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Question 1

The function @ = @(x,y) satisfies Laplace’s equation in Cartesian coordinates

2 2
a—;p+a—f:0.
ox“ dy

Use Fourier transforms to convert the above partial differential equation into an

ordinary differential equation for @(k,y), where @(k,y) is the Fourier transform of

@(x,y) with respect to x.
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Question 2

The function @ = ¢(x, y) satisfies Laplace’s equation in Cartesian coordinates,

in the part of the x-y plane for which y >0.

It is further given that

o o(x,y)—0 as X2 4 y? — oo
1
7 |)C|<1

* 0= 0 |x[>1

Use Fourier transforms to show that

)

1
¢(X,y)—ﬂ_ 0

and hence deduce the value of ¢(-_|'1,0) .
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Question 3

The function ¥ =y (x,y) satisfies Laplace’s equation in Cartesian coordinates,

in the part of the x-y plane for which y >0.

It is further given that
o y(x0)=5(x)

o Y(xy)—0 asx*+y* 5w

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

2 2
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, |proof
QNG ’Dﬁf;ﬁk ooy = 4{»}@@: %W t—(da
Fo , Fu o o
oy N T A ARt
o Vo) = S i W (T ey ik
e Phyg)»o m TG e /) = Paws Wi“ <We )e' ok
TR Ru0E TUNROU F THe P DE 1 3 = W) = *‘T\L, M b g
- F[&]-FO]- FC] S vay = & | ™ (b riek) &
= (i) Py »%;W(m] = o WHRATG, THe 600 DT Tce fiou ke To b=
;}"." 2 S & )
= Fg-EP =e P = W0 [ Meda d
SWONG THE ODE S b is 4 o =
+ = v - pnf [Toibg]
L

= Py = Akl sag)H
= Yoy - #zf[\r’ LGy &

B0 Umstes AS ‘oroce” Dimoces ySo woun By yso s
Wi Tar_BG)=o > Yoy - [ 1 [de r‘ﬂ“]
: g+ Jdo
A i - N
- = AW Tt IS
= = A > Yeu - b [l |

NET WE TAE THe Gotitd. TRANIDRM 0F THE (on0iMony P0;o) = §la)

sk 4 = o) = F R g (o] ]

Yoo =B = Plko) = F(ow) =

ghe - & = Pey) = ‘;h[%@
e oy = L
bwe w“\ 5 = Yy - #C%@) -
= Al /
40

Created by T. Madas



Created by T. Madas

Question 4

The function u =u(x,t) satisfies the partial differential equation

ou 1% 3

2280,
ot 3ax3

It is further given that
* u(x,0)=5(x)

* u(xt)—>0 as|x—ooo

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

Fr 4F
TA T

u(x,1)=—
£3 3

where the Ai(x) is the Airy function, defined as

proof
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Question 5

The function ® = ®(x, y) satisfies Laplace’s equation in Cartesian coordinates,

’d 0°®
~2t55 =0
ox~ dy

in the part of the x-y plane for which y >0.

It is further given that
o CIJ(x,O) = 5(x)

o ®(x,y) >0 as x2+y2—9<>o

Use Fourier transforms to find the solution of the above partial differential equation
and hence show that

1 2y
§(x)= lim —£1+y—2] :

a-0| T

proof
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Question 6

The function u =u(1, y) satisfies the partial differential equation

ou ou
—+y—=y,1t20, y>0,
ot " dy Y Y

subject to the following conditions

1. u(O,y)=1+y2, y>0
ii. u(r,0)=1, 20
Use Laplace transforms in ¢ to show that

u(t,y)=1+y=ye '+ y?e™.
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Question 7
The function @ = @(x, y) satisfies Laplace’s equation in Cartesian coordinates,
’p 9%p

in the part of the x-y plane for which x>0 andy >0.

It is further given that

1
1+x2

* 9(x0)=

o 9(xy)—>0 as \/x*+y? Seo

. %[¢(x,0)]=0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

y+1
o(xy)=——""—.
x“+(y+1)

proof
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Question 8

The function z = z(x,t) satisfies the partial differential equation

ou 0z
—=2—"+z, x20, =20,
ax ot

subject to the following conditions
i z(x,0)=6e", x>0.

ii. z(x,7), is bounded forall x>0 and #>0.

Find the solution of partial differential equation by using Laplace transforms.
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Question 9
6(x)=38sin(27x), 0<x<1

The above equation represents the temperature distribution @ °C, maintained along

the 1 m length of a thin rod.

At time ¢t =0, the temperature @ is suddenly dropped to =0 °C at both the ends of
the rod at x=0, and at x=1, and the source which was previously maintaining the

temperature distribution is removed.

The new temperature distribution along the rod (x,1), satisfies the heat equation

2
99 _% 0<x<l1, r20.

- s

ox> ot

Use Laplace transforms to determine an expression for 6(x,7).

[ 1.|6(x.1) =8¢ "sin(27x)
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Question 10

The function ¢ = ¢(x,y) satisfies Laplace’s equation in Cartesian coordinates,

in the semi-infinite region of the x-y plane for which y>0.

It is further given that
(x.0)=f(x)
P(x,y)=>0 as y/x* +y* > oo

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

/) “ f(x—u)

du .
) u2+y2

,|proof
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Question 11

The function @ = ¢(x,y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
a_g)ﬁ_g:o,
ox° dy

in the semi-infinite region of the x-y plane for which y>0.
It is further given that for a given function f = f (x)
0 0
o —|o(x0)|=—| f(x
5L 0) =5 [ ()]
o 2, .2
P(x,y) 20 as \/x"+y° >0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

LN A Ol

T X—u

—0Q

¢(x,0)=

proof

[ solution overleaf |
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Question 12

The function @ = @(x, y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
a—f+a—f=0, —c0< x<oo, y20.
ox“ dy

It is further given that

= 9(x,y) >0 as yx*+y? S oo
= (p(x,O) = H(x) , the Heaviside function.

Use Fourier transforms to show that

(p(x,y):l+larctan .
2 y

You may assume that

proof
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Question 13

The temperature 0(x,t) in a semi-infinite thin rod satisfies the heat equation

o _ao

, x=20, t20.
ox> ot

The initial temperature of the rod is 0 °C, and for # >0 the endpoint at x =0 is
maintained at 7 °C.

Assuming the rod is insulated along its length, use Laplace transforms to find an
expression for 8(x,7).

You may assume that

: EH(_IJ

o [ [f(ks)] =%f[%) , where k is a constant.

H(X,I)ZZ—T e dud'= Terfc[ al j

\/; X
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Question 14

The function u =u (x, y) satisfies Laplace’s equation in Cartesian coordinates,

Pu ou_

¥+8y2 =0, =co<x<oo, 0O<y<l.

It is further given that
= (x,O) =0

el )2o ()
where f(—x)=f(x) and f(x) >0 as x—> oo

a) Use Fourier transforms to show that

M(X,y)—\/%j f (k) coskx sinhky ik f(k)zf[f(x)].

sinh k

b) Given that f(x)=6(x) show further that

u(x,y) = sin 'y
’ 2[coshzx+cosy]
You may assume without proof
cos Ausinh Bu S bl sin(B7/C) ,0<B<C.
A sinh Cu 2C | cosh(Az/C)+cos(Brm/C)
proof
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Question 15

The function ¥ =y (x,y) satisfies Laplace’s equation in Cartesian coordinates,

2 2
oY OV
x> 9y?

in the part of the x-y plane for which y >0.

It is further given that
= y(x0)=1(x)
= y(x,y) >0 asyx’+y? 5o

¢) Use Fourier transforms to convert the above partial differential equation into
an ordinary differential equation and hence show that

d) Evaluate the above integral for ...
i f(x)=1.
ii. ...f(x)=sgnx
i, ... £(x)=H(x)

commenting further whether these answers are consistent.

) =1 ()= et £ ] o (5)= o Lt £

[ solution overleaf ]
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Question 16

The function u =u(x,y) satisfies Laplace’s equation in Cartesian coordinates,

Pu 0 _

2

in the part of the x-y plane for which x>0 and y >0.
It is further given that
= u(0,y)=0
s u(x,y) >0 as/x’+y? oo
= u(x0)=71(x), f(0)=0, f(x) >0 as x >0

Use Fourier transforms to show that

proof

[ solution overleaf ]
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Question 17

The function 8= 6(x,t) satisfies the heat equation in one spatial dimension,

9’60 1 06
—=—F5—, —<x<o, 20,
ox’ o’ ot

where © is a positive constant.

Given further that 6(x,0) = f (x), use Fourier transforms to convert the above partial

differential equation into an ordinary differential equation and hence show that

1 20 2
H(x,t)zzgﬁj f(x—u) exp(;O_z] du .

proof
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Question 18

The function 7 =T (x,t) satisfies the heat equation in one spatial dimension,

?0_100

02 __at , x=20,120,
X (o2

where © is a positive constant.

It is further given that
* T(x0)=r(x)
e T(0,)=0
o T(x1)—>0 as x>0

Use Fourier transforms to convert the above partial differential equation into an
ordinary differential equation and hence show that

S
b
S
<
S
7]
7]
S
3
Q
=y
1)
LN
Kﬁ
P W)
(¢)]
g
| |
Il

proof
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Question 19

The one dimensional heat equation for the temperature, T (x,7), satisfies

2
a_T:la_T’ IZO,
ax2 o ot

where ¢ is the time, x is a spatial dimension and o is a positive constant.
The temperature T (x,£) is subject to the following conditions.
i lim[T(x.)]=0
X—>o0
ii. 7(0,1)=1

iii. 7(x.0)=0

a) Use Laplace transforms to show that

L|T(xt)] =T (xs) = éexp{—\/g x}.

b) Use contour integration on the Laplace transformed temperature gradient

i T(x,s):l to show further that
ox

T (%)= l—erf{ al }

4ot

You may assume without proof that
o j e coskx dx=, /l exp L%
0 4a 4a

o erf(x)z%j:e_‘f2 d&

, |proof

[ solution overleaf ]
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