{\alpha} \left[1 - e^{-\alpha R} \right] \to 0 \text{ since as } R \to \infty, \varepsilon \to 0 \square$$

Question 1

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \ dx \, .$$

Question 2

By integrating a suitable complex function over an appropriate contour find

$$\int_0^\infty \frac{1}{1+x^2} \ dx.$$

 $\frac{\pi}{2}$

Question 3

Question 4

By integrating a suitable complex function over an appropriate contour find

$$\int_0^\infty \frac{1}{1+x^4} \ dx$$

 $\frac{\pi\sqrt{2}}{4}$

Question 5

By integrating a suitable complex function over an appropriate contour find

$$\int_{-\infty}^{\infty} \frac{1}{\left(x^2+4\right)\left(x^2+1\right)^2} \ dx$$

 $\frac{\pi}{9}$

Question 6

By integrating a suitable complex function over an appropriate contour find

$$\int_{-\infty}^{\infty} \frac{1}{\left(x^2 + 4x + 5\right)^2} \ dx$$

 $\frac{\pi}{2}$

Question 7

Given that k > 0 find the exact value of

$$\int_{-\infty}^{\infty} \frac{x \cos kx}{x^2 + 2x + 5} \ dx \qquad \text{and} \qquad \int_{-\infty}^{\infty} \frac{x \sin kx}{x^2 + 2x + 5} \ dx.$$

A.C.B. Madash

Question 8

a) ...
$$\int_0^\infty \frac{\cos ax}{x^2 + b^2} dx$$
, $a > 0$.

b) ...
$$\int_0^\infty \frac{\cos ax}{x^2 + b^2} dx$$
, $a < 0$.

$$\left[\frac{\pi e^{-ab}}{2b}, a > 0\right], \left[\frac{\pi e^{ab}}{2b}, < 0\right]$$

Question 9

$$\int_0^\infty \frac{x \sin ax}{x^2 + b^2} dx, \ a > 0.$$

$$\frac{1}{2}\pi e^{-ab}$$

Question 10

By integrating a suitable complex function over an appropriate contour find

$$\int_0^\infty \frac{\left(1-x^2\right)\cos\alpha x}{\left(1+x^2\right)^2} dx, \ \alpha > 0.$$

 $\frac{1}{2}\pi\alpha e^{-\alpha}$

Question 11

$$\int_0^\infty \frac{\cos ax}{\left(x^2 + b^2\right)^2} dx, \ a > 0$$

$$\frac{\pi e^{-ab} (ab+1)}{4b^3}$$

Question 12

By integrating a suitable complex function over an appropriate contour find

$$\int_0^\infty \frac{\cos x}{1+x^6} \ dx.$$

$$\boxed{\frac{\pi}{6e} \left[1 + \sqrt{e} \left[\cos \left(\frac{\sqrt{3}}{2} \right) + \sqrt{3} \sin \left(\frac{\sqrt{3}}{2} \right) \right] \right]}$$

```
\begin{array}{c} \bullet \text{ (20) BI III: BOTTE LIBERT } & \bullet \text{ (20) BI II: BOTTE LIBERT } & \bullet \text{ (20) BI II: BOTTE LIBERT } & \bullet \text{ (20) BI II: BOTTE LIBERT } & \bullet \text{ (20) BI II: BOTTE LIBERT } & \bullet \text{ (20) BI II: BOTTE II: BOTTE } & \bullet \text{ (20) BI II: BOTTE
```

```
 \begin{aligned} & \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{\frac{2\pi}{3}}}{e^{\frac{\pi}{3}}} \, dx + \int_{\frac{\pi}{2}} \frac{e^{\frac{2\pi}{3}}}{e^{\frac{\pi}{3}}} \, dx = \pi \pi i \times \left[ \frac{e^{\frac{\pi}{2}} \frac{1}{2} \cdot \frac{1}{2}}{3(e^{\frac{\pi}{3}} + 1)} + \frac{e^{\frac{\pi}{3}} \frac{1}{2}}{3(e^{\frac{\pi}{3}} + 1)} + \frac{e^{\frac{\pi}{3}} \frac{1}{2}}{3(e^{\frac{\pi}{3}} + 1)} \right] \\ & \text{At } 2 \to p_0 \text{ The fact size find of the fact of the
```

Question 13

By integrating a suitable complex function over an appropriate contour find an exact simplified value for

$$\int_{-\infty}^{\infty} \frac{1}{ax^2 + bx + c} \ dx,$$

where a, b and c are real constants such that a > 0 and $b^2 - 4ac < 0$.

Question 14

$$I = \int_0^\infty \frac{\ln\left(x^2 + 1\right)}{x^2 + 1} \ dx.$$

By integrating $\frac{\ln(z+i)}{z^2+1}$ over a semicircular contour find the exact value of I.

 $I = \pi \ln 2$

SEMI CIRCLE MACHANIAN SEMI CIRCLE SEMI CONTOUR WITH HOLE Masmaths com 1. K.G.B. Madasmaths com 1. K.G.B. Manasm

Question 1

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{\sin x}{x} \ dx = \frac{\pi}{2}.$$

Question 2

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{\sin x}{x(x^2 + a^2)} dx = \frac{\pi}{2a^2} \left(1 - e^{-a}\right).$$

Question 3

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{1-\cos x}{x^2} \ dx = \frac{\pi}{2}.$$

, proof

Question 4

$$\int_0^\infty \frac{\ln x}{1+x^4} \ dx \, .$$

a) Find the value of the above improper integral, by integrating

$$f(z) = \frac{\log z}{1+z^4}, z \in \mathbb{C},$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.

b) State the value of

$$\int_0^\infty \frac{1}{1+x^4} \ dx.$$

$$\left[-\frac{\pi^2\sqrt{2}}{16}\right], \left[\frac{\pi\sqrt{2}}{4}\right]$$

$$= \int_{0}^{T} \frac{f(|\alpha t + \beta)}{e^{2t}} d\theta = \frac{e}{2^{t-1}} \int_{0}^{\infty} kt + \theta d\theta = \frac{e}{2^{t-1}} \left[\frac{\theta_1 k_2 + \frac{1}{2} d^2}{\theta_1 k_2 + \frac{1}{2} d^2} \right]_{0}^{\infty} \frac{g^2 + k_1 k_2}{g^2 + \frac{1}{2} d^2} \rightarrow 0 \text{ as } E \rightarrow \infty$$

$$\text{NOT THE Configuration of the field } \int_{0}^{\infty} \left[\frac{1}{e^{2t}} d d \right] = \left| -\int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d d \right| \leq \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{\infty} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f(|\alpha t + k_2|^2 + \frac{1}{2} d^2)}{e^{2t}} d\theta = \frac{1}{e^{2t}} \int_{0}^{T} \frac{f($$

Question 5

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \ dx.$$

Find the value of the above improper integral, by integrating

$$f(z) = \frac{(\log z)^2}{1+z^2}, \ z \in \mathbb{C},$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.

Question 6

$$\int_0^\infty \frac{(\ln x)^2}{1+x^4} \ dx \, .$$

a) Find the value of the above improper integral, by integrating

$$f(z) = \frac{(\log z)^2}{1 + z^4}, \ z \in \mathbb{C},$$

over a semicircular contour with a branch cut starting at the origin and oriented in some arbitrary direction in the third or fourth quadrant.

You may assume without proof that
$$\int_0^\infty \frac{1}{1+x^4} dx = \frac{\pi\sqrt{2}}{4}$$

b) State the value of

$$\int_0^\infty \frac{\ln x}{1+x^4} \ dx$$

 $2 \begin{bmatrix} \infty (\frac{\log x}{2}) dx + 5\pi (\int_{-\frac{\pi}{2}}^{\infty} \frac{dx}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} \\ 2 \begin{bmatrix} \frac{\pi}{2} (\frac{\log x}{2}) + 5\pi (\int_{-\frac{\pi}{2}}^{\infty} \frac{dx}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} \\ \frac{\pi}{2} (\frac{\log x}{2}) + 5\pi (\int_{-\frac{\pi}{2}}^{\infty} \frac{dx}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{\pi}{2} \frac{1}{2} \frac{1}{2}$

Created by T. Madas

KE. CONT. (Branch Cuts, MARINALISMAN, MARINALISMA Masmaths com I. V. C.B. Madasmaths com I. V. C.B. Manasm

Question 1

$$f(z) = \frac{\log z}{1+z^2}, \ z \in \mathbb{C}.$$

By integrating f(z) over a suitable contour Γ , show that

$$\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}.$$

Question 2

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{x^{p-1}}{1+x} dx = \pi \operatorname{cosec}(p\pi), \ 0$$

Question 3

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{x^{p-1}}{1+x^2} dx = \frac{\pi}{2} \operatorname{cosec}\left(\frac{p\pi}{2}\right), \ 0$$

Question 4

$$f(z) = \frac{\log z}{(z+1)(z+2)}, \ z \in \mathbb{C}.$$
(z) over a suitable contour Γ , show that

By integrating f(z) over a suitable contour Γ , show that

$$\int_0^\infty \frac{1}{(x+1)(x+2)} dx = \ln 2.$$

Question 5

$$f(z) = \frac{\log z}{(z+a)(z+b)}, \ z \in \mathbb{C},$$

$$b \in \mathbb{R}^+ \text{ with } b > a.$$

where $a \in \mathbb{R}^+$, $b \in \mathbb{R}^+$ with b > a.

By integrating f(z) over a suitable contour Γ , show that

$$\int_0^\infty \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \left(\frac{b}{a}\right).$$

Question 6

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{\sqrt{x}}{1+x^3} dx = \frac{\pi}{3}.$$

Question 7

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \ dx.$$

An attempt is made to find the value of the above improper integral, by integrating

$$f(z) = \frac{(\ln z)^2}{1+z^2}, \ z \in \mathbb{C},$$

over the standard "keyhole" contour with a branch cut taken on the positive x axis.

- a) Show that such attempt fails.
- b) Calculate the value of the two integrals that can be found during this attempt.

$$\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}, \int_0^\infty \frac{\ln x}{1+x^2} dx = 0$$

Question 8

Use a substitution followed by integration of a suitable complex function over an appropriate contour, to show that

$$\int_0^{\frac{1}{2}\pi} \left(\tan x\right)^{\alpha} dx = \frac{1}{2}\pi \sec\left(\frac{1}{2}\pi\alpha\right), -1 < \alpha < 1.$$

SPECIAL TRACE CONTOURS AND ALLS COMPANIES COMP Vasmaths.com 1. V.C.B. Madasmaths.com 1. V.C.B. Manasmaths.com 1. V.C.B

Question 1

Consider the contour Γ located in the first quadrant, defined as the boundary of a quarter circular sector of radius R, with centre at the origin O.

By integrating a suitable complex function over Γ show that

$$\int_0^\infty \frac{1}{1+x^4} \ dx = \frac{\pi\sqrt{2}}{4}.$$

Question 2

By integrating a suitable complex function over a contour defined as the outline of a circular sector subtending an angle of $\frac{1}{3}\pi$ at the origin, find an exact value for

$$\int_0^\infty \frac{1}{1+x^6} \ dx.$$

No credit will be given for integration over alternative contours.

Question 3

By integrating a suitable complex function over an appropriate contour find

$$\int_0^\infty \frac{1}{1+x^3} \ dx.$$

 $\frac{2\pi\sqrt{3}}{9}$

Question 4

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx = \sqrt{\frac{\pi}{8}}.$$

Question 5

By integrating a suitable complex function over an appropriate contour show that

$$\int_0^\infty \frac{\ln x}{a^2 + x^2} dx = \frac{\pi \ln a}{2a}$$

Question 6

By integrating a suitable complex function over an appropriate contour show that

$$\int_{-\infty}^{\infty} \operatorname{sech} x \ dx = \pi.$$

Question 7

It is required to evaluate the integral

$$\int_0^\infty e^{-x^2} \cos x \ dx.$$

a) Show that the above integral can be written as

$$\frac{1}{2}e^{-\frac{1}{4}}\int_{-\infty}^{\infty} e^{-\left(x+\frac{1}{2}i\right)^{2}} dx$$

b) By integrating the complex function $f(z) = e^{-z^2}$, over a rectangular contour with vertices at (-R,0), (R,0), $(R,\frac{1}{2}i)$ and $(-R,\frac{1}{2}i)$, show that

$$\int_0^\infty e^{-x^2} \cos x \ dx = \frac{1}{2} e^{-\frac{1}{4}} \sqrt{\pi} \ .$$

You may assume without proof that

$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}.$$

Question 8

$$f(z) \equiv \frac{1}{z}, z \in \mathbb{C}, z \neq 0.$$
integral of $f(z)$ over two different su

By considering the integral of f(z) over two different suitably parameterized closed paths, show that

$$\int_0^{2\pi} \frac{1}{9\cos^2\theta + 4\sin^2\theta} \ d\theta = \frac{\pi}{3}.$$

, proof

Question 9

The complex number $z = c + a\cos\theta + \mathrm{i}b\sin\theta$, $0 \le \theta < 2\pi$, traces a closed contour C, where a, b and c are positive real numbers with a > c.

By considering

$$\oint_C \frac{1}{z} dz,$$

show that

$$\int_0^{2\pi} \frac{a + c\cos\theta}{\left(c + a\cos\theta\right)^2 + \left(b\sin\theta\right)^2} \ d\theta = \frac{2\pi}{b}.$$

